1
|
Xing XH, Li XB. Progress in research of glucose transporters in molecular imaging of colorectal tumors. Shijie Huaren Xiaohua Zazhi 2025; 33:268-275. [DOI: 10.11569/wcjd.v33.i4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/28/2025] Open
Abstract
Colorectal cancer is one of the most common digestive tract malignant tumors in China. Due to the difficulty in early diagnosis, its morbidity and mortality are increasing year by year. Molecular imaging can monitor biological processes at cellular and molecular levels in vivo, having potential clinical diagnosis and treatment value. The key of molecular imaging is to develop new imaging technology and construct targeted molecular probes. Glucose transporters (Glut) are proteins distributed on various cell membranes in the human body. At present, it is believed that the abnormal expression of Glut1 is closely related to colorectal cancer, playing an important role in the occurrence and development of this malignancy. Therefore, Glut1 is expected to become a specific target for molecular imaging of colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Hong Xing
- Department of Radiology, Fengxian District Central Hospital, Shanghai 201499, China
| | - Xiao-Bing Li
- Department of Radiology, Fengxian District Central Hospital, Shanghai 201499, China
| |
Collapse
|
2
|
Xing XH, Li XB. Progress in research of glucose transporters in molecular imaging of colorectal tumors. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2025; 33:268-275. [DOI: https:/dx.doi.org/10.11569/wcjd.v33.i4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
3
|
Adams L, Rasid O, Hulme H, Quon T, Burchmore R, Milling S, Goodwin RJA, Wall DM. Spatial mapping of dextran sodium sulphate-induced intestinal inflammation and its systemic effects. FASEB J 2025; 39:e70415. [PMID: 39989432 PMCID: PMC11848815 DOI: 10.1096/fj.202402780r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, and patients frequently experience extraintestinal manifestations affecting multiple sites. Causes of systemic inflammation remain poorly understood, but molecules originating from the intestine likely play a role, with microbial and host small molecules polarizing host immune cells towards a pro- or anti-inflammatory phenotype. Using the dextran sodium sulfate (DSS) mouse model, which mimics the disrupted barrier function, microbial dysbiosis, and immune cell dysregulation of IBD, we investigated metabolomic and phenotypic changes at intestinal and systemic sites. Using spatial biology approaches, we mapped the distribution and relative abundance of molecules and cell types across a range of tissues, revealing significant changes in DSS-treated mice. Molecules identified as contributing to the statistical separation of treated from control mice were spatially localized within organs to determine their effects on cellular phenotypes through imaging mass cytometry. This spatial approach identified both intestinal and systemic molecular drivers of inflammation, including several not previously implicated in inflammation linked to IBD or the systemic effects of intestinal inflammation. Metabolic and inflammatory pathway interplay underpins systemic disease, and determining drivers at the molecular level may aid the development of new targeted therapies.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Orhan Rasid
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Heather Hulme
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Tezz Quon
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Simon Milling
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Afonso J, Barbosa-Matos C, Silvestre R, Pereira-Vieira J, Gonçalves SM, Mendes-Alves C, Parpot P, Pinto J, Carapito Â, Guedes de Pinho P, Santos L, Longatto-Filho A, Baltazar F. Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect. Cancers (Basel) 2024; 16:1418. [PMID: 38611096 PMCID: PMC11010907 DOI: 10.3390/cancers16071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Samuel Martins Gonçalves
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Camille Mendes-Alves
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
| | - Pier Parpot
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Carapito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Lin BH, Chen SH, Chen SM, Qiu QRS, Gao RC, Wei Y, Zheng QS, Miao WB, Xu N. Head-to-head comparisons of 68Ga-PSMA-11 and 18F-FDG PET/CT in evaluating patients with upper tract urothelial carcinoma: a prospective pilot study. Int Urol Nephrol 2023; 55:2753-2764. [PMID: 37477778 DOI: 10.1007/s11255-023-03710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE To prospectively compare the uptake of 68Ga-prostate specific membrane antigen (68Ga-PSMA)-11 and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in upper tract urothelial carcinoma (UTUC) and investigate the correlation between radiological parameters and pathological features of UTUC. METHODS Clinicopathologic and imaging data were collected from 10 UTUC patients who underwent preoperative 68Ga-PSMA-11 and 18F-FDG PET/CT scans. The diagnostic capabilities of both imaging techniques were analyzed and compared in UTUC. Angiogenesis in the malignancies was assessed using Chalkley counting and the expression of folate hydrolase 1 (FOLH1) and glucose transporter 1 (GLUT1) in UTUC were evaluated in the surgical specimens. Double immunofluorescence staining of PSMA and CD34 was used to examine tumor neovascularization. Tracer uptake and expression were compared and explored. Additionally, 10 patients with clear cell renal cell carcinoma (ccRCC) were included for prospective, comparative research. RESULTS Ten UTUC patients with 12 malignant lesions and another 10 ccRCC patients were included. 18F-FDG PET/CT demonstrated a more effective detection of UTUC foci compared to 68Ga-PSMA-11 PET/CT (the SUVmax of 18.48 ± 6.73 vs. 4.38 ± 1.45, P < 0.01). Immunohistochemical analysis revealed a statistically significant difference in the expression of PSMA and GLUT1 in UTUC (P = 0.048), with higher pathological grades showing more intense GLUT1 staining than PSMA (75% vs. 12.5%). The Chalkley counting of angiogenesis in ccRCC was significantly higher than that in UTUC (229.34 vs. 71.67), which was proportional to 68Ga-PSMA-11 PET/CT SUVmax (both P < 0.05). CONCLUSION 18F-FDG PET/CT holds better clinical potential for evaluating UTUC and detecting lymph node metastasis compared to 68Ga-PSMA-11 PET/CT, likely due to the relatively scant expression of FOLH1 in tumor neovascular endothelium while the abundant expression of GLUT1 in malignancy. Furthermore, the lower neovascular density in UTUC should not be overlooked.
