1
|
Hao T, Xie Y, Chai Y, Zhang W, Zhang D, Qi J, Shi Y, Song H, Gao GF. Structural basis of receptor-binding adaptation of human-infecting H3N8 influenza A virus. J Virol 2025; 99:e0106524. [PMID: 39992139 PMCID: PMC11915789 DOI: 10.1128/jvi.01065-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Recent avian-origin H3N8 influenza A virus (IAV) that have infected humans pose a potential public health concern. Alterations in the viral surface glycoprotein, hemagglutinin (HA), are typically required for IAVs to cross the species barrier for adaptation to a new host, but whether H3N8 has adapted to infect humans remains elusive. The observation of a degenerative codon in position 228 of HA in human H3N8 A/Henan/4-10/2022 protein sequence, which could be residue G or S, suggests a dynamic viral adaptation for human infection. Previously, we found this human-isolated virus has shown the ability to transmit between ferrets via respiratory droplets, with the HA-G228S substitution mutation emerging as a critical determinant for the airborne transmission of the virus in ferrets. Here, we investigated the receptor-binding properties of these two H3N8 HAs. Our results showed H3N8 HAs have dual receptor-binding properties with a preference for avian receptor binding, and G228S slightly increased binding to human receptors. Cryo-electron microscopy structures of the two H3N8 HAs with avian and human receptor analogs revealed the basis for dual receptor binding. Mutagenesis studies reveal that the Q226L mutation shifts H3N8 HA's receptor preference from avian to human, while the G228S substitution enhances binding to both receptor types. H3N8 exhibits distinct antigenic sites compared to H3N2, prompting concerns regarding vaccine efficacy. These findings suggest that the current H3N8 human isolates are yet to adapt for efficient human-to-human transmission and further continuous surveillance should be implemented.IMPORTANCEInfluenza virus transmission remains a public health concern currently. H3N8 subtype influenza A viruses infect humans and their HAs acquire the ability to bind to both human and avian receptors, posing a threat to human health. We have solved and analyzed the structural basis of dual receptor binding of recently human-infecting H3N8 HA, and we demonstrate that the G228S enhances human receptor binding and adaptation. We also found that HN/4-10 H3N8 HA has distinct antigenic sites, which challenges vaccine efficacy. Taken together, our work is critical to the prevention and control of human H3 influenza virus infection.
Collapse
Affiliation(s)
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hao Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - George F. Gao
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
2
|
Zhang C, Zhao C, Huang J, Wang Y, Jiang B, Zheng H, Zhuang M, Peng Y, Zhang X, Liu S, Qiang H, Wang H, Zeng X, Guo G, Chen JL, Ma S. Emergence of a novel reassortant H3N3 avian influenza virus with enhanced pathogenicity and transmissibility in chickens in China. Vet Res 2025; 56:56. [PMID: 40069883 PMCID: PMC11899391 DOI: 10.1186/s13567-025-01484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
H3N3 avian influenza viruses (AIVs) are less prevalent in poultry than H3N8 viruses. However, although relatively rare, reassortant H3N3 viruses have been known to appear in both domestic poultry and wild birds. In this study, we isolated the H3N3 virus in chickens sourced from a live poultry market in China. A comprehensive genomic analysis revealed that the virus possessed a single basic amino acid in the cleavage site of the hemagglutinin (HA) gene. Phylogenetic analysis indicated that eight genes in the H3N3 virus belong to the Eurasian lineage. Specifically, the HA and NA genes were clustered with H3N2 and H11N3, respectively, while the internal genes were closely related to the H3N8 and H9N2 viruses. Furthermore, the H3N3 virus exhibited high and moderate stability in thermal and acidic conditions and efficient replication capabilities in mammalian cells. The H3N3 virus demonstrated that it could infect and replicate in the upper and lower respiratory tract of BALB/c mice without prior adaptation, triggering hemagglutination inhibition (HI) antibody titres ranging from 80 to 160; notably, the H3N3 virus replicated vigorously within the chicken respiratory and digestive tracts. The virus also transmitted efficiently and swiftly among chickens through direct contact, leading to higher levels of HI antibodies in both the inoculated and contact birds. These findings suggest that the H3N3 virus may be a novel reassortant originating from viruses circulating in domestic poultry, thus demonstrating an increased pathogenicity and transmissibility in chickens. Our study determines that H3N3 AIV potentially threatens the poultry industry and public health, highlighting the importance of active surveillance of AIVs.
