1
|
Yang Q, Wei J, Ye C, Pei J, Pei X, Wang Y, Dong Y, Zhang H, Jiang D, Yang X, Ma H, Cheng L, Liu H, Zhang L, Lei Y, Xu Z, Yu P, Zhang F, Ye W. Establishment and optimization of a rapid and convenient viral RNA transcript copy reduction neutralization test (VcRNT) for quantification of hantaan orthohantavirus (HTNV) neutralizing antibodies. Virology 2025; 608:110542. [PMID: 40267591 DOI: 10.1016/j.virol.2025.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Rodent-borne orthohantavirus causes severe hemorrhagic fever worldwide, with hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and hantavirus cardiopulmonary syndrome (HCPS) in the Amrerica. In East Asia, Hantaan orthohantavirus (HTNV) is the main pathogen responsible for severe HFRS, with a case fatality rate up to 10 % with no specific treatment available. The antisera or neutralizing antibody (NAb) is able to block virus infection, however, the traditional NAb titer measuring based on focus reduction neutralization test (FRNT) is quite labour-extensive and takes 7-10 days. This study aims to shorten the measuring time of NAb neutralization efficiency by 1-2 days based on quantitative RT-PCR. For this purpose, we developed an in vitro transcripted viral RNA standard and generated a viral RNA copy number standard curve. Using this standard curve, we compared the HTNV propagation kinetics between viral RNA copy numbers and secreted infectious virion. The detection limit and suitable timeframe and condition for qRT-PCR based viral RNA copy numbers measuring was also determined. In addition, when applying this method to measuring the NAb neutralization efficiency of HFRS convalescent serum samples, we could obtain the NAb neutralization efficiency within 1 or 2 days. Furthermore, this method was also nicely correlated with the FRNT - based NAb measurement. To conclude, we established a rapid and convenient viral RNA transcripts copy reduction neutralization test (VcRNT) to measure NAb neutralization efficiency that could finish within 1 or 2 days, and provided a reliable and efficient alternative for FRNT.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Jing Wei
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Chuantao Ye
- The Center of Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Jiawei Pei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Xuemin Pei
- School of Medicine, Northwest University, Xi'an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Dongshen Jiang
- School of Medicine, Yan'an University, Yan'an Key Laboratory of Zoological and Zoonotic Parasitic Diseases, Yan'an, Shaanxi, China
| | - Xiaojing Yang
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| |
Collapse
|
2
|
Wei J, Zhang H, Pei J, Yang Q, Wang Y, Jin X, Liu H, Zhang L, Ma H, Cheng L, Dong Y, Lei Y, Bai Y, Xu Z, Yu P, Zhang F, Ye W. Standardization, validation, and comparative evaluation of a convenient surrogate recombinant vesicular stomatitis virus plaque reduction test for quantification of Hantaan orthohantavirus (HTNV) neutralizing antibodies. Virol J 2025; 22:31. [PMID: 39923054 PMCID: PMC11806752 DOI: 10.1186/s12985-024-02613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 02/10/2025] Open
Abstract
Hantaan orthohantavirus (HTNV) is responsible for severe hemorrhagic fever with renal syndrome (HFRS), which has a case fatality rate of 1% to 10%. Currently, the inactive vaccine licensed in endemic areas elicit low levels of neutralizing antibodies (NAbs). Early NAbs administration is helpful for patients recovery from HFRS. Therefore, measuring NAbs is crucial for evaluating the immune response following infection or vaccination. The golden standard for HTNV NAbs measurement is the focus reduction neutralization test (FRNT), which typically requires skilled technicians and is performed under high biosafety containment facility. Here, we established a surrogate NAbs titration method with replication-competent vesicular stomatitis virus (VSV) bearing HTNV glycoprotein (rVSV-HTNV-GP) based plaque reduction neutralization test (PRNT). Then compared and correlated this method with the authentic HTNV based FRNT, and applied it to measure the NAbs level in 47 serum samples from HFRS patients, healthy donors and inactive vaccine recipients. We observed positive correlations between two neutralization assays among HFRS patients and inactive vaccine recipients (R2 = 0.5994 and 0.3440, respectively) and confirmed the clear specificity with healthy donors without vaccinated and reproducibility with three more assays. Our results suggest that rVSV-HTNV-GP based PRNT is a reliable lower-biosafety level surrogate for HTNV NAbs evaluation, which is easy to perform with higher sensitivity.