Collapse
Affiliation(s)
- Bo-Han Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Qian-Ren-Shun Qiu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Rui-Cheng Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Wei-Bing Miao
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
7
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
8
|
Akdemir E, Sweegers MG, Vrieling A, Rundqvist H, Meijer RP, Leliveld-Kors AM, van der Heijden AG, Rutten VC, Koldewijn EL, Bos SD, Wijburg CJ, Marcelissen TAT, Bongers BC, Retèl VP, van Harten WH, May AM, Groen WG, Stuiver MM. EffectiveNess of a multimodal preHAbilitation program in patieNts with bladder canCEr undergoing radical cystectomy: protocol of the ENHANCE multicentre randomised controlled trial. BMJ Open 2023; 13:e071304. [PMID: 36882246 PMCID: PMC10008243 DOI: 10.1136/bmjopen-2022-071304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Radical cystectomy (RC) is the standard treatment for patients with non-metastatic muscle-invasive bladder cancer, as well as for patients with therapy refractory high-risk non-muscle invasive bladder cancer. However, 50-65% of patients undergoing RC experience perioperative complications. The risk, severity and impact of these complications is associated with a patient's preoperative cardiorespiratory fitness, nutritional and smoking status and presence of anxiety and depression. There is emerging evidence supporting multimodal prehabilitation as a strategy to reduce the risk of complications and improve functional recovery after major cancer surgery. However, for bladder cancer the evidence is still limited. The aim of this study is to investigate the superiority of a multimodal prehabilitation programme versus standard-of-care in terms of reducing perioperative complications in patients with bladder cancer undergoing RC. METHODS AND ANALYSIS This multicentre, open label, prospective, randomised controlled trial, will include 154 patients with bladder cancer undergoing RC. Patients are recruited from eight hospitals in The Netherlands and will be randomly (1:1) allocated to the intervention group receiving a structured multimodal prehabilitation programme of approximately 3-6 weeks, or to the control group receiving standard-of-care. The primary outcome is the proportion of patients who develop one or more grade ≥2 complications (according to the Clavien-Dindo classification) within 90 days of surgery. Secondary outcomes include cardiorespiratory fitness, length of hospital stay, health-related quality of life, tumour tissue biomarkers of hypoxia, immune cell infiltration and cost-effectiveness. Data collection will take place at baseline, before surgery and 4 and 12 weeks after surgery. ETHICS AND DISSEMINATION Ethical approval for this study was granted by the Medical Ethics Committee NedMec (Amsterdam, The Netherlands) under reference number 22-595/NL78792.031.22. Results of the study will be published in international peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05480735.
Collapse
Affiliation(s)
- Emine Akdemir
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maike G Sweegers
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alina Vrieling
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helene Rundqvist
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Richard P Meijer
- Department of Oncological Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemarie M Leliveld-Kors
- Department of Urology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Vera C Rutten
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evert L Koldewijn
- Department of Urology, Catharina Hospital, Eindhoven, The Netherlands
| | - Siebe D Bos
- Department of Urology, Noordwest Hospital Group, Alkmaar, The Netherlands
| | - Carl J Wijburg
- Department of Urology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Tom A T Marcelissen
- Department of Urology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Valesca P Retèl
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G Groen
- Department of Medicine for Older People, Amsterdam University Medical Center Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam Public Health, Aging & Later Life, Amsterdam, The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Afonso J, Gonçalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A, Baltazar F. Glucose Metabolism Reprogramming in Bladder Cancer: Hexokinase 2 (HK2) as Prognostic Biomarker and Target for Bladder Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030982. [PMID: 36765947 PMCID: PMC9913750 DOI: 10.3390/cancers15030982] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Proliferating cancer cells are able to reprogram their energy metabolism, favouring glycolysis even in the presence of oxygen and fully functioning mitochondria. Research is needed to validate the glycolysis-related proteins as prognostic/predictive biomarkers in urothelial bladder carcinoma (UBC), a malignancy tagged by high recurrence rates and poor response to chemotherapy. Here, we assessed GLUT1, HK2, PFKL, PKM2, phospho-PDH, and LDHA immunoexpression in 76 UBC samples, differentiating among urothelial, fibroblast, and endothelial cells and among normoxic versus hypoxic areas. We additionally studied the functional effects of the HK2 inhibitor 2-deoxy-D-glucose (2DG) in "in vitro" and "in vivo" preclinical UBC models. We showed that the expression of the glycolysis-related proteins is associated with UBC aggressiveness and poor prognosis. HK2 remained as an independent prognostic factor for disease-free and overall survival. 2DG decreased the UBC cell's viability, proliferation, migration, and invasion; the inhibition of cell cycle progression and apoptosis occurrence was also verified. A significant reduction in tumour growth and blood vessel formation upon 2DG treatment was observed in the chick chorioallantoic membrane assay. 2DG potentiated the cisplatin-induced inhibition of cell viability in a cisplatin-resistant subline. This study highlights HK2 as a prognostic biomarker for UBC patients and demonstrates the potential benefits of using 2DG as a glycolysis inhibitor. Future studies should focus on integrating 2DG into chemotherapy design, as an attempt to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-60-48-28
| |
Collapse
|
10
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
11
|
Kulin A, Kucsma N, Bohár B, Literáti-Nagy B, Korányi L, Cserepes J, Somogyi A, Sarkadi B, Szabó E, Várady G. Genetic Modulation of the GLUT1 Transporter Expression-Potential Relevance in Complex Diseases. BIOLOGY 2022; 11:1669. [PMID: 36421383 PMCID: PMC9687623 DOI: 10.3390/biology11111669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/01/2023]
Abstract
The human GLUT1 (SLC2A1) membrane protein is the key glucose transporter in numerous cell types, including red cells, kidney, and blood-brain barrier cells. The expression level of this protein has a role in several diseases, including cancer and Alzheimer's disease. In this work, to investigate a potential genetic modulation of the GLUT1 expression level, the protein level was measured in red cell membranes by flow cytometry, and the genetic background was analyzed by qPCR and luciferase assays. We found significant associations between red cell GLUT1 levels and four single nucleotide polymorphisms (SNP) in the coding SLC2A1 gene, that in individuals with the minor alleles of rs841848, rs1385129, and rs11537641 had increased, while those having the variant rs841847 had decreased erythrocyte GLUT1 levels. In the luciferase reporter studies performed in HEK-293T and HepG2 cells, a similar SNP-dependent modulation was observed, and lower glucose, serum, and hypoxic condition had variable, cell- and SNP-specific effects on luciferase expression. These results should contribute to a more detailed understanding of the genetic background of membrane GLUT1 expression and its potential role in associated diseases.