Collapse
Affiliation(s)
- Chunping Zhang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Conghui Zhao
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiacheng Huang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yang Wang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bo Jiang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hangyu Zheng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingzhi Zhuang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanni Peng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaoxuan Zhang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Sha Liu
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Haoxi Qiang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huanhuan Wang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiancheng Zeng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guijie Guo
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ji-Long Chen
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shujie Ma
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2025; 6:100973. [PMID: 39396528 PMCID: PMC11876097 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
4
|
Zhou S, Zhang Y, Liu S, Peng C, Shang J, Tian J, Li X, Liu F, Jiang W, Liu H. Pathogenicity of Novel H3 Avian Influenza Viruses in Chickens and Development of a Promising Vaccine. Viruses 2025; 17:288. [PMID: 40143220 PMCID: PMC11946779 DOI: 10.3390/v17030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/28/2025] Open
Abstract
Since 2022, three cases of human infections of novel H3N8 avian influenza viruses (AIVs) have been confirmed in China. Given the potential for significant public health implications, the prompt detection and containment of the virus is particularly important. Comprehensive analyses were conducted of the complete viral gene sequences of five H3 subtype AIVs that were isolated from chickens, pigeons, and geese in live poultry markets in China in 2023. Four strains exhibited a high degree of homology with the H3N8 viruses responsible for human infections in 2022 and 2023. A subsequent study was conducted to investigate the pathogenicity differences among multiple subtypes of the H3 AIVs in chickens. The study revealed that all infected chickens exhibited clinical signs and viral shedding. Notably, two H3N8 viruses, which were highly homologous to human strains, demonstrated significant differences in adaptability to chickens. The goose-derived H3N5 strain displayed high adaptability to chickens and could replicate in multiple organs, with the highest titer in the cloaca. Additionally, a potential vaccine strain, designated CK/NT308/H3N3, was successfully developed that provided complete clinical protection and effectively prevented viral shedding against both H3N3 and H3N8 viruses. In conclusion, CK/NT308/H3N3 presents a promising vaccine candidate.
Collapse
Affiliation(s)
- Shuning Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaxin Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jie Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xiaoqi Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Hualei Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| |
Collapse
|
5
|
Chen C, Li M, Guo A, Guo P, Zhang W, Gu C, Wen G, Zhou H, Tao P. Addressing unexpected bacterial RNA safety concerns of E. coli produced influenza NP through CpG loaded mutant. NPJ Vaccines 2025; 10:32. [PMID: 39955275 PMCID: PMC11829966 DOI: 10.1038/s41541-025-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Influenza virus nucleoprotein (NP) is a promising target for universal influenza vaccines due to its conservation and high immunogenicity. Here, we uncovered a previously unknown factor that E. coli-produced NP carries bacterial RNA, which is crucial for its high immunogenicity but may pose safety and consistency concerns due to batch variability. To address these concerns, we developed a NP mutant (NPmut) that lacks RNA binding activity but can be loaded with CpG1826, a synthetic oligodeoxynucleotide adjuvant that has been used in the FDA-approved Hepatitis B vaccine. The CpG1826-loaded NPmut induced immune responses comparable to RNA-bound NP while eliminating safety risks. Additionally, the mixture of CpG1826-loaded NPmut and 3M2e protein (three tandem copies of the ectodomain of influenza M2 protein) provided enhanced protection against influenza viruses challenge. Our findings highlight the adjuvant activity of bacterial RNA in E. coli-produced NP and propose a safer strategy for developing universal influenza vaccines.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
6
|
Yan S, Chen Y, Lin J, Chen H, Hu C, Liu H, Diao H, Liu S, Chen JL. Recombinant avian-derived antiviral proteins cIFITM1, cIFITM3, and cViperin as effective adjuvants in inactivated H9N2 subtype avian influenza vaccines. Vet Microbiol 2024; 298:110277. [PMID: 39454284 DOI: 10.1016/j.vetmic.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Vaccine adjuvants, serving as non-specific immune enhancers, play a pivotal role in the immunoprevention and control of animal diseases. This study utilized prokaryotic expression systems to express and purify chicken-derived cIFITM1, cIFITM3, and cViperin, which were then formulated as adjuvants with H9N2 avian influenza virus antigens to create inactivated vaccines. These vaccines were administered to SPF chickens to investigate their immunopotentiating functions. Additionally, the proteins were assessed for their ability to act as standalone immune enhancers. The results demonstrated that cIFITM1, cIFITM3, and cViperin significantly elevated serum hemagglutination inhibition (HI) antibody titers. Notably, when used individually, these proteins markedly enhanced the antiviral capabilities of challenged chickens, leading to alleviated clinical symptoms, reduced tracheal virus replication, diminished virus shedding, and lessened histopathological damage, with cIFITM1 exhibiting the most pronounced effect. Furthermore, the protective efficacy of two H9N2 recombinant virus inactivated vaccines supplemented with cIFITM1 adjuvant was validated, achieving a 100 % vaccine protection efficiency. In conclusion, cIFITM1, cIFITM3, and cViperin as adjuvants for influenza vaccines effectively inhibit virus replication and shedding, highlighting their significant potential in influenza prevention and control.
