1
|
Lan Y, Liu D, Liang B, Song X, Xie L, Peng H, Guo H, Hong C, Weng X, Wei X, Liao X, Liang R, Huang D, Liu M. ITGA3-MET interaction promotes papillary thyroid cancer progression via ERK and PI3K/AKT pathways. Ann Med 2025; 57:2483379. [PMID: 40138447 PMCID: PMC11948363 DOI: 10.1080/07853890.2025.2483379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studies have examined the role of integrin α3 (ITGA3) in papillary thyroid carcinoma (PTC). However, the functional and molecular mechanism by which ITGA3 is involved in the progression of PTC remains poorly understood. METHODS To investigate the role of ITGA3 in PTC, raw PTC transcriptome data underwent comprehensive bioinformatics analyses, including differential expression, co-expression network, and enrichment analyses. ITGA3 expression was validated via immunohistochemistry and western blotting in PTC tissues. Cell functional assays and xenograft models assessed PTC cell behaviour. The potential mechanisms of ITGA3 were elucidated using bioinformatics analyses, western blotting, co-immunoprecipitation, and immunofluorescence. Finally, integration of ITGA3 expression with clinical parameters enabled nomogram construction for precise prediction of cervical lymph node metastasis (CLNM) in PTC. RESULTS ITGA3 was upregulated in PTC and associated strongly with CLNM (79.5% vs. 53.84%, p = 0.016). ITGA3 expression enhanced PTC proliferation and migration in vitro and in vivo via cooperating with the MET protein tyrosine kinase, followed by phosphorylation of MET at Tyr1234/1235, and activation of ERK and PI3K/AKT signaling pathways. Furthermore, upregulation ITGA3 reduced phosphorylation at FAK-Tyr397 and Src-Tyr416 in PTC cells. Finally, a nomogram combining ITGA3 expression and clinical parameters for predicting CLNM was constructed and validated, achieving a ROC curve AUC of 0.719, suggesting potential application for PTC diagnosis. CONCLUSIONS ITGA3 promotes PTC cell proliferation and migration by cooperating with MET to activate MET-ERK and MET-PI3K-AKT signalling. ITGA3-MET cooperation may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Youmian Lan
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongchen Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Hanwei Peng
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuwu Weng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqi Liao
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Rui Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Wang R, Dai F, Deng Z, Tang L, Liu H, Xia L, Cheng Y. ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function. Am J Physiol Cell Physiol 2025; 328:C1941-C1956. [PMID: 39437445 DOI: 10.1152/ajpcell.00563.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a significant challenge encountered by couples of reproductive ages, with inadequate trophoblast invasion identified as a primary factor in RSA pathogenesis. However, the precise molecular mechanisms through which trophoblast cell dysfunction leads to RSA remain incompletely understood. Research has highlighted the critical role of integrins in embryo implantation and development. Although integrin α-3 (ITGA3) is recognized for its promotion of invasion in cancer cells, its involvement in miscarriage remains poorly characterized. This investigation initially assessed ITGA3 expression in villous tissues obtained from patients with RSA and patients with induced abortion. The findings demonstrated a notable reduction in ITGA3 levels in the villous tissues of patients with RSA compared with the control group. Subsequent in vitro analyses indicated that ITGA3 knockdown inhibited the migration, invasion, and proliferation of trophoblast cells. Through RNA sequencing and subsequent experimentation, it was revealed that ITGA3 regulated Unc51-like kinase 1 (ULK1)-mediated autophagy to influence trophoblast cell invasion, migration, and proliferation. Furthermore, utilizing a miscarriage animal model, the diminished expression of ITGA3 and ULK1 in the placentas of RSA mice was confirmed. In conclusion, the study findings suggest that the downregulation of ITGA3 suppresses ULK1 expression, consequently impeding autophagy to initiation and impeding trophoblast cell invasion and migration, thereby contributing to the pathological progression of RSA.NEW & NOTEWORTHY There is a strong correlation between the reduced expression of ITGA3 in villous tissues and RSA. ITGA3 facilitates the expression of ULK1, thereby promoting autophagy formation and elevating autophagy levels in trophoblast cells. Consequently, this enhances the invasion and migration abilities of trophoblast cells.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Liangbin Xia
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
3
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
4
|
Li Y, Zhang L, Xu G, Xu G, Chen J, Zhao K, Li M, Jin J, Peng C, Wang K, Pan S, Zhu K. Exploration and validation of a novel reactive oxygen species-related signature for predicting the prognosis and chemotherapy response of patients with bladder cancer. Front Immunol 2024; 15:1493528. [PMID: 39749345 PMCID: PMC11693660 DOI: 10.3389/fimmu.2024.1493528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Background Reactive Oxygen Species (ROS), a hallmark of cancer, is related to prognosis, tumor progression, and treatment response. Nevertheless, the correlation of ROS-based molecular signature with clinical outcome and immune cell infiltration has not been thoroughly studied in bladder cancer (BLCA). Accordingly, we aimed to thoroughly examine the role and prognostic value of ROS-related genes in BLCA. Methods We obtained RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA) for bladder cancer (BLCA) patients and identified ROS-associated genes using the GeneCards and Molecular Signatures Database (MSigDB). We then analyzed differential gene expression between BLCA and normal tissues and explored the functions of these ROS-related genes through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analysis. Prognostic ROS-related genes were identified using Univariate Cox regression (UCR) and LASSO analyses, which were further refined in a Multivariate Cox Regression (MCR) analysis to develop a Prognostic Signature (PS). This PS was validated in the GSE13507 cohort, assessing its predictive power with Kaplan-Meier survival and time-dependent ROC curves. To forecast BLCA outcomes, we constructed a nomogram integrating the PS with clinical variables. We also investigated the signature's molecular characteristics through Gene Set Enrichment Analysis (GSEA), Immune Cell Infiltration (ICI), and Tumor Mutational Burden (TMB) analyses. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict chemotherapy responses based on the PS. Additionally, we screened for Small-Molecule Drugs (SMDs) targeting ROS-related genes using the CMAP database. Finally, we validated our findings by checking protein levels of the signature genes in the Human Protein Atlas (HPA) and confirmed the role of Aldo-keto reductase family 1 member B1 (AKR1B1) through in vitro experiments. Results The constructed and validated PS that comprised 17 ROS-related genes exhibited good performance in predicting overall survival (OS), constituting an independent prognostic biomarker in BLCA patients. Additionally, we successfully established a nomogram with superior predictive capacity, as indicated by the calibration plots. The bioinformatics analysis findings showcased the implication of PS in several oncogenic pathways besides tumor ICI regulation. The PS was negatively associated with the TMB. The high-risk group patients had greater chemotherapy sensitivity in comparison to low-risk group patients. Further, 11 candidate SMDs were identified for treating BLCA. The majority of gene expression exhibited a correlation with the protein expression. In addition, the expression of most genes was consistent with protein expression. Furthermore, to test the gene reliability we constructed, AKR1B1, one of the seventeen genes identified, was used for in-depth validation. In vitro experiments indicate that siRNA-mediated AKR1B1 silencing impeded BLCA cell viability, migration, and proliferation. Conclusions We identified a PS based on 17 ROS-related genes that represented independent OS prognostic factors and 11 candidate SMDs for BLCA treatment, which may contribute to the development of effective individualized therapies for BLCA.