Collapse
Affiliation(s)
- Anna Kulin
- Doctoral School of Molecular Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Balázs Bohár
- Doctoral School of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | | | | | - Anikó Somogyi
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary
| | - Balázs Sarkadi
- Doctoral School of Molecular Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - György Várady
- Doctoral School of Molecular Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
12
|
Stakhovskyi O, Kobyliak N, Voylenko O, Stakhovskyi E, Ponomarchuk R, Sulaieva O. Immune Microenvironment of Muscular-Invasive Urothelial Carcinoma: The Link to Tumor Immune Cycle and Prognosis. Cells 2022; 11:cells11111802. [PMID: 35681497 PMCID: PMC9179839 DOI: 10.3390/cells11111802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we investigated the relationship between the tumor immune microenvironment (TIME), histological differentiation and hypoxia in patients with muscular-invasive urothelial carcinomas (MIUC) after radical cystectomy. Forty-two cases of pT2-3N0M0 MIUCs underwent clinical, histological and immunohistochemical evaluation by counting CD8+, FOXP3+, CD68+, CD163+ cells and polymorphonuclear leukocytes (PMN) in intra-tumoral and peritumoral areas, assessing PD-L1 and GLUT1 expression for defining the impact of tumor immune contexture on patients’ outcomes. Five-year survival rates and overall survival were calculated. Most of the MIUCs demonstrated the immune-desert or immune-excluded TIME, reflecting altered mechanisms of T-cells’ activation or traffic into tumors. Tumor immune contexture was closely related to histological differentiation. CD8+ cells were scant in MIUCs with papillary and squamous differentiation, while basal-like or mesenchymal-like histological differentiation was associated with increased density of CD8+ cells. A high rate of PD-L1 expression (47.6%) was not related to immune cell infiltration. M2-macrophages predominated under CD8+ lymphocytes. The abundance of PMN and CD163+ macrophages in MIUCs was associated with high GLUT1 expression. CD8+, CD68+, FOXP3+ cells and PD-L1 status did not affect patients’ outcomes, while high CD163+ density and PMN infiltration were associated with the unfavorable outcome of patients with MIUC. These data drive the hypothesis that in MIUC, immune escape mechanisms are shifted towards the role of the innate immunity cells rather than CD8+ lymphocytes’ functioning.
Collapse
Affiliation(s)
- Oleksandr Stakhovskyi
- Department of Plastic and Reconstructive Oncourology, National Cancer Institute, 03022 Kyiv, Ukraine; (O.S.); (O.V.); (E.S.)
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
- Medical Laboratory CSD, 03022 Kyiv, Ukraine; (R.P.); (O.S.)
- Correspondence: ; Tel./Fax: +380-442-356-005
| | - Oleg Voylenko
- Department of Plastic and Reconstructive Oncourology, National Cancer Institute, 03022 Kyiv, Ukraine; (O.S.); (O.V.); (E.S.)
| | - Eduard Stakhovskyi
- Department of Plastic and Reconstructive Oncourology, National Cancer Institute, 03022 Kyiv, Ukraine; (O.S.); (O.V.); (E.S.)
| | | | | |
Collapse
|
13
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS 2022; 19:1. [PMID: 34983574 PMCID: PMC8725498 DOI: 10.1186/s12987-021-00297-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00297-6.
Collapse
|
15
|
Xu G, Pan S, Zhu Z, Li J. Overexpression of miR-340 inhibits cell proliferation and induces apoptosis of human bladder cancer via targeting Glut-1. BMC Urol 2021; 21:168. [PMID: 34861846 PMCID: PMC8641194 DOI: 10.1186/s12894-021-00935-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bladder cancer (BC) has high mortality due to distant metastasis. Previous works suggested that microRNA (miRNA)-340 is a critical regulator for the development and progression of various cancers. The specific biological function of miR-340 in BC is little known. Methods In the present study, RT-qPCR was performed to measure the expression of miR-340 in paired BC tissues and adjacent non-tumor tissues. Next, the target gene of miR-340 was identified using dual-luciferase reporter assay and its level was also tested in tissues. Moreover, cell proliferation and apoptosis were analyzed by CCK-8 and flow cytometry. Finally, the expression of PCNA, Bax was detected by RT-qPCR and western blotting, as well as PI3K/AKT signaling measured by western blotting. Result The results demonstrated that miR-340 expression was downregulated and its target Glut-1 level was upregulated in BC tissues. Functionally, overexpression of miR-340 suppressed the proliferation and induced apoptosis in BC cells, while Glut-1 reversed the suppression of proliferation or induction of apoptosis induced by miR-340. Additionally, miR-340 repressed PCNA, p-PI3K and p-AKT levels but enhanced Bax level, while Glut-1 rescued the effects. Conclusion In conclusion, miR-340 functions as a tumor suppressor of BC, which inhibited proliferation and induced apoptosis by targeting Glut-1 partly through regulating PCNA, Bax expression and PI3K/AKT pathway. This study suggested that miR-340 is a potential target for the treatment of BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-021-00935-z.
Collapse
Affiliation(s)
- Gang Xu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| |
Collapse
|
16
|
Li L, Liu W, Tang H, Wang X, Liu X, Yu Z, Gao Y, Wang X, Wei M. Hypoxia-related prognostic model in bladder urothelial reflects immune cell infiltration. Am J Cancer Res 2021; 11:5076-5093. [PMID: 34765313 PMCID: PMC8569353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023] Open
Abstract
Hypoxia is a common feature of tumor microenvironment (TME). This study aims to establish the genetic features related to hypoxia in Bladder urothelial carcinoma (BLCA) and investigate the potential correlation with hypoxia in the TME and immune cells. We established a BLCA outcome model using the hypoxia-related genes from The Cancer Genome Atlas using regression analysis and verified the model using the Gene Expression Omnibus GSE32894 cohort. We measured the effect of each gene in the hypoxia-related risk model using the Human Protein Atlas website. The predictive abilities were compared using the area under the receiver operating characteristic curves. Gene Set Enrichment Analysis was utilized for indicating enrichment pathways. We analyzed immune cell infiltration between risk groups using the CIBERSORT method. The indicators related to immune status between the two groups were also analyzed. The findings indicated that the high-risk group had better outcomes than the low-risk group in the training and validation sets. Each gene in the model affected the survival of BLCA patients. Our hypoxia-related risk model had better performance compared to other hypoxia-related markers (HIF-1α and GLUT-1). The high-risk group was enriched in immune-related pathways. The expression of chemokines and immune cell markers differed significantly between risk groups. Immune checkpoints were more highly expressed in the high-risk group. These findings suggest that the hypoxia-related risk model predicts patients' outcomes and immune status in BLCA risk groups. Our findings may contribute to the treatment of BLCA.