Collapse
Affiliation(s)
- Shihong Yan
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yikai Chen
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Lin
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Chen
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenqi Hu
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongyang Liu
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongxiu Diao
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Liu
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Kang M, Wang LF, Sun BW, Wan WB, Ji X, Baele G, Bi YH, Suchard MA, Lai A, Zhang M, Wang L, Zhu YH, Ma L, Li HP, Haerheng A, Qi YR, Wang RL, He N, Su S. Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. THE LANCET. INFECTIOUS DISEASES 2024; 24:e522-e531. [PMID: 38878787 DOI: 10.1016/s1473-3099(24)00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza virus continues to pose zoonotic, epizootic, and pandemic threats worldwide, as exemplified by the 2020-23 epizootics of re-emerging H5 genotype avian influenza viruses among birds and mammals and the fatal jump to humans of emerging A(H3N8) in early 2023. Future influenza pandemic threats are driven by extensive mutations and reassortments of avian influenza viruses rooted in frequent interspecies transmission and genetic mixing and underscore the urgent need for more effective actions. We examine the changing global epidemiology of human infections caused by avian influenza viruses over the past decade, including dramatic increases in both the number of reported infections in humans and the spectrum of avian influenza virus subtypes that have jumped to humans. We also discuss the use of advanced surveillance, diagnostic technologies, and state-of-the-art analysis methods for tracking emerging avian influenza viruses. We outline an avian influenza virus-specific application of the One Health approach, integrating enhanced surveillance, tightened biosecurity, targeted vaccination, timely precautions, and timely clinical management, and fostering global collaboration to control the threats of avian influenza viruses.
Collapse
Affiliation(s)
- Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Fang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo-Wen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Wen-Bo Wan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Yu-Hai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, Frankfort, KY, USA
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hong Zhu
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ma
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Peng Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ayidana Haerheng
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang-Rui Qi
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
McMenamy MJ, McKenna R, Bailie VB, Cunningham B, Jeffers A, McCullough K, Forsythe C, Cuartero LG, Flynn O, Byrne C, Connaghan E, Moriarty J, Fanning J, Ronan S, Barrett D, Fusaro A, Monne I, Terregino C, James J, Byrne AMP, Lean FZX, Núñez A, Reid SM, Hansen R, Brown IH, Banyard AC, Lemon K. Evaluating the Impact of Low-Pathogenicity Avian Influenza H6N1 Outbreaks in United Kingdom and Republic of Ireland Poultry Farms during 2020. Viruses 2024; 16:1147. [PMID: 39066308 PMCID: PMC11281592 DOI: 10.3390/v16071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.