Collapse
Affiliation(s)
- Yulei Li
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Lulu Zhang
- Medical Research Center, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Gang Xu
- Department of Urology, Nanchang People’s Hospital, Nanchang, China
| | - Gang Xu
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Jiajun Chen
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Mengyao Li
- Department of Pathology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Jing Jin
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Chao Peng
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Kaifang Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People’s Hospital, Zhejiang, Shaoxing, China
| | - Ke Zhu
- Department of Urology, Nanchang People’s Hospital, Nanchang, China
| |
Collapse
|
5
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. Nanoparticles (NPs)-meditated si-lncRNA NONHSAT159592.1 inhibits glioblastoma progression and invasion through targeting the ITGA3/FAK/PI3K/AKT pathway. Metab Brain Dis 2024; 40:31. [PMID: 39570470 DOI: 10.1007/s11011-024-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
The study aims to investigate the regulatory role of NPs lncRNA NONHSAT159592.1 in glioblastoma cells and its molecular mechanism. We have designed a reduction-responsive nanoparticle (NP) platform for efficient delivery of si-lncRNA (si-lnc). The size of siRNA nanoparticles was observed and determined by transmission electron microscopy. The distribution size of nanoparticles was analyzed by the NanoSight nanoparticle tracking analyzer. The fluorescence spectrum and UV spectrum were determined. The level of lncRNA in glioblastoma cells was detected by RT-qPCR analysis. The localization of lncRNA NONHSAT159592.1 in glioblastoma cells was detected by fluorescence in situ hybridization. Cell proliferation activity was evaluated by clonal formation experiment and CCK-8 kit. Cell migration and invasion were detected by wound healing assay and Transwell experiment. Western blot assay was used to detect the expression level of EMT-related proteins in cells. EdU staining was used to detect cell proliferation. NPs or PBS and IR780 were injected intravenously into nude mice with tumors, and fluorescence imaging was performed in vivo to evaluate the proliferation of tumor tissue. The positive rate of Ki67 and Vimentin in tumor tissue was detected by immunohistochemical staining. We found that lncRNA NONHSAT159592.1 was significantly down-regulated in glioblastoma cell lines, localized in the nucleus and cytoplasm. In U87 and U251 cells, we found that NPs-si-lncRNA NONHSAT159592.1 significantly inhibited glioblastoma cell proliferation, invasion, and EMT progression. In the orthotopic xenograft model, we found that silencing lncRNA could significantly inhibit tumor proliferation and prolong the survival time of tumor-bearing mice. Further studies confirmed that overexpression of ITGA3 reversed the inhibitory effects of NPs-si-lnc on the proliferation, invasion, and migration of glioblastoma cell lines. Our study suggested that NPs (si-lnc) could inhibit the malignant development of glioma by a mechanism that may be linked to the activation of the ITGA3/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaolei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Li
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Tan W, Chen G, Ci Q, Deng Z, Gu R, Yang D, Dai F, Liu H, Cheng Y. Elevated ITGA3 expression serves as a novel prognostic biomarker and regulates tumor progression in cervical cancer. Sci Rep 2024; 14:27063. [PMID: 39511266 PMCID: PMC11543847 DOI: 10.1038/s41598-024-75770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with advanced and recurrent cervical cancer often lack satisfactory treatment outcomes. Thus, it is necessary to seek reliable biomarkers that provide the ability to identify the disease at an early stage and predict the patient prognosis, providing new strategies for the treatment of cervical cancer. The sequencing data of ITGA3 were retrieved from public datasets. Immune infiltration and sensitivity of potential immunotherapy and chemotherapy have been analyzed between two subgroups. Functional analysis was applied to excavate the related pathways of ITGA3 in cervical cancer. Furthermore, the impact of ITGA3 in tumor progression has been verified in vitro. The results revealed that the level of ITGA3 was upregulated in cervical cancer, and was positively correlated with worse prognosis. The tumor microenvironment of patients in the high-risk group was immunosuppressed. Patients in high-risk group may not benefit from immunotherapy, but be may be sensitive to several chemotherapy drugs. Notably, the angiogenesis, epithelial mesenchymal transition, and PI3K pathway were increased in high-risk group. Collectively, ITGA3 is a marker of poor prognosis and promotes tumor progression by regulating PI3K/AKT pathway in cervical cancer. Our results provide new insights for potential molecular targeted therapy and prognostic prediction of cervical cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
7
|
Zhou W, Van Sinderen M, Rainczuk K, Menkhorst E, Sorby K, Osianlis T, Pangestu M, Santos L, Rombauts L, Rosello-Diez A, Dimitriadis E. Dysregulated miR-124-3p in endometrial epithelial cells reduces endometrial receptivity by altering polarity and adhesion. Proc Natl Acad Sci U S A 2024; 121:e2401071121. [PMID: 39365817 PMCID: PMC11474043 DOI: 10.1073/pnas.2401071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The endometrium undergoes substantial remodeling in each menstrual cycle to become receptive to an implanting embryo. Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. MicroRNA-124-3p is elevated in both the serum and endometrial tissue of women with chronic endometritis, a condition associated with infertility. MicroRNA-124-3p also has a role in cell adhesion, a key function during receptivity to allow blastocysts to adhere and implant. In this study, we aimed to determine the function of microRNA-124-3p on endometrial epithelial adhesive capacity during receptivity and effect on embryo implantation. Using a unique inducible, uterine epithelial-specific microRNA overexpression mouse model, we demonstrated that elevated uterine epithelial microRNA-124-3p impaired endometrial receptivity by altering genes associated with cell adhesion and polarity. This resulted in embryo implantation failure. Similarly in a second mouse model, increasing microRNA-124-3p expression only in mouse uterine surface (luminal) epithelium impaired receptivity and led to implantation failure. In humans, we demonstrated that microRNA-124-3p was abnormally increased in the endometrial epithelium of women with unexplained infertility during the receptive window. MicroRNA-124-3p overexpression in primary human endometrial epithelial cells (HEECs) impaired primary human embryo trophectoderm attachment in a 3-dimensional culture model of endometrium. Reduction of microRNA-124-3p in HEECs from infertile women normalized HEEC adhesive capacity. Overexpression of microRNA-124-3p or knockdown of its direct target IQGAP1 reduced fertile HEEC adhesion and its ability to lose polarity. Collectively, our data highlight that microRNA-124-3p and its protein targets contribute to endometrial receptivity by altering cell polarity and adhesion.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
| | - Michelle Van Sinderen
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Katarzyna Rainczuk
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Ellen Menkhorst
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Kelli Sorby
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Anatomy and Developmental Biology, University of Monash, Clayton, VIC3800, Australia
| | - Tiki Osianlis
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
| | - Mulyoto Pangestu
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
- Faculty of Animal Husbandry, Jenderal Soedirman University, Purwokerto53122, Indonesia
| | - Leilani Santos
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
| | - Luk Rombauts
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
- Monash In Vitro Fertilisation, Clayton, VIC3168, Australia
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC3800, Australia
- Department of Physiology, Development and Neuroscience, The Centre for Trophoblast Research, University of Cambridge, CambridgeCB2 3EL, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| |
Collapse
|
8
|
Zhang W, Han S, Yuan Y, Xu M, Ding A, Li M. FTO Knockdown-Mediated Maturation of miR-383-5p Inhibits Malignant Advancement of Pancreatic Cancer by Targeting ITGA3. Biochem Genet 2024; 62:2652-2666. [PMID: 38001392 DOI: 10.1007/s10528-023-10560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
m6A demethylase FTO is confirmed to be involved in pancreatic cancer progression. FTO regulates miRNA processing. To investigate the regulatory effect of FTO on miR-383-5p and its role in pancreatic cancer. The expression of miR-383-5p, ITGA3, and FTO was predicted using bioinformatic analysis in tissues and was measured using qPCR in cells. Cell biological functions were investigated using MTT assay, Transwell assay, sphere formation assay, and qPCR. The targeting relationship between miR-383-5p and ITGA3 was evaluated using the dual-luciferase reporter assay. The effect of FTO on miR-383-5p processing was evaluated using RIP and MeRIP assay. FTO expression was upregulated in pancreatic cancer and silencing of FTO promoted the processing of miR-383-5p in an m6A-dependent manner. m6A-modified miRNA processing was recognized by IGF2BP1. Downregulation of miR-383-5p reversed FTO knockdown-induced inhibition of cellular processes. The FTO/miR-383-5p/ITGA3 axis facilitated cell viability, metastasis, and stemness in pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Radiology, Children's Hospital of Nanjing Medical University, No. 72, Guangzhou Road, Gulou District, Nanjing, 210008, China
| | - Shilong Han
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Yifeng Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Minjie Xu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Anle Ding
- AnHui University of Science and Technology, No. 168, Taifeng Road, Huainan, 232001, Anhui, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, No. 301, Yanchang Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
9
|
Fawzy MS, El Faiomy ARM, El Desoky AMZ, Hussein S. The relationship between DNA methyltransferase 3B (DNMT3B) and miR 124-3pa expressions in bladder cancer tissues. Mol Biol Rep 2023; 50:10005-10013. [PMID: 37902910 DOI: 10.1007/s11033-023-08818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Cancer bladder is the most common malignant tumor affecting the urinary tract. Genetic alterations are tightly associated with the development of cancer bladder. MicroRNAs (miRNA) are small, noncoding single-stranded RNA molecules that have been linked to bladder cancer. miR-124-3pa exhibits altered expression in various types of human malignancies. DNA methyltransferase 3B (DNMT3B) is responsible for de novo DNA methylation which is a fundamental epigenetic process in carcinogenesis. This work was performed to study the expression of DNMT3B and miR 124-3pa in bladder cancer tissues, and investigate their significance in the diagnosis and prognosis of the disease. SUBJECTS & METHODS This case-control study included one hundred and six tissue samples of patients with primary urothelial bladder cancer. The tissues were separated into two parts. The first part was immediately frozen and kept at - 80 °C for total RNA extraction with subsequent detection of miR 124-3pa and DNMT3B expressions. The other part was preserved in formalin solution for histopathological examination. RESULTS There was a highly statistically significant difference between the cancerous and the normal tissues as regarding miRNA-124-3pa and DNMT3B expression (P < 0.001) for each. Also, there was a highly statistically significant strong negative correlation between miRNA-124-3pa and DNMT3B expression (r=-0.750, P < 0.001). The combined performance of miR-124-3pa and DNMT3B revealed that the cutoff point of ≥ 3.3 can be used as a predictor of the presence of cancer bladder with sensitivity of 98.1% and specificity of 80%. CONCLUSION miR-124-3pa and DNMT3B can be used as predictors of the presence of cancer bladder.