Collapse
Affiliation(s)
- Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTDShenyang, Liaoning, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xinli Liu
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityShenyang 110042, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Yanan Gao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical UniversityShenyang 117004, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang 110122, Liaoning, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and EvaluationShenyang 110122, Liaoning, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research CenterShenyang 110122, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of EducationShenyang 110122, Liaoning, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTDShenyang, Liaoning, China
| |
Collapse
|
17
|
Zhang F, Wang X, Hu H, Yang Y, Wang J, Tang Y, Li D, Bai Y, Han P. A hypoxia related long non-coding RNA signature could accurately predict survival outcomes in patients with bladder cancer. Bioengineered 2021; 12:3802-3823. [PMID: 34281486 PMCID: PMC8806425 DOI: 10.1080/21655979.2021.1948781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hypoxia plays a significant role in tumor progression. This study aimed to develop a hypoxia-related long noncoding RNA (lncRNA) signature for predicting survival outcomes of patients with bladder cancer (BC). The transcriptome and clinicopathologic data were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis and Lasso regression analysis were used to screened lncRNAs. Ten lncRNAs were screened out and included into the hypoxia lncRNA signature. The risk score based on hypoxia lncRNA signature could accurately predict the survival outcomes of BC patients. Immune infiltration analysis showed that six types of immune cells had significant different infiltration. Tumor mutation burden (TMB) analysis showed that the risk scores between the wild types and the mutation types of TP53, FGFR3, and RB1 were significantly different. Gene Set Enrichment Analysis (GSEA) showed that cancer-associated pathways belonged to the high risk groups and immune-related signal pathways were enriched into the low risk group. Then, we constructed a predictive model with the risk score, age, and clinical stage, which showed a robust prognostic performance. An lncRNA-mRNA coexpression network was constructed, which contained 62 lncRNA-mRNA links among 10 lncRNAs and 40 related mRNAs. In summary, the hypoxia lncRNA signature could accurately predict prognosis, chemotherapy and immunotherapy response in patients with BC and was relevant to clinicopathologic parameters and immune cell infiltration.
Collapse
Affiliation(s)
- Facai Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China.,Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Huan Hu
- School of Clinical Medicine, Guizhou Medical University, Guizhou Province, China
| | - Yubo Yang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Dengxiong Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China.,Department of Urology, The Second People's Hospital of Yibin, Sichuan Province, China
| |
Collapse
|
18
|
Peixoto A, Ferreira D, Azevedo R, Freitas R, Fernandes E, Relvas-Santos M, Gaiteiro C, Soares J, Cotton S, Teixeira B, Paulo P, Lima L, Palmeira C, Martins G, Oliveira MJ, Silva AMN, Santos LL, Ferreira JA. Glycoproteomics identifies HOMER3 as a potentially targetable biomarker triggered by hypoxia and glucose deprivation in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:191. [PMID: 34108014 PMCID: PMC8188679 DOI: 10.1186/s13046-021-01988-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Muscle invasive bladder cancer (MIBC) remains amongst the deadliest genitourinary malignancies due to treatment failure and extensive molecular heterogeneity, delaying effective targeted therapeutics. Hypoxia and nutrient deprivation, oversialylation and O-glycans shortening are salient features of aggressive tumours, creating cell surface glycoproteome fingerprints with theranostics potential. METHODS A glycomics guided glycoproteomics workflow was employed to identify potentially targetable biomarkers using invasive bladder cancer cell models. The 5637 and T24 cells O-glycome was characterized by mass spectrometry (MS), and the obtained information was used to guide glycoproteomics experiments, combining sialidase, lectin affinity and bottom-up protein identification by nanoLC-ESI-MS/MS. Data was curated by a bioinformatics approach developed in-house, sorting clinically relevant molecular signatures based on Human Protein Atlas insights. Top-ranked targets and glycoforms were validated in cell models, bladder tumours and metastases by MS and immunoassays. Cells grown under hypoxia and glucose deprivation disclosed the contribution of tumour microenvironment to the expression of relevant biomarkers. Cancer-specificity was validated in healthy tissues by immunohistochemistry and MS in 20 types of tissues/cells of different individuals. RESULTS Sialylated T (ST) antigens were found to be the most abundant glycans in cell lines and over 900 glycoproteins were identified potentially carrying these glycans. HOMER3, typically a cytosolic protein, emerged as a top-ranked targetable glycoprotein at the cell surface carrying short-chain O-glycans. Plasma membrane HOMER3 was observed in more aggressive primary tumours and distant metastases, being an independent predictor of worst prognosis. This phenotype was triggered by nutrient deprivation and concomitant to increased cellular invasion. T24 HOMER3 knockdown significantly decreased proliferation and, to some extent, invasion in normoxia and hypoxia; whereas HOMER3 knock-in increased its membrane expression, which was more pronounced under glucose deprivation. HOMER3 overexpression was associated with increased cell proliferation in normoxia and potentiated invasion under hypoxia. Finally, the mapping of HOMER3-glycosites by EThcD-MS/MS in bladder tumours revealed potentially targetable domains not detected in healthy tissues. CONCLUSION HOMER3-glycoforms allow the identification of patients' subsets facing worst prognosis, holding potential to address more aggressive hypoxic cells with limited off-target effects. The molecular rationale for identifying novel bladder cancer molecular targets has been established.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal.,REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Beatriz Teixeira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Paula Paulo
- Cancer Genetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Immunology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal.,Health School of University Fernando Pessoa, 4249-004, Porto, Portugal
| | - Gabriela Martins
- Immunology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal.,Institute for Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, 4169-007, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Health School of University Fernando Pessoa, 4249-004, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, 4200-072, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), 4200-072, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal. .,Porto Comprehensive Cancer Center (P.ccc), 4200-072, Porto, Portugal.