Collapse
Affiliation(s)
- Michael J. McMenamy
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Robyn McKenna
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Valerie B. Bailie
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Ben Cunningham
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Adam Jeffers
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Kelly McCullough
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Catherine Forsythe
- Disease Surveillance & Investigation Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - Laura Garza Cuartero
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Orla Flynn
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Christina Byrne
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - Emily Connaghan
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - John Moriarty
- Central Veterinary Research Laboratory, DAFM, Backweston Campus, Stacummy Lane, W23 X3PH Celbridge, Ireland
| | - June Fanning
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Stephanie Ronan
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Damien Barrett
- National Disease Control Centre, Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, D02 WK12 Dublin, Ireland
| | - Alice Fusaro
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Isabella Monne
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Calogero Terregino
- European Union Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Joe James
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Scott M. Reid
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
- Now the Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency—Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ken Lemon
- Virological Molecular Diagnostics Laboratory, Virology Branch, Agri-Food and Bioscience Institute, Stoney Road, Stormont, Belfast BT4 3SD, UK
| |
Collapse
|
9
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Grant M, Tampach S, Kohnle L. Avian influenza overview March-June 2024. EFSA J 2024; 22:e8930. [PMID: 39036773 PMCID: PMC11258884 DOI: 10.2903/j.efsa.2024.8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
10
|
Zhuang Y, Wang M, Liang L, Mao Y, Wang K, Yang S, Deng A, Zeng K, Zhang Y, Zhang G, Kang M, Li B, Zhang M, Ye S. First Known Human Death After Infection With the Avian Influenza A/H3N8 Virus: Guangdong Province, China, March 2023. Clin Infect Dis 2024; 78:646-650. [PMID: 37555762 DOI: 10.1093/cid/ciad462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
Here, we report on a case of human infection with the H3N8 avian influenza virus. The patient had multiple myeloma and died of severe infection. Genome analysis showed multiple gene mutations and reassortments without mammalian-adaptive mutations. This suggests that avian influenza (A/H3N8) virus infection could be lethal for immunocompromised persons.
Collapse
Affiliation(s)
- Yali Zhuang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Man Wang
- General Office, Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong, P.R. China
| | - Lijun Liang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Yunxia Mao
- Institute of Infectious Disease Control and Prevention, Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong, P.R. China
| | - Kaibin Wang
- Guangdong Provincial Field Epidemiology Training Program, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
- Department of Disinfection and Vector Control, Guangzhou Tianhe District Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Shuhuan Yang
- Institute of Pathogenic Microbiology, Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong, P.R. China
| | - Aiping Deng
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Kewen Zeng
- Department of Prevention & Healthcare, Zhongshan City People's Hospital, Zhongshan, Guangdong, P.R. China
| | - Yingtao Zhang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Guanting Zhang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Min Kang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Meng Zhang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P.R. China
| | - Shinan Ye
- General Office, Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong, P.R. China
| |
Collapse
|
11
|
Gu C, Fan S, Dahn R, Babujee L, Chiba S, Guan L, Maemura T, Pattinson D, Neumann G, Kawaoka Y. Characterization of a human H3N8 influenza virus. EBioMedicine 2024; 101:105034. [PMID: 38408394 PMCID: PMC10904230 DOI: 10.1016/j.ebiom.2024.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND In 2022 and 2023, novel reassortant H3N8 influenza viruses infected three people, marking the first human infections with viruses of this subtype. METHODS Here, we generated one of these viruses (A/Henan/4-10CNIC/2022; hereafter called A/Henan/2022 virus) by using reverse genetics and characterized it. FINDINGS In intranasally infected mice, reverse genetics-generated A/Henan/2022 virus caused weight loss in all five animals (one of which had to be euthanized) and replicated efficiently in the respiratory tract. Intranasal infection of ferrets resulted in minor weight loss and moderate fever but no mortality. Reverse genetics-generated A/Henan/2022 virus replicated efficiently in the upper respiratory tract of ferrets but was not detected in the lungs. Virus transmission via respiratory droplets occurred in one of four pairs of ferrets. Deep-sequencing of nasal swab samples from inoculated and exposed ferrets revealed sequence polymorphisms in the haemagglutinin protein that may affect receptor-binding specificity. We also tested 90 human sera for neutralizing antibodies against reverse genetics-generated A/Henan/2022 virus and found that some of them possessed neutralizing antibody titres, especially sera from older donors with likely exposure to earlier human H3N2 viruses. INTERPRETATION Our data demonstrate that reverse genetics-generated A/Henan/2022 virus is a low pathogenic influenza virus (of avian influenza virus descent) with some antigenic resemblance to older human H3N2 viruses and limited respiratory droplet transmissibility in ferrets. FUNDING This work was supported by the Japan Program for Infectious Diseases Research and Infrastructure (JP23wm0125002), and the Japan Initiative for World-leading Vaccine Research and Development Centers (JP233fa627001) from the Japan Agency for Medical Research and Development (AMED).