Collapse
Affiliation(s)
- Mohammed S Fawzy
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ansam M Z El Desoky
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman, Jordan.
| |
Collapse
|
10
|
Yi M, Wang S, Zhang X, Jiang L, Xia X, Zhang T, Fang X. Linc-ROR Promotes EMT by Targeting miR-204-5p/SMAD4 in Endometriosis. Reprod Sci 2023; 30:2665-2679. [PMID: 36917423 DOI: 10.1007/s43032-023-01204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Endometriosis (EMs) is a systemic and chronic disease with cancer-like feature, namely, distant implantation, which caused heavy healthy burden of nearly 200 million females. LncRNAs have been proved as new modulators in epithelial-mesenchymal transition (EMT) and EMs. Quantitative real-time PCR was conducted to measure the expression level of long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR), and miR-204-5p in ectopic endometrium (n = 25), eutopic endometrium (n = 20), and natural control endometrium (n = 22). Overexpression of Linc-ROR, knockdown or overexpression of miR-204-5p in End1/E6E7 and Ishikawa cells, was conducted to detect the function of Linc-ROR and miR-204-5p in EMs. Furthermore, luciferase reports were used to confirm the combination of Linc-ROR and miR-204-5p and the combination between miR-204-5p and SMAD4. Cell-Counting Kit-8, EdU assay, transwell assays, and Western blotting were used to detect the function of Linc-ROR and miR-204-5p in EMs cancer-like behaviors and EMT process. Linc-ROR was up-regulated in ectopic endometrium. Overexpressed Linc-ROR promotes cell proliferation, invasion, and EMT process. Linc-ROR regulated the EMT process, cellular proliferation, and invasion of EMs via binding to miR-204-5p. In addition, overexpression of Linc-ROR up-regulated SMAD4, a target protein of miR-204-5p, with which regulated EMT process and cancer-like behaviors in EMs together. Linc-ROR/miR-204-5p/SMAD4 axis plays a vital role in regulation EMT process in EMs, which might become a novel therapeutic targets and powerful biomarkers in EMs therapy.
Collapse
Affiliation(s)
- Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
11
|
Malvia S, Chintamani C, Sarin R, Dubey US, Saxena S, Bagadi SAR. ABERRANT EXPRESSION OF COL14A1, CELRS3, and CTHRC1 IN BREAST CANCER СELLS. Exp Oncol 2023; 45:28-43. [PMID: 37417284 DOI: 10.15407/exp-oncology.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Collagens, which are the major components of the extracellular matrix involved in the regulation of tumor microenvironment, could be differentially expressed in breast cancer (BC) with different transcriptome profiling. AIM To analyze the transcript level expression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, COL14A1, CTHRC1, and CELRS3 genes and the clinical relevance of their differential expression in BC. MATERIALS AND METHODS The transcript level expression of the genes was analyzed using the quantitative real-time PCR (qPCR) in tumor tissue of 60 BC patients. RESULTS Overexpression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, CTHRC, and CELRS3 anddown-regulated expression of COL14A1 were observed. COL14A1 down-regulation was associated with aggressive, basal, and Her-2/neu BC subtypes (p = 0.031). Overexpression of CELSR3 was found to be associated with the older age of the patients (> 55 years, p = 0.049). Further analysis with the TCGA BC data set has shown a concordance in the differential expression of the above genes. Furthermore, overexpression of CTHRC1 was associated with poor overall survival (OS), particularly with poor prognosis (p = 0.00042) for the luminal BC subtype. On the other hand, CELSR3 overexpression was associated with mucinous tumors and poor prognosis in post-menopausal women. In silicotarget prediction identified several BC-associated miRNAs and members of miR-154, -515, and -10 families to perform a likely regulatory role in the above ECM genes. CONCLUSION The present study shows that the expression of COL14A1 and CTHRC1 may serve as potential biological markers for the detection of basal BC and the prognosis of survival for patients with the luminal subtype of BC.
Collapse
Affiliation(s)
- Shreshtha Malvia
- Tumor Biology Division, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | | | - Ramesh Sarin
- Department of Surgery, Indraprastha Apollo Hospital, New Delhi, 110076, India
| | - Uma S Dubey
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, Rajasthan, 333031
| | - Sunita Saxena
- Consultant, Department of Health Research, New Delhi, 110001 & Ex-Director National Institute of Pathology-ICMR Safdarjang Hospital Campus
| | | |
Collapse
|
12
|
Hou F, Shi DB, Guo XY, Zhao RN, Zhang H, Ma RR, He JY, Gao P. HRCT1, negatively regulated by miR-124-3p, promotes tumor metastasis and the growth of gastric cancer by activating the ERBB2-MAPK pathway. Gastric Cancer 2023; 26:250-263. [PMID: 36602696 DOI: 10.1007/s10120-022-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gastric cancer is the fourth leading cause of cancer-related deaths worldwide. And patient outcomes are poor due to tumor relapse and metastasis. To develop new therapeutic strategies, it is of great importance to explore the mechanism underlying the progression of gastric cancer. METHODS Primary gastric cancer samples with lymph node metastases (LNM) and without LNM were subjected to mRNA microarray assay. The differentially expressed genes were confirmed by RT-qPCR. HRCT1 protein expression was further detected using an immunohistochemistry (IHC) assay. In vitro and in vivo assays were performed to investigate the role of HRCT1 in tumor invasion, metastasis, and proliferation. The expressions of the downstream target genes of HRCT1 were detected by microarray, RT-qPCR and Western blot assays. Dual-luciferase reporter and Western blot assays were carried out to identify miRNAs target to HRCT1. RESULTS HRCT1 was upregulated in gastric cancer, and high expression of HRCT1 was associated with poor overall survival (OS) and disease-free survival (DFS). Moreover, HRCT1protein expression was an independent predictor for poor OS and DFS. HRCT1 could promote gastric cancer cells' migration, invasion, and proliferation in vitro as well as tumor metastasis and growth in vivo. Notably, our data showed that HRCT1 promoted gastric cancer progression by activating the ERBB2-MAPK signaling pathway. At least partially, the expression of HRCT1 could be negatively regulated by miR-124-3p. CONCLUSIONS The upregulated expression of HRCT1 predicts poor survival for patients with gastric cancer. HRCT1 promotes tumor progression by activating the ERBB2-MAPK pathway. HRCT1, negatively regulated by miR-124-3p, may be a potential therapeutic target for patients with gastric cancer.