| |
Collapse
|
19
|
Todenhöfer T, Gibb EA, Seiler R, Kamyabi A, Hennenlotter J, McDonald P, Moskalev I, Stewart C, Gao J, Fazli L, Dedhar S, Stenzl A, Oo HZ, Black PC. Evaluation of carbonic anhydrase IX as a potential therapeutic target in urothelial carcinoma. Urol Oncol 2021; 39:498.e1-498.e11. [PMID: 34083096 DOI: 10.1016/j.urolonc.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Carbonic anhydrase IX (CA9) is important in the regulation of intra- and extracellular pH in solid tumors, contributing to cell growth and invasion. In urothelial carcinoma (UC), CA9 has been identified as a urinary marker for disease detection, but its biologic role is unknown. To date, differential gene expression patterns of CA9 in various molecular subtypes and potential effects of CA9 inhibition in UC cells are unknown. We aimed to investigate the function of CA9 and the effects of CA9 inhibition in invasive UC. METHODS Immunohistochemistry was used to assess CA9 expression in a cohort of 153 patients undergoing radical cystectomy. CA9 expression was correlated with molecular subtype by analysis of the TCGA data and of our own cohort of 223 patients with invasive UC receiving neoadjuvant chemotherapy. CA9 expression was assessed in a panel of 12 UC cell lines by Western Blot and qPCR, and multiple siRNAs were used to silence CA9 in 2 cell lines. Effects of CA9 silencing on cell growth, migration, and invasion were assessed. We also used the small molecule inhibitor U-104 to inhibit CA9 in vitro and in an orthotopic xenograft model. RESULTS CA9 expression was higher in cancer tissue compared to benign urothelium and was particularly highly expressed in luminal papillary and basal squamous tumors. CA9 expression did not correlate with outcome after neoadjuvant chemotherapy and/or radical cystectomy. Silencing of CA9 by siRNA diminished invasion but did not induce a consistent change of cell growth and migration. Treatment with U-104 led to cell growth reduction only at high concentrations in vitro and failed to have a significant effect on tumor growth in vivo. CONCLUSIONS The present study confirms over-expression of CA9 in UC and for the first time shows a correlation with molecular subtypes. However, CA9 expression showed no association with the outcome of patients with muscle invasive bladder cancer and inhibition of CA9 did not lead to a consistent inhibition of tumor growth. Based on these data, CA9 exhibits a role neither as a predictive or prognostic marker nor as a therapeutic target in invasive UC.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Eberhard-Karls-University, Tuebingen, Germany; Clinical Trial Unit Studienpraxis Urologie, Nürtingen, Germany.
| | | | - Roland Seiler
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Department of Urology, Inselspital, Bern, Switzerland
| | - Alireza Kamyabi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | | | | | - Igor Moskalev
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Craig Stewart
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Jian Gao
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | | | | | - Htoo Zarni Oo
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Peter C Black
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Zhang F, Wang X, Bai Y, Hu H, Yang Y, Wang J, Tang Y, Ma H, Feng D, Li D, Han P. Development and Validation of a Hypoxia-Related Signature for Predicting Survival Outcomes in Patients With Bladder Cancer. Front Genet 2021; 12:670384. [PMID: 34122523 PMCID: PMC8188560 DOI: 10.3389/fgene.2021.670384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives This study aimed to develop and validate a hypoxia signature for predicting survival outcomes in patients with bladder cancer. Methods We downloaded the RNA sequence and the clinicopathologic data of the patients with bladder cancer from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository?facetTab=files) and the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. Hypoxia genes were retrieved from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Differentially expressed hypoxia-related genes were screened by univariate Cox regression analysis and Lasso regression analysis. Then, the selected genes constituted the hypoxia signature and were included in multivariate Cox regression to generate the risk scores. After that, we evaluate the predictive performance of this signature by multiple receiver operating characteristic (ROC) curves. The CIBERSORT tool was applied to investigate the relationship between the hypoxia signature and the immune cell infiltration, and the maftool was used to summarize and analyze the mutational data. Gene-set enrichment analysis (GSEA) was used to investigate the related signaling pathways of differentially expressed genes in both risk groups. Furthermore, we developed a model and presented it with a nomogram to predict survival outcomes in patients with bladder cancer. Results Eight genes (AKAP12, ALDOB, CASP6, DTNA, HS3ST1, JUN, KDELR3, and STC1) were included in the hypoxia signature. The patients with higher risk scores showed worse overall survival time than the ones with lower risk scores in the training set (TCGA) and two external validation sets (GSE13507 and GSE32548). Immune infiltration analysis showed that two types of immune cells (M0 and M1 macrophages) had a significant infiltration in the high-risk group. Tumor mutation burden (TMB) analysis showed that the risk scores between the wild types and the mutation types of TP53, MUC16, RB1, and FGFR3 were significantly different. Gene-Set Enrichment Analysis (GSEA) showed that immune or cancer-associated pathways belonged to the high-risk groups and metabolism-related signal pathways were enriched into the low-risk group. Finally, we constructed a predictive model with risk score, age, and stage and validated its performance in GEO datasets. Conclusion We successfully constructed and validated a novel hypoxia signature in bladder cancer, which could accurately predict patients’ prognosis.
Collapse
Affiliation(s)
- Facai Zhang
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China.,Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoming Wang
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Yunjin Bai
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Huan Hu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Yang
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Jiahao Wang
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Honggui Ma
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dechao Feng
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Dengxiong Li
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China.,The Second People's Hospital of Yibin, Yibin, China
| |
Collapse
|
21
|
Lodhi T, Song YP, West C, Hoskin P, Choudhury A. Hypoxia and its Modification in Bladder Cancer: Current and Future Perspectives. Clin Oncol (R Coll Radiol) 2021; 33:376-390. [PMID: 33762140 DOI: 10.1016/j.clon.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Radiotherapy plays an essential role in the curative treatment of muscle-invasive bladder cancer (MIBC). Hypoxia affects the response to MIBC radiotherapy, limiting radiocurability. Likewise, hypoxia influences MIBC genetic instability and malignant progression being associated with metastatic disease and a worse prognosis. Hypoxia identification in MIBC enables treatment stratification and the promise of improved survival. The most promising methods are histopathological markers such as necrosis; biomarkers of protein expression such as HIF-1α, GLUT-1 and CAIX; microRNAs; and novel mRNA signatures. Although hypoxia modification can take different forms, the gold standard remains carbogen and nicotinamide, which improve local control rates in bladder preservation and absolute overall survival with no significant increase in late toxicity. This is an exciting time for evolving therapies such as bioreductive agents, novel oxygen delivery techniques, immunotherapy and poly (ADP-ribose) polymerase 1 (PARP) inhibitors, all in development and representing upcoming trends in MIBC hypoxia modification. Whatever the future holds for hypoxia-modified radiotherapy, there is no doubt of its importance in MIBC. mRNA signatures provide an ideal platform for the selection of those with hypoxic tumours but are yet to qualified and integrated into the clinic. Future interventional trials will require biomarker stratification to ensure optimal treatment response to improve outcomes for patients with MIBC.