Collapse
Affiliation(s)
- Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Randall Dahn
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo 162-8655, Japan.
| |
Collapse
|
12
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Baldinelli F, Delacourt R, Georganas A, Kohnle L. Avian influenza overview December 2023-March 2024. EFSA J 2024; 22:e8754. [PMID: 38550271 PMCID: PMC10977096 DOI: 10.2903/j.efsa.2024.8754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.
Collapse
|
13
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Willgert K, Baldinelli F, Chuzhakina K, Delacourt R, Georganas A, Georgiev M, Kohnle L. Avian influenza overview September-December 2023. EFSA J 2023; 21:e8539. [PMID: 38116102 PMCID: PMC10730024 DOI: 10.2903/j.efsa.2023.8539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Between 2 September and 1 December 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (88) and wild (175) birds across 23 countries in Europe. Compared to previous years, the increase in the number of HPAI virus detections in waterfowl has been delayed, possibly due to a later start of the autumn migration of several wild bird species. Common cranes were the most frequently affected species during this reporting period with mortality events being described in several European countries. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds, with the exception of Hungary, where two clusters involving secondary spread occurred. HPAI viruses identified in Europe belonged to eleven different genotypes, seven of which were new. With regard to mammals, the serological survey conducted in all fur farms in Finland revealed 29 additional serologically positive farms during this reporting period. Wild mammals continued to be affected mostly in the Americas, from where further spread into wild birds and mammals in the Antarctic region was described for the first time. Since the last report and as of 1 December 2023, three fatal and one severe human A(H5N1) infection with clade 2.3.2.1c viruses have been reported by Cambodia, and one A(H9N2) infection was reported from China. No human infections related to the avian influenza detections in animals in fur farms in Finland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.
Collapse
|
14
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Staubach C, Terregino C, Baldinelli F, Rusinà A, Kohnle L. Avian influenza overview June-September 2023. EFSA J 2023; 21:e08328. [PMID: 37809353 PMCID: PMC10552073 DOI: 10.2903/j.efsa.2023.8328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.
Collapse
|
15
|
Hufsky F, Abecasis AB, Babaian A, Beck S, Brierley L, Dellicour S, Eggeling C, Elena SF, Gieraths U, Ha AD, Harvey W, Jones TC, Lamkiewicz K, Lovate GL, Lücking D, Machyna M, Nishimura L, Nocke MK, Renard BY, Sakaguchi S, Sakellaridi L, Spangenberg J, Tarradas-Alemany M, Triebel S, Vakulenko Y, Wijesekara RY, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2023. Viruses 2023; 15:2031. [PMID: 37896809 PMCID: PMC10612056 DOI: 10.3390/v15102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Ana B. Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Artem Babaian
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sebastian Beck
- Leibniz Institute of Virology, Department Viral Zoonoses—One Health, 20251 Hamburg, Germany;
| | - Liam Brierley
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
| | - Simon Dellicour
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Christian Eggeling
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Santiago F. Elena
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
| | - Udo Gieraths
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Will Harvey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Terry C. Jones
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel L. Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Martin Machyna
- Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Maximilian K. Nocke
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department for Molecular & Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernard Y. Renard
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Digital Engineering Faculty, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
| | - Lygeri Sakellaridi
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Jannes Spangenberg
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Maria Tarradas-Alemany
- Computational Genomics Lab., Department of Genetics, Microbiology and Statistics, Institut de Biomedicina UB (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Triebel
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Yulia Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rajitha Yasas Wijesekara
- Institute for Bioinformatics, University of Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
- Leibniz Institute for Age Research—Fritz Lippman Institute, 07745 Jena, Germany
| |
Collapse
|
16
|
Sun H, Li H, Tong Q, Han Q, Liu J, Yu H, Song H, Qi J, Li J, Yang J, Lan R, Deng G, Chang H, Qu Y, Pu J, Sun Y, Lan Y, Wang D, Shi Y, Liu WJ, Chang KC, Gao GF, Liu J. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets. Cell 2023; 186:4074-4084.e11. [PMID: 37669665 DOI: 10.1016/j.cell.2023.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Abstract
H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.