Collapse
Affiliation(s)
- Feng Hou
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Department of Pathology, Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266071, Shandong, China
| | - Duan-Bo Shi
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Xiang-Yu Guo
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Rui-Nan Zhao
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Ran-Ran Ma
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Jun-Yi He
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Wen Hua Xi Road 107, Jinan, 250012, Shandong, People's Republic of China. .,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medicine, Shandong University, Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.
| |
Collapse
|
13
|
Hu F, Zhao L, Wang Y, Ye H, Tang H, Zhou J. Integrated bioinformatics analysis shows integrin alpha 3 is a prognostic biomarker for pancreatic cancer. Open Med (Wars) 2022; 17:1935-1943. [PMID: 36561844 PMCID: PMC9743194 DOI: 10.1515/med-2022-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Integrin subunit alpha 3 (ITGA3) expression correlates with the development and prognosis of human cancers. This study aimed to investigate the association of ITGA3 expression with pancreatic cancer (PCa) prognosis. The ITGA3 gene expression data were extracted from The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma (PAAD) cohort and 14 Gene Expression Omnibus microarray datasets. The differences in ITGA3 expression levels between tumor and non-tumor tissues were compared using the Mann-Whitney U test. Cox regression analysis and meta-analysis were performed to detect the association of ITGA3 expression with PCa prognosis. ITGA3 expression was higher in tumors than in controls. Tumors with advanced grades (3/4) had higher ITGA3 levels compared with early-grade tumors (1/2). The meta-analysis of the TCGA PAAD cohort and seven microarray datasets (GSE28735, GSE62452, GSE79668, GSE71729, GSE57495, GSE78229, and GSE21501) showed that ITGA3 was a prognostic biomarker in PCa (hazard ratio (HR) = 1.38, 95% confidence interval (CI) 1.26-1.51, p < 0.00001). Five ITGA3-related genes, including ITGB1 (HR = 1.6), ITGB5 (HR = 1.6), ITGB6 (HR = 1.6), LAMA3 (HR = 2.1), and CD9 (HR = 2.3), correlated with PCa prognosis significantly (p < 0.05). Functional enrichment analysis showed that ITGA3 was related to "hsa04151: PI3K-Akt signaling pathway" and "hsa04510: Focal adhesion." We concluded that high ITGA3 expression was a potential prognostic biomarker in PCa.
Collapse
Affiliation(s)
- Fangfang Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Liangtao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Yang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Hao Ye
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haodong Tang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jiahua Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| |
Collapse
|
14
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Wang Y, Yang D, Zhu R, Dai F, Yuan M, Zhang L, Zheng Y, Liu S, Yang X, Cheng Y. YY1/ITGA3 pathway may affect trophoblastic cells migration and invasion ability. J Reprod Immunol 2022; 153:103666. [DOI: 10.1016/j.jri.2022.103666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
|
16
|
Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 2022; 43:1544-1555. [PMID: 34426644 PMCID: PMC9160248 DOI: 10.1038/s41401-021-00757-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of death in breast cancer patients. Osthole, as an active compound detected in the traditional Chinese medicine Wenshen Zhuanggu Formula, has shown a promising anti-metastatic activity in human breast cancer cells, but the underlying mechanisms remain ambiguous. In this study we elucidated the anti-metastatic mechanisms of osthole in highly metastatic breast cancer cells and a zebrafish xenograft model. We showed that the expression of integrin α3 (ITGα3) and integrin β5 (ITGβ5) was upregulated in highly metastatic MDA-MB-231, MDA-MB-231BO breast cancer cell lines but was downregulated in poorly metastatic MCF-7 breast cancer cell line, which might be the key targets of osthole's anti-metastatic action. Furthermore, we showed that knockdown of ITGα3 and ITGβ5 attenuated breast cancer cell migration and invasion possibly via suppression of FAK/Src/Rac1 pathway, whereas overexpression of ITGα3 and ITGβ5 caused the opposite effects. Consistently, osthole significantly inhibited breast cancer metastasis by downregulating ITGα3/ITGβ5 signaling in vitro and in vivo. These results provide new evidence that osthole may be developed as a candidate therapeutic drug for metastatic breast cancer.
Collapse
Affiliation(s)
- Yue-qiang Chen
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Hai-yan Song
- grid.411480.80000 0004 1799 1816Institute of Digestive Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhong-yan Zhou
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Jiao Ma
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Zhan-yang Luo
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Ying Zhou
- grid.412540.60000 0001 2372 7462Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200082 China
| | - Jian-yi Wang
- grid.412585.f0000 0004 0604 8558Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Sheng Liu
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xiang-hui Han
- grid.411480.80000 0004 1799 1816Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| |
Collapse
|
17
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Yuan Z, Guo G, Sun G, Li Q, Wang L, Qiao B. Magnesium isoglycyrrhizinate suppresses bladder cancer progression by modulating the miR-26b/Nox4 axis. Bioengineered 2022; 13:7986-7999. [PMID: 35293283 PMCID: PMC9161837 DOI: 10.1080/21655979.2022.2031677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Magnesium isoglycyrrhizinate (MI), a magnesium salt of 18α-GA stereoisomer, has been reported to exert efficient hepatoprotective activity. However, its effect on bladder cancer remains unclear. The study explored the effects of MI on the growth, colony formation, apoptosis, invasion, and migration of bladder cancer cells (HTB9 and BIU87 cells). Typical apoptotic changes of bladder cancer cells such as nuclear concentration and fragmentation were observed using Hoechst staining. The effects of MI on the expression levels of microRNA-26b (miR-26b), NADPH oxidase 4 (Nox4), nuclear transcription factor-κB (NF-κB), and hHypoxia inducible factor-1α (HIF-1α) were detected using qRT-PCR and Western blot. The potential targets of miR-26b were predicted using Targetscan, and their interactions were determined by luciferase reporter assay. A xenograft mouse model was established to evaluate the anti-tumor effects of MI in vivo. MI significantly suppressed the proliferation, colony formation, invasion, and migration and induced apoptosis of human bladder cancer cells, and MI significantly increased miR-26b expression. Nox 4 was identified to be a direct target of miR-26b. MiR-26b mimics significantly decreased the relative luciferase activity of wild type (WT) Nox 4 but not mutant type (MUT) Nox4. Meanwhile, MI markedly downregulated the expression levels of Nox4, NF-κB, and HIF-1α both in vitro and in vivo. Moreover, MI inhibited xenograft tumor growth in vivo and decreased the expression of Nox4, NF-κB, and HIF-1α. Overall, MI showed a potent anti-tumor effect against bladder cancer partially via modulating the miR-26b/Nox4 axis.