Collapse
Affiliation(s)
- T Lodhi
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Y P Song
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - P Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Cancer Centre, Mount Vernon Hospital, Northwood, UK
| | - A Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
22
|
Scholtes MP, de Jong FC, Zuiverloon TCM, Theodorescu D. Role of Bladder Cancer Metabolic Reprogramming in the Effectiveness of Immunotherapy. Cancers (Basel) 2021; 13:288. [PMID: 33466735 PMCID: PMC7830378 DOI: 10.3390/cancers13020288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming (MR) is an upregulation of biosynthetic and bioenergetic pathways to satisfy increased energy and metabolic building block demands of tumors. This includes glycolytic activity, which deprives the tumor microenvironment (TME) of nutrients while increasing extracellular lactic acid. This inhibits cytotoxic immune activity either via direct metabolic competition between cancer cells and cytotoxic host cells or by the production of immune-suppressive metabolites such as lactate or kynurenine. Since immunotherapy is a major treatment option in patients with metastatic urothelial carcinoma (UC), MR may have profound implications for the success of such therapy. Here, we review how MR impacts host immune response to UC and the impact on immunotherapy response (including checkpoint inhibitors, adaptive T cell therapy, T cell activation, antigen presentation, and changes in the tumor microenvironment). Articles were identified by literature searches on the keywords or references to "UC" and "MR". We found several promising therapeutic approaches emerging from preclinical models that can circumvent suppressive MR effects on the immune system. A select summary of active clinical trials is provided with examples of possible options to enhance the effectiveness of immunotherapy. In conclusion, the literature suggests manipulating the MR is feasible and may improve immunotherapy effectiveness in UC.
Collapse
Affiliation(s)
- Mathijs P. Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Florus C. de Jong
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Tahlita C. M. Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Department of Surgery (Urology), Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
23
|
Xi Y, Yuan P, Li T, Zhang M, Liu MF, Li B. hENT1 reverses chemoresistance by regulating glycolysis in pancreatic cancer. Cancer Lett 2020; 479:112-122. [PMID: 32200037 DOI: 10.1016/j.canlet.2020.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Gemcitabine (GEM) chemotherapy, as the first-line regimen for pancreatic cancer, tends to induce drug resistance, which ultimately worsens the prognosis of patients with pancreatic cancer. Our previous study indicated a close correlation between pancreatic cancer progression and glucose metabolism, especially at the chemoresistant stage, highlighting the importance of the application of 18F-FDG PET dual-phase imaging in the early detection of pancreatic cancer. We speculate that glycolysis, participates in the development of chemoresistance in pancreatic cancer. In this article, we wanted to determine whether manipulating hENT1 expression in pancreatic cancer cells can reverse GEM chemoresistance and whether glucose transport and glycolysis are involved during this process. We found that hENT1 reversed GEM-induced drug resistance by inhibiting glycolysis and altering glucose transport mediated by HIF-1α in pancreatic cancer. Our findings also suggest that 18F-FDG PET dual-phase imaging after the 4th chemotherapy treatment can accurately identify drug-resistant pancreatic tumors and improve hENT1 reversal therapy. Our findings highlight that the dynamic observation of (retention index) RI changes from the beginning of treatment can also be helpful for evaluating the therapeutic effect.
Collapse
Affiliation(s)
- Yun Xi
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Rui Jin 2(nd) Road, Shanghai, 200025, China
| | - Peng Yuan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, 320 Yueyang Road, Shanghai, 200031, China
| | - Ting Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Rui Jin 2(nd) Road, Shanghai, 200025, China
| | - Min Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Rui Jin 2(nd) Road, Shanghai, 200025, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, 320 Yueyang Road, Shanghai, 200031, China; Center for Excellence in Molecular Cell Science 8 School of Life Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Rui Jin 2(nd) Road, Shanghai, 200025, China.
| |
Collapse
|
24
|
Kang HS, Kwon HY, Kim IK, Ban WH, Kim SW, Kang HH, Yeo CD, Lee SH. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep 2020; 10:1854. [PMID: 32024881 PMCID: PMC7002457 DOI: 10.1038/s41598-020-58906-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to evaluate whether obstructive sleep apnea (OSA)-related chronic intermittent hypoxia (CIH) influences lung cancer progression and to elucidate the associated mechanisms in a mouse model of lung cancer. C57/BL6 mice in a CIH group were exposed to intermittent hypoxia for two weeks after tumor induction and compared with control mice (room air). Hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF) and metastasis-related matrix metalloproteinases (MMP) were measured. The expression levels of several hypoxia-related pathway proteins including HIF-1α, Wnt/ß-catenin, the nuclear factor erythroid 2-related factor 2 (Nrf2) and mammalian target of rapamycin-ERK were measured by western blot. The number (P < 0.01) and volume (P < 0.05) of tumors were increased in the CIH group. The activity of MMP-2 was enhanced after CIH treatment. The level of VEGF was increased significantly in the CIH group (p < 0.05). ß-catenin and Nrf2 were translocated to the nucleus and the levels of downstream effectors of Wnt/ß-catenin signaling increased after IH exposure. CIH enhanced proliferative and migratory properties of tumors in a mouse model of lung cancer. ß-catenin and Nrf2 appeared to be crucial mediators of tumor growth.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020; 17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Bladder cancer - the tenth most frequent cancer worldwide - has a heterogeneous natural history and clinical behaviour. The predominant histological subtype, urothelial bladder carcinoma, is characterized by high recurrence rates, progression and both primary and acquired resistance to platinum-based therapy, which impose a considerable economic burden on health-care systems and have substantial effects on the quality of life and the overall outcomes of patients with bladder cancer. The incidence of urothelial tumours is increasing owing to population growth and ageing, so novel therapeutic options are vital. Based on work by The Cancer Genome Atlas project, which has identified targetable vulnerabilities in bladder cancer, immune checkpoint inhibitors (ICIs) have arisen as an effective alternative for managing advanced disease. However, although ICIs have shown durable responses in a subset of patients with bladder cancer, the overall response rate is only ~15-25%, which increases the demand for biomarkers of response and therapeutic strategies that can overcome resistance to ICIs. In ICI non-responders, cancer cells use effective mechanisms to evade immune cell antitumour activity; the overlapping Warburg effect machinery of cancer and immune cells is a putative determinant of the immunosuppressive phenotype in bladder cancer. This energetic interplay between tumour and immune cells leads to metabolic competition in the tumour ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. Thus, molecular hallmarks of cancer cell metabolism are potential therapeutic targets, not only to eliminate malignant cells but also to boost the efficacy of immunotherapy. In this sense, integrating the targeting of tumour metabolism into immunotherapy design seems a rational approach to improve the therapeutic efficacy of ICIs.