Collapse
Affiliation(s)
- Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiqi Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jizhe Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Riguo Lan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guojing Deng
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yajin Qu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Lan
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dayan Wang
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Baldinelli F, Broglia A, Kohnle L. Avian influenza overview April - June 2023. EFSA J 2023; 21:e08191. [PMID: 37485254 PMCID: PMC10358191 DOI: 10.2903/j.efsa.2023.8191] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).
Collapse
|
18
|
Chen S, Shen S, Teng Y, Li R, Zhang X, Liu J, Wu Z, Yan Z, Chen F, Xie Q. A Novel Triple Reassortment H3N8 Avian Influenza Virus: Characteristics, Pathogenicity, and Transmissibility. Transbound Emerg Dis 2023; 2023:6453969. [PMID: 40303727 PMCID: PMC12017217 DOI: 10.1155/2023/6453969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 05/02/2025]
Abstract
An increasing number of new subtypes of avian influenza viruses (AIVs) are reported to be infecting humans, including H3N2, H5N1, H7N9, H10N8, and the recently emerged H3N8 virus in China in 2022. However, the genetic and biological properties of the currently prevalent H3N8 AIVs are not yet fully understood. This study reports the isolation of a novel triple reassortment H3N8 virus (GD-H3N8) from chicken flocks in Guangdong province, China, in 2022. The GD-H3N8 virus contains the Eurasian avian duck-origin H3 gene, the North American avian N8 gene, and dynamic internal genes of the H9N2 virus, and shows high homology with human H3N8 strains. The GD-H3N8 isolate has multiple mammalian adaptive mutations associated with receptor binding and virulence. Growth kinetics assays demonstrate that the GD-H3N8 isolate is capable of efficient replication in avian, mammalian, and human cells in vitro. In vivo, the GD-H3N8 isolate can replicate efficiently in mice without preadaptation, in addition to establishing systemic infection and transmission by direct contact in chickens. These findings underscore the need for continued surveillance of H3N8 viruses to identify circulating strains that may potentially threaten human health.
Collapse
Affiliation(s)
- Sheng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
- College of Animal Science Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuqun Shen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Southern Medical University Institute for Global Health, Southern Medical University, Guangzhou 510642, China
| | - Yutao Teng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruoying Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- College of Animal Science Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jiajia Liu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Zhiqiang Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Zhuanqiang Yan
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
- College of Animal Science Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
19
|
Chen P, Jin Z, Peng L, Zheng Z, Cheung YM, Guan J, Chen L, Huang Y, Fan X, Zhang Z, Shi D, Xie J, Chen R, Xiao B, Yip CH, Smith DK, Hong W, Liu Y, Li L, Wang J, Holmes EC, Lam TTY, Zhu H, Guan Y. Characterization of an Emergent Chicken H3N8 Influenza Virus in Southern China: a Potential Threat to Public Health. J Virol 2023; 97:e0043423. [PMID: 37289052 PMCID: PMC10308888 DOI: 10.1128/jvi.00434-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.
Collapse
Affiliation(s)
- Peiwen Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Ziying Jin
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Liuxia Peng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Zuoyi Zheng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Jing Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Liming Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiteng Huang
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dongmei Shi
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Jin Xie
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Boheng Xiao
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Chun Hung Yip
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - David K. Smith
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Wenshan Hong
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Yongmei Liu
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lifeng Li
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Jia Wang
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Edward C. Holmes
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tommy Tsan-Yuk Lam
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| |
Collapse
|
20
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinaviciute G, Niqueux É, Stahl K, Staubach C, Terregino C, Broglia A, Kohnle L, Baldinelli F. Avian influenza overview March - April 2023. EFSA J 2023; 21:e08039. [PMID: 37293570 PMCID: PMC10245295 DOI: 10.2903/j.efsa.2023.8039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Between 2 March and 28 April 2023, highly pathogenic avian influenza (HPAI) A(H5Nx) virus, clade 2.3.4.4b, outbreaks were reported in domestic (106) and wild (610) birds across 24 countries in Europe. Poultry outbreaks occurred less frequently compared to the previous reporting period and compared to spring 2022. Most of these outbreaks were classified as primary outbreaks without secondary spread and some of them associated with atypical disease presentation, in particular low mortality. In wild birds, black-headed gulls continued to be heavily affected, while also other threatened wild bird species, such as the peregrine falcon, showed increased mortality. The ongoing epidemic in black-headed gulls, many of which breed inland, may increase the risk for poultry, especially in July-August, when first-year birds disperse from the breeding colonies. HPAI A(H5N1) virus also continued to expand in the Americas, including in mammalian species, and is expected to reach the Antarctic in the near future. HPAI virus infections were detected in six mammal species, particularly in marine mammals and mustelids, for the first time, while the viruses currently circulating in Europe retain a preferential binding for avian-like receptors. Since 13 March 2022 and as of 10 May 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from China (1), and Chile (1), as well as three A(H9N2) and one A(H3N8) human infections in China. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, and low to moderate for occupationally or otherwise exposed people.