Collapse
Affiliation(s)
- Zhihao Yuan
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Guancheng Guo
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Qi Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lihui Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Baoping Qiao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
19
|
Beeraka NM, Gu H, Xue N, Liu Y, Yu H, Liu J, Chen K, Nikolenko VN, Fan R. Testing lncRNAs signature as clinical stage–related prognostic markers in gastric cancer progression using TCGA database. Exp Biol Med (Maywood) 2022; 247:658-671. [PMID: 35068210 DOI: 10.1177/15353702211067173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
LncRNA expression can be conducive to gastric cancer (GC) prognosis. The objective of this study is to ascertain five specific lncRNAs involved in tumor progression of GC and their role as prognostic markers to diagnose clinical stage-wise GC. High-throughput RNA sequencing data were obtained from The Cancer Genome Atlas (TCGA) database and performed genome-wide lncRNA expression analysis using edgeR package, Bioconductor.org , and R-statistical computing to analyze differentially expressed lncRNA analysis. Cutoff parameters were FDR < 0.05 and |Log2FC| > 2. Total 351 tumor samples with differentially expressed lncRNAs were divided into group-1 lncRNAs such as AC019117.2 and LINC00941, and group-2 lncRNAs such as LINC02410, AC012317.2, and AC141273.1 by 2:1. The Spearman correlation coefficients ( p < 0.05) and correlation test function (cor.test ()) were performed for lncRNAs as per clinical stage. Cytoscape software was used to construct lncRNA–mRNA interaction networks. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ( p < 0.05) analysis were conducted using the clusterProfiler package. Kaplan–Meier survival analysis was performed to determine the overall survival of patients based on the expression of five lncRNAs in different clinical stages of GC. AC019117.2 and LINC00941 of group 1 inferred a positive correlation with clinical stages of stage I to stage IV, and their expressions were higher in tumor tissues than normal tissues. On the contrary, LINC02410, AC012317.2, and AC141273.1 of group 2 exhibited a negative correlation with clinical stage, and they exhibited more expression in normal tissues compared to tumor tissues. GO and KEGG pathway analysis reported that AC019117.2 may interact with LINC00941 via ITGA3 and trophoblast glycoprotein (TPBG) to foster tumor progression. Tumor-specific group-1 lncRNAs were conducive to the poor overall survival and exhibited a positive correlation with the clinical stages of stage I to stage IV in GC as per the lncRNA–mRNA networking analysis. These five lncRNAs could be considered as clinically useful lncRNA-based prognostic markers to predict clinical stage-wise GC progression.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - Hao Gu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Nannan Xue
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450052, China
| | - Huiming Yu
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 450052, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kuo Chen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
20
|
Li R, Chen X, Li X, Huang G, Lu C, Wen Z, Chen Z, Lai Y. A four-miRNA signature in serum as a biomarker for bladder cancer diagnosis. Am J Transl Res 2022; 14:4606-4616. [PMID: 35958461 PMCID: PMC9360833 DOI: pmid/35958461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Urinary bladder cancer (BCa) is globally the 10th most frequent cancer. As a novel diagnostic tool, miRNA in serum screening is non-invasive. This project aimed to determine particular serum miRNAs as novel biomarkers for diagnosing urinary BCa. METHODS We designed a three-phase study with 122 healthy controls (HCs) and 132 BCa patients. The 30 miRNAs' expressions in serum from HCs and BCa patients were detected during the screening phase. The miRNAs with the most dysregulation were tested in the training (HCs vs. BCa, 30 each) and validation (80 HCs vs. 82 BCa) phase further. The diagnostic ability of these candidate miRNAs was estimated by the receiver operating characteristic (ROC) curves as well as the area under the ROC curve (AUC). The miRNAs' target genes and their annotations to functions were predicted utilizing bioinformatic assays. RESULTS Six serum miRNAs (miR-124-3p, miR-182-5p, miR-1-3p, miR-196a-5p, miR-23b-3p and miR-34a-5p) had significantly different expression between BCa patients and HCs in the training and validation phase. The four-microRNA panel improved the diagnostic value, with AUC =0.985. The result of bioinformatic analysis showed that these miRNAs' target genes in the panel may be related to the MAPK signaling pathway in bladder cancer. CONCLUSIONS Our study identified a four-miRNA panel that is a non-invasive new biomarker for diagnosing BCa.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
21
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
22
|
Liu X, Ma B, Chen M, Zhang Y, Ma Z, Chen H. Prognostic Autophagy-Related Genes of Gastric Cancer Patients on Chemotherapy. Front Genet 2021; 12:720849. [PMID: 34759953 PMCID: PMC8573096 DOI: 10.3389/fgene.2021.720849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chemotherapy resistance based on fluorouracil and cisplatin is one of the most encountered postoperative clinical problems in patients diagnosed with gastric cancer (GC), resulting in poor prognosis. Aim of the Study: This study aimed to combine autophagy-related genes (ARGs) to investigate the susceptibility patients with GC to postoperative chemotherapy. Methods: Based on The Cancer Genome Atlas (TCGA) database, gene expression data for GC patients undergoing chemotherapy were integrated and analyzed. Prognostic genes were screened based on univariate and multivariate analysis regression analysis. Subjects were divided into high-risk and low-risk groups according to the median risk score. Kaplan-Meier method was used to evaluate OS and DFS. The accuracy of the prediction was determined by the subject operating characteristic curve analysis. In addition, stratified analyses based on different clinical variables was performed to assess the correlation between risk scores and clinical variables. Quantitative real-time (qRT) PCR was used to verify the expression of CXCR4 in GC tissues and cell lines. Results: A total of nine ARGs related to the prognosis of chemotherapy patients were screened out. Compared with normal gastric mucosa cell, CXCR4 showed elevated expression in GC and was significantly associated with survival. Based on GEO and TCGA databases, the model accurately predicted DFS and OS after chemotherapy. Conclusion: This study established prognostic markers based on nine genes, predicting that ARGs are related to chemotherapy susceptibility of GC patients, which can provide better individualized treatment regimens for clinical practice.
Collapse
Affiliation(s)
- Xiaolong Liu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bin Ma
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mali Chen
- Department of Obstetrics, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Yaqing Zhang
- Department of Gynaecology, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Zhen Ma
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
23
|
Nersisyan S, Ahlers AK, Lange T, Wicklein D, Galatenko A, Bohnenberger H, Elakad O, Conradi LC, Genduso S, Maar H, Schiecke A, Maltseva D, Raygorodskaya M, Makarova J, Schumacher U, Tonevitsky A. Low expression of CD24 is associated with poor survival in colorectal cancer. Biochimie 2021; 192:91-101. [PMID: 34637894 DOI: 10.1016/j.biochi.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, β3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | | | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Lena-Christin Conradi
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Maria Raygorodskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia.
| |
Collapse
|
24
|
Huang CW, Lin YC, Hung CH, Chen HM, Lin JT, Wang CJ, Kao SH. Adenine Inhibits the Invasive Potential of DLD-1 Human Colorectal Cancer Cell via the AMPK/FAK Axis. Pharmaceuticals (Basel) 2021; 14:ph14090860. [PMID: 34577560 PMCID: PMC8469022 DOI: 10.3390/ph14090860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Tumor metastasis is a major cause of death of patients with colorectal cancer (CRC). Our previous findings show that adenine has antiproliferation activity against tumor cells. However, whether adenine reduces the invasiveness of DLD-1 and SW480 CRC cells has not been thoroughly explored. In this study, we aimed to explore the effects of adenine on the invasion potential of DLD-1 cells. Our findings showed that adenine at concentrations of ≤200 μM did not influence the cell viability of DLD-1 and SW480 CRC cells. By contrast, adenine reduced the migratory potential of the CRC cells. Moreover, it decreased the invasion capacity of the CRC cells in a dose-dependent manner. We further observed that adenine downregulated the protein levels of tissue plasminogen activator, matrix metalloproteinase-9, Snail, TWIST, and vimentin, but upregulated the tissue inhibitor of metalloproteinase-1 expression in DLD-1 cells. Adenine decreased the integrin αV level and reduced the activation of integrin-associated signaling components, including focal adhesion kinase (FAK), paxillin, and Src in DLD-1 cells. Further observations showed that adenine induced AMP-activated protein kinase (AMPK) activation and inhibited mTOR phosphorylation in DLD-1 cells. The knockdown of AMPK restored the reduced integrin αV level and FAK/paxillin/Src signaling inhibited by adenine in DLD-1 cells. Collectively, these findings reveal that adenine reduces the invasion potential of DLD-1 cells through the AMPK/integrin/FAK axis, suggesting that adenine may have anti-metastatic potential in CRC cells.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
- Department of Nursing, Tajen University, Pingtung 907101, Taiwan
| | - You-Cian Lin
- Surgical Department Cardiovascular Division, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 404332, Taiwan
| | - Chia-Hung Hung
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
| | - Han-Min Chen
- Institute of Applied Science and Engineering, Catholic Fu Jen University, New Taipei 242048, Taiwan;
| | - Jiun-Tsai Lin
- Energenesis Biomedical Co. Ltd., Taipei 114694, Taiwan;
| | - Chau-Jong Wang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
| | - Shao-Hsuan Kao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (C.-H.H.); (C.-J.W.)