Collapse
|
26
|
Matolay O, Méhes G. Sustain, Adapt, and Overcome-Hypoxia Associated Changes in the Progression of Lymphatic Neoplasia. Front Oncol 2019; 9:1277. [PMID: 31824854 PMCID: PMC6881299 DOI: 10.3389/fonc.2019.01277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Irregular perfusion and related tissue hypoxia is a common feature of solid tumors the role of which in the survival and progression cancer has been gradually recognized. Adaptation and selection mechanisms in hypoxic areas in solid tumors are regulated by Hypoxia Inducible transcriptional factor 1 (HIF1) and other hypoxia mediators and are associated with aggressive clinical behavior in a large spectrum of malignancies. Aggressive forms of lymphatic neoplasias present with solid tumor-like features, also including rapid cell growth, necrosis and angiogenesis, the clinical potential of which is still underestimated. While the role of regional hypoxia in normal B-cell maturation and malignant transformation is becoming evident, the impact of tissue hypoxia on their behavior is not well-understood. Compared to some of the common solid cancer types data for some of the key regulators, such as HIF1 and HIF2, and for their downstream effectors are available in a limited fashion. In the current review we aim to overview the physiological aspects of major hypoxia pathways during B-cell maturation and adaptation-related changes reported in lymphatic neoplasia covering important targets, such as carbonic anhydrases IX and XII (CAIX, CAXII), glucose transporter 1 (GLUT-1) and vascular endothelial growth factor (VEGF). In conclusion, experimental and clinical results direct to important but currently unexploited role of hypoxia-driven resistance mechanisms especially in aggressive forms of B-cell neoplasia.
Collapse
Affiliation(s)
- Orsolya Matolay
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Al-Maghrabi JA, Qureshi IA, Khabaz MN. Immunhistochemical expression of GLUT1 is associated with low grade and low stage of urinary bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3049-3057. [PMID: 31934144 PMCID: PMC6949691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Many studies described glucose transporter 1 (GLUT1) as a fundamental player in cancer metabolism, which can be employed as a prognostic biomarker that may help in new treatment strategy development. This study will describe the pattern of GLUT1 expression in urinary bladder cancer and try to associate it with tumor clinicopathologic factors. Standard immunohistochemistry (IHC) staining protocol was utilized to identify the location and expression pattern of GLUT1 in a panel of 128 urinary bladder carcinoma compared to 24 normal tissues using tissue microarrays. GLUT1 expression was found up-regulated significantly in cancer cases, and it was found in 111 (86.7%) urinary bladder cancers compared to 4 (16.6%) of control cases (P < 0.05). Positive GLUT1 immunohistochemical staining was significantly correlated with low grade, low stage, and non-muscularis propria invasive urinary bladder cancer cases (P < 0.05). Log-rank test and Kaplan Meier survival curves displayed significant poor survival in stage III and stage IV patients (P < 0.05); mean survival is lowest at 29.924 months in stage IV patients. Similarly, significantly better survival is observed in low-grade tumors (P < 0.05). Urinary bladder cancer showed increased GLUT1 expression compared to a control group. IHC staining of GLUT1 can be a supportive tool in predicting prognostic and survival estimates of urinary bladder tumors with specific clinical and morphologic characteristics.
Collapse
Affiliation(s)
| | - Imtiaz Ahmad Qureshi
- Department of Pathology, Rabigh Faculty of Medicine, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Mohamad Nidal Khabaz
- Department of Pathology, Faculty of Medicine, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
28
|
Capuano A, Andreuzzi E, Pivetta E, Doliana R, Favero A, Canzonieri V, Maiero S, Fornasarig M, Magris R, Cannizzaro R, Mongiat M, Spessotto P. The Probe Based Confocal Laser Endomicroscopy (pCLE) in Locally Advanced Gastric Cancer: A Powerful Technique for Real-Time Analysis of Vasculature. Front Oncol 2019; 9:513. [PMID: 31263680 PMCID: PMC6584847 DOI: 10.3389/fonc.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Probe based confocal laser endomicroscopy (pCLE) is an advanced technique which provides imaging of gastrointestinal mucosa at subcellular resolution and, importantly, a valid tool for the evaluation of microvasculature during endoscopic examination. In order to assess intratumoral vascularization and the efficiency of blood flow in locally advanced gastric cancer, we examined 57 patients through pCLE imaging. The vascular alterations in gastric cancer were mainly characterized by leakage and by the presence of tortuous and large size vessels. Defects in blood flow were detected very rarely. No association between the angiogenic score and the gastric tumor site or histological type was observed. Interestingly, no correlation was also found with the tumor grading indicating that the vascular angiogenic anomalies in gastric cancer represent an early pathological event to be observed and detected. The majority of patients displayed unchanged vascular alterations following neoadjuvant chemotherapy and this positively correlated with stable or progressive disease, suggesting that an unaltered angiogenic score could per se be indicative of poor therapeutic efficacy. Different vascular parameters were evaluated by immunofluorescence using bioptic samples and the vessel density did not correlate with clinical staging, site or histologic type. Interestingly, only CD105, Multimerin-2 and GLUT1 were able to discriminate normal from tumoral gastric mucosa. Taken together, these findings indicate that functional and structural angiogenic parameters characteristic of tumor blood network were fully detectable by pCLE. Moreover, the evaluation of tumor vasculature by real-time assessment may provide useful information to achieve tailored therapeutic interventions for gastric cancer patients.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Roberto Doliana
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Andrea Favero