Collapse
Affiliation(s)
- Jing Wei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jiawei Pei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Qiqi Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xiaolei Jin
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Student Brigade, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinlan Bai
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| |
Collapse
|
3
|
Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ, Hooper JW. Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio 2024; 15:e0160024. [PMID: 39258903 PMCID: PMC11481879 DOI: 10.1128/mbio.01600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Hantaviruses are rodent-borne viruses that cause severe disease in infected humans. In the New World, major hantaviruses include Andes virus (ANDV) and Sin Nombre virus (SNV) causing hantavirus pulmonary syndrome. In the Old World, major hantaviruses include Hantaan virus (HTNV) and Puumala virus (PUUV) causing hemorrhagic fever with renal syndrome. Here, we produced a pan-hantavirus therapeutic (SAB-163) comprised of fully human immunoglobulin purified from the plasma of transchromosomic bovines (TcB) vaccinated with hantavirus DNA plasmids coding for the major glycoproteins of ANDV, SNV, HTNV, and PUUV. SAB-163 has potent neutralizing antibodies (PRNT50 > 200,000) against the four targeted hantavirus and cross-neutralization against several other heterotypic hantaviruses. At a dosage of 10 mg/kg, SAB-163 is bioavailable in Syrian hamsters out to 70 days post-treatment with a half-life of 10-15 days. At this same dosage, SAB-163 administered 1 day before, or 5 days after exposure, protected all hamsters from lethal disease caused by ANDV. At a higher dose, partial but significant protection was achieved as late as day 6. SAB-163 also protected hamsters in the HTNV, PUUV, and SNV infection models when administered 1 day before or up to 3 days after challenge. This pan-hantavirus therapeutic is attractive because it is fully human, multi-targeted, safe, stable at 4°C, and effective in animal models. SAB-163 was evaluated for safety in GLP human tissue binding studies and a GLP rabbit toxicity study at 365 and 730 mg/kg and is investigational new drug enabled for phase 1 clinical trial(s). IMPORTANCE This candidate polyclonal human IgG product was produced using synthetic gene-based vaccines and transgenic cows. Having now gone through cGMP production, GLP safety testing, and efficacy testing in animals, SAB-163 is the world's most advanced anti-hantavirus antibody-based medical countermeasure, aside from convalescent human plasma. Importantly, SAB-163 targets the most prevalent hantaviruses on four continents.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | - Steven A. Kwilas
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Lucia M. Principe
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Matthew Josleyn
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua Shamblin
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | - Thomas Luke
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | | | - Jay W. Hooper
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| |
Collapse
|
4
|
Riesle-Sbarbaro SA, Kirchoff N, Hansen-Kant K, Stern A, Kurth A, Prescott JB. Human-to-Human Transmission of Andes Virus Modeled in Syrian Hamsters. Emerg Infect Dis 2023; 29:2159-2163. [PMID: 37735788 PMCID: PMC10521624 DOI: 10.3201/eid2910.230544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Several occurrences of human-to-human transmission of Andes virus, an etiological agent of hantavirus cardiopulmonary syndrome, are documented. Syrian hamsters consistently model human hantavirus cardiopulmonary syndrome, yet neither transmission nor shedding has been investigated. We demonstrate horizontal virus transmission and show that Andes virus is shed efficiently from both inoculated and contact-infected hamsters.
Collapse
|
5
|
Vial PA, Ferrés M, Vial C, Klingström J, Ahlm C, López R, Le Corre N, Mertz GJ. Hantavirus in humans: a review of clinical aspects and management. THE LANCET. INFECTIOUS DISEASES 2023; 23:e371-e382. [PMID: 37105214 DOI: 10.1016/s1473-3099(23)00128-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/29/2023]
Abstract
Hantavirus infections are part of the broad group of viral haemorrhagic fevers. They are also recognised as a distinct model of an emergent zoonotic infection with a global distribution. Many factors influence their epidemiology and transmission, such as climate, environment, social development, ecology of rodent hosts, and human behaviour in endemic regions. Transmission to humans occurs by exposure to infected rodents in endemic areas; however, Andes hantavirus is unique in that it can be transmitted from person to person. As hantaviruses target endothelial cells, they can affect diverse organ systems; increased vascular permeability is central to pathogenesis. The main clinical syndromes associated with hantaviruses are haemorrhagic fever with renal syndrome (HFRS), which is endemic in Europe and Asia, and hantavirus cardiopulmonary syndrome (HCPS), which is endemic in the Americas. HCPS and HFRS are separate clinical entities, but they share several features and have many overlapping symptoms, signs, and pathogenic alterations. For HCPS in particular, clinical outcomes are highly associated with early clinical suspicion, access to rapid diagnostic testing or algorithms for presumptive diagnosis, and prompt transfer to a facility with critical care units. No specific effective antiviral treatment is available.
Collapse
Affiliation(s)
- Pablo A Vial
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Departamento de Pediatría Clínica Alemana de Santiago, Santiago, Chile.
| | - Marcela Ferrés
- Department of Pediatric Infectious Disease and Immunology, Infectious Disease and Molecular Virology Laboratory, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Vial
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jonas Klingström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - René López
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Departamento de Paciente Crítico Clínica Alemana, Santiago, Chile
| | - Nicole Le Corre
- Department of Pediatric Infectious Disease and Immunology, Infectious Disease and Molecular Virology Laboratory, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gregory J Mertz
- Department of Internal Medicine, UNM Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Mittler E, Serris A, Esterman ES, Florez C, Polanco LC, O’Brien CM, Slough MM, Tynell J, Gröning R, Sun Y, Abelson DM, Wec AZ, Haslwanter D, Keller M, Ye C, Bakken RR, Jangra RK, Dye JM, Ahlm C, Rappazzo CG, Ulrich RG, Zeitlin L, Geoghegan JC, Bradfute SB, Sidoli S, Forsell MN, Strandin T, Rey FA, Herbert AS, Walker LM, Chandran K, Guardado-Calvo P. Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody. Sci Transl Med 2023; 15:eadg1855. [PMID: 37315110 PMCID: PMC11721787 DOI: 10.1126/scitranslmed.adg1855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexandra Serris
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | | | - Catalina Florez
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janne Tynell
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Russel R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- Partner site: Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | | | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| |
Collapse
|
7
|
Engdahl TB, Binshtein E, Brocato RL, Kuzmina NA, Principe LM, Kwilas SA, Kim RK, Chapman NS, Porter MS, Guardado-Calvo P, Rey FA, Handal LS, Diaz SM, Zagol-Ikapitte IA, Tran MH, McDonald WH, Meiler J, Reidy JX, Trivette A, Bukreyev A, Hooper JW, Crowe JE. Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. eLife 2023; 12:e81743. [PMID: 36971354 PMCID: PMC10115451 DOI: 10.7554/elife.81743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Natalia A Kuzmina
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Robert K Kim
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | | | - Félix A Rey
- Institut Pasteur, Université Paris CitéParisFrance
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Minh H Tran
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
- Department of Microbiology and Immunology, University of Texas Medical BranchGalvestonUnited States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|