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- Correspondence: ; Tel.: +886-4-247-30022 (ext. 11681)
| |
Collapse
|
25
|
miR-181b-5p Promotes the Progression of Cholangiocarcinoma by Targeting PARK2 via PTEN/PI3K/AKT Signaling Pathway. Biochem Genet 2021; 60:223-240. [PMID: 34169384 DOI: 10.1007/s10528-021-10084-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
This study combined with bioinformatics analysis and investigated the expression pattern of miR-181b-5p, as well as explored its role and mechanism in cholangiocarcinoma (CCA or CHOL). Several bioinformatics databases were used to analyze the expression of miR-181b and the enrichment of miR-181b in biological activities and biological pathways in CCA. The RT-qPCR analysis was used to examine the expression levels of miR-181b-5p. A receiver operation characteristics (ROC) curve analysis and the Kaplan-Meier survival assay were conducted to validate the diagnostic and prognostic implication of miR-181b-5p. Cell experiments were used to explore the possible functional role of miR-181b-5p in CCA progression. The bioinformatics assay was used to predict the target gene of miR-181b-5p and Western blot was used to confirm the related signaling pathway. The bioinformatics analysis results suggest that miR-181b-5p was highly expressed in cholangiocarcinoma and its expression was negatively related to PARK2 expression in CCA tissues. miR-181b-5p expression in the serum and tissues was upregulated and associated with lymph node metastasis and TNM stage. Increased expression of miR-181b-5p had relatively high diagnostic accuracy and showed poor prognosis in CCA patients. In addition, miR-181b-5p overexpression enhanced cell proliferation, migration, and invasion by targeting PARK2. Overexpression of miR-181b-5p activated the PI3K/AKT signaling pathway, while knockdown of miR-181b-5p suppressed the signaling pathway. Increased expression of miR-181b-5p in CCA may be a potential diagnostic or/and prognostic indicator for CCA patients. The present data indicated miR-181b-5p acted as an oncogene in CCA through promoting tumor cell proliferation, migration, and invasion of CCA via the PTEN/PI3K/AKT signaling pathway by targeting PARK2, which might be a promising therapeutic target or biomarker for CCA.
Collapse
|
26
|
Ye J, Liao Q, Zeng X, Liu C, Ding Y, Liu X, Zeng L, Guan T, Yuan Y. MicroRNA-124-3p inhibited progression of nasopharyngeal carcinoma by interaction with PCDH8 and the inactivation of PI3K/AKT/mTOR pathway. J Cancer 2021; 12:4933-4944. [PMID: 34234863 PMCID: PMC8247379 DOI: 10.7150/jca.57152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterised by distinct geographical distribution and is particularly prevalent in Asian countries. But the mechanisms related to the progression of nasopharyngeal carcinoma (NPC) are not completely understood. MiR-124-3p functions as a tumor suppressor in many kinds of human cancers. Here, we explored the effects and mechanism of miR-124-3p on the proliferation and colony formation in NPC. In our study, we reported that miR-124-3p was significantly downregulated in NPC tissues and cell lines. Overexpression miR-124-3p decreased NPC cell proliferation and colony formation abilities. Meanwhile, knockdown miR-124-3p increased proliferation and colony formation abilities. Additionally, dual-luciferase assay showed that miR-124-3p could positively regulated PCDH8 by targeting its 3'-UTR. Overexpression of PCDH8 could partially rescue the proliferation and colony formation role of miR-124-3p inhibitor. Our study indicated that miR-124-3p played a tumor suppressor by directly interacting with PCDH8 and inhibiting the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Overall, we found that miR-124-3p inhibited the activation of the PI3K/AKT/mTOR signaling pathway in NPC by interacting with PCDH8. Thus, PCDH8 may be a potential molecular target that impeded NPC proliferation and colony formation.
Collapse
Affiliation(s)
- Jiacai Ye
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Quanxing Liao
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Ding
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Liu
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lisi Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Tianpei Guan
- Department of Abdominal Surgery (Section 2), Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wu H, Jiang W, Ji G, Xu R, Zhou G, Yu H. Exploring microRNA target genes and identifying hub genes in bladder cancer based on bioinformatic analysis. BMC Urol 2021; 21:90. [PMID: 34112125 PMCID: PMC8194198 DOI: 10.1186/s12894-021-00857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is the second most frequent malignancy of the urinary system. The aim of this study was to identify key microRNAs (miRNAs) and hub genes associated with BC as well as analyse their targeted relationships. METHODS According to the microRNA dataset GSE112264 and gene microarray dataset GSE52519, differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using the R limma software package. The FunRich software database was used to predict the miRNA-targeted genes. The overlapping common genes (OCGs) between miRNA-targeted genes and DEGs were screened to construct the PPI network. Then, gene ontology (GO) analysis was performed through the "cluster Profiler" and "org.Hs.eg.db" R packages. The differential expression analysis and hierarchical clustering of these hub genes were analysed through the GEPIA and UCSC Cancer Genomics Browser databases, respectively. KEGG pathway enrichment analyses of hub genes were performed through gene set enrichment analysis (GSEA). RESULTS A total of 12 DEMs and 10 hub genes were identified. Differential expression analysis of the hub genes using the GEPIA database was consistent with the results for the UCSC Cancer Genomics Browser database. The results indicated that these hub genes were oncogenes, but VCL, TPM2, and TPM1 were tumour suppressor genes. The GSEA also showed that hub genes were most enriched in those pathways that were closely associated with tumour proliferation and apoptosis. CONCLUSIONS In this study, we built a miRNA-mRNA regulatory targeted network, which explores an understanding of the pathogenesis of cancer development and provides key evidence for novel targeted treatments for BC.
Collapse
Affiliation(s)
- Hongjian Wu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Wubing Jiang
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Guanghua Ji
- Department of Urology, Taizhou Municipal Hospital, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Rong Xu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Gaobo Zhou
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Hongyuan Yu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
29
|
Zhou C, Li AH, Liu S, Sun H. Identification of an 11-Autophagy-Related-Gene Signature as Promising Prognostic Biomarker for Bladder Cancer Patients. BIOLOGY 2021; 10:biology10050375. [PMID: 33925460 PMCID: PMC8146553 DOI: 10.3390/biology10050375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Human bladder cancer, one of the most common cancers worldwide, is a molecularly heterogenous and complex disease. Identifying novel prognostic biomarkers and establishing new predictive signatures are important for personalized medicine and effective treatment of bladder cancer patients. Autophagy, a cell self-maintenance process that removes damaged organelles and misfolded proteins, displays both tumor promotion and suppression activities. The aim of our study is to investigate the function of autophagy-related genes in bladder cancer with the main focus on their contribution to prognostic outcome. By analyzing data obtained from The Cancer Genome Atlas (TCGA), we identified 32 autophagy-related genes that were highly associated with overall survival of bladder cancer patients. Further statistical assessment established an 11-autophagy-related-gene signature as an effective prognostic biomarker to predict the survival outcomes of bladder cancer patients. Abstract Background: Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients. Methods: RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis. Results: Our study identified an 11-gene ARG signature that is significantly associated with OS, including APOL1, ATG4B, BAG1, CASP3, DRAM1, ITGA3, KLHL24, P4HB, PRKCD, ULK2, and WDR45. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established. Conclusion: We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.
Collapse
Affiliation(s)
| | | | | | - Hong Sun
- Correspondence: ; Tel.: +1-(646)-754-9459
| |
Collapse
|
30
|
Li Q, Liu S, Yan J, Sun MZ, Greenaway FT. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 2021; 48:3579-3591. [PMID: 33877528 DOI: 10.1007/s11033-021-06347-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded noncoding and endogenous RNA molecules with a length of 18-25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson's disease (PD), dementia and Alzheimer's disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.