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - Stefania Maiero
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Raffaella Magris
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paola Spessotto
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
29
|
Yu M, Chen S, Hong W, Gu Y, Huang B, Lin Y, Zhou Y, Jin H, Deng Y, Tu L, Hou B, Jian Z. Prognostic role of glycolysis for cancer outcome: evidence from 86 studies. J Cancer Res Clin Oncol 2019; 145:967-999. [PMID: 30825027 DOI: 10.1007/s00432-019-02847-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The abnormal expression of the key enzymes in glycolytic pathways, including glucose transporter-1, glucose transporter-3, hexokinase-II, lactate dehydrogenase 5, pyruvate kinase M2, glucose-6-phosphate dehydrogenase, transketolase-like protein 1 and pyruvate dehydrogenase kinase-1 was reported to be associated with poor prognosis of various cancers. However, the association remains controversial. The objective of this study was to investigate the prognostic significance of glycolysis-related proteins. MATERIALS AND METHODS We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, using Pubmed and Ovid as search engines and Google Scholar from inception to April 2017. Eighty-six studies with 12,002 patients were included in the study. RESULTS Our pooled results identified that glycolysis-related proteins in cancers were associated with shorter overall survival of colorectal cancer (HR 2.33, 95% CI 1.38-3.93, P = 0.002), gastric cancer (HR 1.55, 95% CI 1.31-1.82, P < 0.001), cancer of gallbladder or bile duct (HR 2.16, 95% CI 1.70-2.75, P < 0.001), oral cancer (HR 2.07, 95% CI 1.32-3.25, P < 0.001), esophageal cancer (HR 1.66, 95% CI 1.25-2.21, P = 0.01), hepatocellular carcinoma (HR 2.04, 95% CI 1.64-2.54, P < 0.001), pancreatic cancer (HR 1.72, 95% CI 1.39-2.13, P < 0.001), breast cancer(HR 1.67, 95% CI 1.34-2.08, P < 0.001), and nasopharyngeal carcinoma (HR 3.59, 95% CI 1.75-7.36, P < 0.001). No association was found for lung cancer, ovarian cancer or melanoma. The key glycolytic transcriptional regulators (HIF-1α, p53) were analyzed in parallel to the glycolysis-related proteins, and the pooled results identified that high-level expression of HIF-1α was significantly associated with shorter overall survival (HR 0.57, 95% CI 0.42-0.79, P < 0.001) Furthermore, glycolysis-related proteins linked with poor differentiated tumors (OR 1.81, 95% CI 1.46-2.25, P < 0.001), positive lymph node metastasis (OR 2.73, 95% CI 2.16-3.46, P < 0.001), positive vascular invasion (OR 2.05, 95% CI 1.37-3.07, P < 0.001), large tumor size (OR 2.06, 95% CI 1.80-2.37, P < 0.001), advanced tumor stage (OR 1.58, 95% CI 1.19-2.09, P < 0.001), and deeper invasion (OR 2.37, 95% CI 1.93-2.91, P < 0.001). CONCLUSION Glycolytic transcriptional regulators and glycolysis-related proteins in cancers were significantly associated with poor prognosis, suggesting glycolytic status may be potentially valuable prognostic biomarkers for various cancers.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Shengying Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Weifeng Hong
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Yujun Gu
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yanying Deng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lei Tu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Thambi R, Sainulabdeen S, Sundaram S, Bhat S. Glucose transporter 1 expression in bladder carcinoma and its association with human epidermal growth factor receptor-2 and Ki-67. SAUDI JOURNAL FOR HEALTH SCIENCES 2019. [DOI: 10.4103/sjhs.sjhs_52_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Yin J, Ni B, Liao WG, Gao YQ. Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1α through a death receptor pathway and a mitochondrial pathway. J Cell Physiol 2017; 233:1146-1155. [PMID: 28444885 DOI: 10.1002/jcp.25974] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Hypoxia in vivo induces oligozoospermia, azoospermia, and degeneration of the germinal epithelium, but the underlying molecular mechanism of this induction is not fully clarified. The aim of this study was to investigate the role of the death receptor pathway and the mitochondrial pathway in hypoxia-induced apoptosis of mouse GC-2spd (GC-2) cells and the relationship between HIF-1α and apoptosis of GC-2 cells induced by hypoxia. GC-2 cells were subjected to 1% oxygen for 48 hr. Apoptosis was detected by flow cytometry, TUNEL staining, LDH, caspase-3/8/9 in the absence and presence of HIF-1α siRNA. The protein levels of apoptosis-related markers were determined by Western blot in the presence and absence of HIF-1α siRNA. Mitochondrial transmembrane potential change was observed by in situ JC-1 staining. Cell viability was assessed upon treatment of caspase-8 and 9 inhibitors. The results indicated that hypoxia at 1% oxygen for 48 hr induced apoptosis of GC-2 cells. A prolonged exposure of GC-2 cells to hypoxic conditions caused downregulation of c-FLIP, Dc R2 and Bcl-2 and upregulation of DR5 , TRAIL, Fas, p53, and Bax, with an overproduction of caspase-3/8/9. Moreover, hypoxia at this level had an effect on mitochondrial depolarization. In addition, specific inhibitors of caspase-8/9 partially suppressed hypoxia-induced GC-2 cell apoptosis, and the anti-apoptotic effects of the caspase inhibitors were additive. Of note, HIF-1α knockdown attenuated hypoxia and induced apoptosis of GC-2 cells. In conclusion, our data suggest that the death receptor pathway and mitochondrial pathway, which are likely mediated by HIF-1α, contribute to hypoxia-induced GC-2 cell apoptosis.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, PR China
| | - Wei-Gong Liao
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, PR China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
32
|
Peng Q, Zhang J, Ye X, Zhou G. Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation? Expert Rev Clin Immunol 2017; 13:635-643. [PMID: 28494213 DOI: 10.1080/1744666x.2017.1295852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiao Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Xiaojing Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| |
Collapse
|