Collapse
|
21
|
Luo XL, Lu S, Qin C, Shi M, Lu XB, Wang L, Ga S, Jin D, Ma XL, Yang J, Dai Y, Bao LL, Cheng YP, Ge YJ, Bai YB, Zhu WT, Pu J, Sun H, Huang YY, Xu MC, Lei WJ, Dong K, Yang CX, Jiao YF, Lv Q, Li FD, Xu J. Emergence of an ancient and pathogenic mammarenavirus. Emerg Microbes Infect 2023; 12:e2192816. [PMID: 36939609 DOI: 10.1080/22221751.2023.2192816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACTEmerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbors several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαβR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).
Collapse
Affiliation(s)
- Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Bo Lu
- Infectious diseases department, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Lu Wang
- Kashi Center for Disease Control and Prevention, Kashi, Xinjiang Autonomous Region, China
| | - Sang Ga
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, Qinghai Province, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Li Ma
- Kashi first people's hospital, Kashi, Xinjiang Autonomous Region, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Lin-Lin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yan-Peng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Ya-Jun Ge
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yi-Bo Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wen-Tao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yu-Yuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ming-Chao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen-Jing Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Kui Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Cai-Xin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Yi-Fan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qi Lv
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Feng-Di Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China.,Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Sun Y, Zhang T, Zhao X, Qian J, Jiang M, Jia M, Xu Y, Yang W, Feng L. High activity levels of avian influenza upwards 2018–2022: A global epidemiological overview of fowl and human infections. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
23
|
Calle-Hernández DM, Hoyos-Salazar V, Bonilla-Aldana DK. Prevalence of the H5N8 influenza virus in birds: Systematic review with meta-analysis. Travel Med Infect Dis 2023; 51:102490. [PMID: 36336273 DOI: 10.1016/j.tmaid.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Avian influenza viruses are members of the Orthomyxoviridae family, considered highly pathogenic (HPAI). They result from genetic variations from their low virulence predecessors. HPAI is a global problem. Large outbreaks of HAPI have significant health and economic impacts. OBJECTIVE The objective of this study was to assess the prevalence of the H5N8 Influenza virus in birds, as well as to assess its variability according to the countries and years. METHODS A systematic review of the literature was carried out in six databases (Web of Sciences, Scopus, PubMed, SciELO, Lilacs and Google Scholar) to evaluate the proportion of birds infected with the H5N8 Influenza virus, by molecular and immunological techniques. A meta-analysis was performed using a random-effects model to calculate the pooled prevalence, 95% confidence intervals (95%CI). A 2-tailed 5% alpha level was used for hypothesis testing. Measures of heterogeneity were estimated and reported, including the Cochrane Q statistic, the I2 index, and the tau-squared test. In addition, bird species performed subgroup analyzes. RESULTS 152 data groups were analyzed, a combined prevalence of 1.6% (95% CI 1.3-1.9%) was found for molecular studies, and the ELISA study yielded a seroprevalence of 66.7%; those results of molecular detection varied by year, from 0.2% in 2014 to 52.6% in 2020 and 96.9% in 2015. CONCLUSION The combined prevalence was substantial because large outbreaks have caused severe economic repercussions. In addition, it is considered a serious concern for public health due to its possible zoonotic activity.
Collapse
Affiliation(s)
- Dayana M Calle-Hernández
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | - Valentina Hoyos-Salazar
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | | |
Collapse
|