Collapse
Affiliation(s)
- Qian Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China.,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
31
|
Hammouz RY, Kołat D, Kałuzińska Ż, Płuciennik E, Bednarek AK. MicroRNAs: Their Role in Metastasis, Angiogenesis, and the Potential for Biomarker Utility in Bladder Carcinomas. Cancers (Basel) 2021; 13:891. [PMID: 33672684 PMCID: PMC7924383 DOI: 10.3390/cancers13040891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the process of generating new capillaries from pre-existing blood vessels with a vital role in tumor growth and metastasis. MicroRNAs (miRNAs) are noncoding RNAs that exert post-transcriptional control of protein regulation. They participate in the development and progression of several cancers including bladder cancer (BLCA). In cancer tissue, changes in microRNA expression exhibit tissue specificity with high levels of stability and detectability. miRNAs are less vulnerable to degradation, making them novel targets for therapeutic approaches. A suitable means of targeting aberrant activated signal transduction pathways in carcinogenesis of BLCA is possibly through altering the expression of key miRNAs that regulate them, exerting a strong effect on signal transduction. Precaution must be taken, as the complexity of miRNA regulation might result in targeting several downstream tumor suppressors or oncogenes, enhancing the effect further. Since exosomes contain both mRNA and miRNA, they could therefore possibly be more effective in targeting a recipient cell if they deliver a specific miRNA to modify the recipient cell protein production and gene expression. In this review, we discuss the molecules that have been shown to play a significant role in BLCA tumor development. We also discuss the roles of various miRNAs in BLCA angiogenesis and metastasis. Advances in the management of metastatic BLCA have been limited; miRNA mimics and molecules targeted at miRNAs (anti-miRs) as well as exosomes could serve as therapeutic modalities or as diagnostic biomarkers.
Collapse
Affiliation(s)
- Raneem Y. Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (Ż.K.); (E.P.); (A.K.B.)
| | | | | | | | | |
Collapse
|
32
|
The Role of MiR-124 in Bladder Cancer – A Review of the Literature. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNA molecules that have an important role in modulating the expression of genes involved in regulating cellular functions. A growing number of studies suggest the abnormal expression of microRNAs in different types of cancer cells. MiRNA-124 is a microRNA that is down-regulated in many types of cancer cells, including bladder cancer. Our objective is to provide a review of the key publications that studied the effect of miR-124 on bladder cancer. This review focus on the targets and different pathways of miR-124 that were identified in various studies and differences between their expressions in normal urothelium and tumor tissues. We also include data regarding urinary methylations levels of miR-124 and their role in bladder cancer diagnosis and prognosis. Subsequently, we establish future perspectives of miR-124 research and its promising role in bladder cancer.
Collapse
|
33
|
Potential Prognostic Biomarkers of Lung Adenocarcinoma Based on Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8859996. [PMID: 33511215 PMCID: PMC7822677 DOI: 10.1155/2021/8859996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD), which accounts for 60% of non-small-cell lung cancers, is poorly diagnosed and has a low average 5-year survival rate (approximately 20%). It remains the leading cause of cancer-related deaths worldwide. Studies on long noncoding RNAs (lncRNAs) in LUAD-related competing endogenous RNA (ceRNA) networks are limited. We aimed to identify novel prognostic biomarkers for LUAD using bioinformatic tools and data analysis. We systemically integrated differentially expressed genes and clinically significant modules using weighted correlation network analysis. We performed a functional analysis of the collected candidate genes and explored three LUAD-related genes (VWF, PECAM1, and COL1A1) associated with the overall survival rates of patients with LUAD. Based on Cox proportional hazards analysis of candidate mRNAs and lncRNAs together with differentially expressed microRNAs, we constructed ceRNA networks, obtained 12 lncRNAs in the ceRNA networks, and revealed seven novel lncRNAs AC021016.2, AC079630.1, AC116407.1, AC125807.2, AF131215.5, LINC01936, and RHOXF1-AS1. These lncRNAs were found to be associated with overall survival rates and are suitable for the prediction of prognosis by Kaplan-Meier survival and receiver operating characteristic curve analyses. In particular, three lncRNAs—AF131215.5, AC125807.2, and LINC01936—showed an independent prognostic value of overall survival for patients with LUAD. We evaluated the diagnostic capabilities of seven lncRNAs for patients with LUAD using principal component analysis and the Gene Set Variation Analysis index. lncRNAs and crucial genes could be effectively used for distinguishing LUAD tumors from normal tissues in the Gene Expression Omnibus profile. In particular, AC021016.2 showed a significant prognostic value in the validation dataset. Our findings reveal the significance of exploring lncRNAs in cancer-related ceRNAs using bioinformatic strategies.
Collapse
|
34
|
Chen D, Cheng L, Cao H, Liu W. Role of microRNA-381 in bladder cancer growth and metastasis with the involvement of BMI1 and the Rho/ROCK axis. BMC Urol 2021; 21:5. [PMID: 33407350 PMCID: PMC7789167 DOI: 10.1186/s12894-020-00775-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Emerging evidence has noted the important participation of microRNAs (miRNAs) in several human diseases including cancer. This research was launched to probe the function of miR-381 in bladder cancer (BCa) progression. Methods Twenty-eight patients with primary BCa were included in this study. Cancer tissues and the adjacent normal tissues were obtained. Aberrantly expressed miRNAs in BCa tissues were analyzed using miRNA microarrays. miR-381 expression in the bladder and paired tumor tissues, and in BCa and normal cell lines was determined. The target relationship between miR-381 and BMI1 was predicted online and validated through a luciferase assay. Gain-of-functions of miR-381 and BMI1 were performed to identify their functions on BCa cell behaviors as well as tumor growth in vivo. The involvement of the Rho/ROCK signaling was identified. Results miR-381 was poor regulated in BCa tissues and cells (all p < 0.05). A higher miR-381 level indicated a better prognosis of patients with BCa. Artificial up-regulation of miR-381 inhibited proliferation, invasion, migration, resistance to apoptosis, and tumor formation ability of BCa T24 and RT4 cells (all p < 0.05). miR-381 was found to directly bind to BMI1 and was negatively correlated with BMI1 expression. Overexpression of BMI1 partially blocked the tumor suppressing roles of miR-381 in cell malignancy and tumor growth (all p < 0.05). In addition, miR-381 led to decreased RhoA phosphorylation and ROCK2 activation, which were also reversed by BMI1 (all p < 0.05). Artificial inhibition of the Rho/ROCK signaling blocked the functions of BMI1 in cell growth and metastasis (all p < 0.05). Conclusion The study evidenced that miR-381 may act as a beneficiary biomarker in BCa patients. Up-regulation of miR-381 suppresses BCa development both in vivo and in vitro through BMI1 down-regulation and the Rho/ROCK inactivation.
Collapse
Affiliation(s)
- Dayin Chen
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| | - Liang Cheng
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| | - Huifeng Cao
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China.
| | - Wensi Liu
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| |
Collapse
|
35
|
Wang JF, Wang Y, Zhang SW, Chen YY, Qiu Y, Duan SY, Li BP, Chen JQ. Expression and Prognostic Analysis of Integrins in Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8862228. [PMID: 33335550 PMCID: PMC7722456 DOI: 10.1155/2020/8862228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Integrins are involved in the biological process of a variety of cancers, but their importance in the diagnosis and prognosis of gastric cancer (GC) is still unclear. Therefore, this study aimed at exploring the significance of ITG gene expression in GC to evaluate its diagnosis and prognosis. METHODS GEPIA data were used to evaluate the mRNA expression of ITG genes in GC patients. The prognostic value of these genes was assessed by analyzing their mRNA expression using the Kaplan-Meier curve. The biological function of ITG genes was evaluated by GC tissue sequencing combined with GSEA bioinformatics. Based on the sequencing data, ITGA5 with the largest expression difference was selected for verification, and RT-PCR was used to verify its mRNA expression level in 40 pairs of GC and normal tissues. RESULTS ITG (A2, A3, A4, A5, A6, A11, AE, AL, AM, AV, AX, B1, B2, B4, B5, B6, and B8) was highly expressed in GC tissues, while ITGA8 was low, compared with their expression in normal tissues. RNA-seq data shows that ITG (A2, A5, A11, AV, and B1) expression was associated with poor prognosis and overall survival. In addition, combined with the results of GC tissue mRNA sequencing, it was further found that the differentially expressed genes in the ITGs genes. ITGA5 was highly expressed in GC tissues compared with its expression in normal tissues, as evaluated by qRT-PCR (P < 0.001) and ROC (P < 0.001, AUC (95% CI) = 0.747 (0.641-0.851)), and confirmed that ITGA5 expression was a potential diagnostic marker for GC. Bioinformatics analysis revealed that the signaling pathway involved in ITGA5 was mainly enriched in focal adhesion, ECM-receptor interaction, and PI3K-AKT and was mainly involved in biological processes such as cell adhesion, extracellular matrix, and cell migration. CONCLUSION This study suggested that ITGs were associated with the diagnosis and prognosis of GC and discovered the prognostic value and biological role of ITGA5 in GC. Thus, ITGA5 might be used as a potential diagnostic marker for GC.
Collapse
Affiliation(s)
- Jun-Fu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Wen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye-Yang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yue Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shao-Yi Duan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bo-Pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
36
|
Nishiyama D, Chinen Y, Isa R, Fujibayashi Y, Kuwahara-Ota S, Yamaguchi J, Takimoto-Shimomura T, Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Kobayashi T, Horiike S, Taniwaki M, Handa H, Kuroda J. EWSR1 overexpression is a pro-oncogenic event in multiple myeloma. Int J Hematol 2020; 113:381-394. [PMID: 33095415 DOI: 10.1007/s12185-020-03027-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is cytogenetically, genetically and molecularly heterogenous even among subclones in one patient, therefore, it is essential to identify both frequent and patient-specific drivers of molecular abnormality. Following previous molecular investigations, we in this study investigated the expression patterns and function of the Ewing sarcoma breakpoint region 1 (EWSR1) gene in MM. The EWSR1 transcriptional level in CD138-positive myeloma cells was higher in 36.4% of monoclonal gammopathy of undetermined significance, in 67.4% of MM patients compared with normal plasma cells, and significantly higher in ten human myeloma-derived cell lines (HMCLs) examined. EWSR1 gene knockdown caused growth inhibition with an increase of apoptotic cells in NCI-H929 and KMS-12-BM cells. Gene expression profiling using microarray analysis suggested EWSR1 gene knockdown caused transcriptional modulation of several genes associated with processes such as cell proliferation, cell motility, cell metabolism, and gene expression. Of particular, EWSR1 gene knockdown caused upregulation of let-7c and downregulation of its known targets K-RAS and AKT. Finally, our analysis using community database suggested that high EWSR1 expression positively associates with poor prognosis and advanced disease stage in MM. These findings suggest that EWSR1 overexpression is a pro-oncogenic molecular abnormality that may participate in MM progression.
Collapse
Affiliation(s)
- Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Takimoto-Shimomura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural Univesity of Medicine, Kyoto, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
37
|
Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G. Upregulation of miR-124-3p by Liver X Receptor Inhibits the Growth of Hepatocellular Carcinoma Cells Via Suppressing Cyclin D1 and CDK6. Technol Cancer Res Treat 2020; 19:1533033820967473. [PMID: 33073697 PMCID: PMC7592319 DOI: 10.1177/1533033820967473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
38
|
miR-425-5p Acts as a Molecular Marker and Promoted Proliferation, Migration by Targeting RNF11 in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6530973. [PMID: 33123581 PMCID: PMC7586158 DOI: 10.1155/2020/6530973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and dangerous malignant tumors in China, which causes a large number of deaths every year. MicroRNAs (miRNAs) dysfunction contributes to the malignant progression of tumors. The aim of our study was to investigate the relationship between the biological role of miR-425-5p and malignant progression of HCC. Our results showed that miR-425-5p expression was significantly upregulated in HCC tissues and closely related to the poor prognosis of HCC patients. The knockdown of miR-425-5p inhibited cell proliferation and migration. Further, we identified RNF11 as the downstream target gene of miR-425-5p. In addition, the rescue experiments showed that the upregulation of RNF11 could rescue the inhibitory effect of miR-425-5p on HCC. In general, miR-425-5p as an oncogene promotes the malignant development of HCC via RNF11 and serves as a molecular target for predicting the prognosis of HCC patients.
Collapse
|
39
|
Wang W, Chen S, Song X, Gui J, Li Y, Li M. ELK1/lncRNA-SNHG7/miR-2682-5p feedback loop enhances bladder cancer cell growth. Life Sci 2020; 262:118386. [PMID: 32898531 DOI: 10.1016/j.lfs.2020.118386] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
AIMS The purpose of this paper is to unearth the ceRNA regulatory mechanism of SNHG7 in bladder cancer (BCa). MATERIALS AND METHODS The expression of SNHG7 in BCa cells was uncovered by qRT-PCR. The biological functions of SNHG7 in BCa cells were explored by CCK-8 assay, colony formation assay, flow cytometry analysis, wound healing assay and transwell assay. Luciferase reporter assay and RIP assay were applied to analyze the interaction of ELK1 with SNHG7 or miR-2682-5p. KEY FINDINGS SNHG7 was conspicuously highly expressed in BCa tissues and cells. The upregulated expression of SNHG7 was related with poor prognosis in BCa patients. Moreover, SNHG7 exerted oncogenic functions in BCa through enhancing cell growth, migration and invasion. ELK1 increased the level of SNHG7 by binding with the promoter region of SNHG7. SNHG7 strengthened the expression of ELK1 via acting as a sponge of miR-2682-5p. Both ELK1 and miR-2682-5p involved in the SNHG7-mediated BCa progression. SIGNIFICANCE ELK1/SNHG7/miR-2682-5p feedback loop enhances cell growth, migration and invasion in BCa.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Urinary Surgery, Qujing No. 1 People's Hospital, Qujing, Yunnan 655000, China.
| | - Shixia Chen
- Orthopedics Department of Joint Trauma, Yidu Central Hospital of Weifang, Weifang, Shandong 261000, China
| | - Xuejing Song
- Department of Cardiothoracic Surgery, Jining First People's Hospital, Jining, Shandong 272000, China
| | - Junqing Gui
- Department of Urinary Surgery, Qujing No. 1 People's Hospital, Qujing, Yunnan 655000, China
| | - Yong Li
- Department of Urinary Surgery, Qujing No. 1 People's Hospital, Qujing, Yunnan 655000, China
| | - Mianzhou Li
- Department of Urology Surgery, Jining First People's Hospital, Jining, Shandong 272000, China
| |
Collapse
|
40
|
Romano G, Nigita G, Calore F, Saviana M, Le P, Croce CM, Acunzo M, Nana-Sinkam P. MiR-124a Regulates Extracellular Vesicle Release by Targeting GTPase Rabs in Lung Cancer. Front Oncol 2020; 10:1454. [PMID: 32974168 PMCID: PMC7469878 DOI: 10.3389/fonc.2020.01454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Increased understanding of the molecular mechanisms of the disease has led to the development of novel therapies and improving outcomes. Recently, extracellular vesicles (EVs) have emerged as vehicles for the transfer of genetic information between tumors and their microenvironment and have been implicated in lung cancer initiation, progression, and response to therapy. However, the mechanisms that drive the biogenesis and selective packaging of EVs remain poorly understood. Rab family guanosine triphosphates (GTPases) and their regulators are important membrane trafficking organizers. In this study, we investigated the role of select Rab GTPases on the regulation of EV release. We found that microRNAs target Rab GTPases to regulate EV release from lung cancer cell lines. In particular, Rab32 is a target of miR-124a, and siRNA and miRNA mediated inhibition of Rab32 leads to impaired EV secretion. The downstream implications for microRNA-based regulation of EV release are currently under investigation.
Collapse
Affiliation(s)
- Giulia Romano
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Giovanni Nigita
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Michela Saviana
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Patricia Le
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, United States
| | - Mario Acunzo
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Patrick Nana-Sinkam
- Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
41
|
Interference with circBC048201 inhibits the proliferation, migration, and invasion of bladder cancer cells through the miR-1184/ITGA3 axis. Mol Cell Biochem 2020; 474:83-94. [PMID: 32789658 DOI: 10.1007/s11010-020-03835-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
The abnormal expression of circular RNA (circRNA) is bound up with the progress of various human cancers. This study aimed to reveal the potential role and mechanism of circBC048201 in the proliferation, migration, and invasion of bladder cancer cells. Quantitative real-time PCR was performed to detect the expression of circBC048201. Cell Counting Kit-8, colony formation, and transwell migration and invasion assays were used to confirm the in vitro functions of circBC048201. Western blot, RNA pull-down, and dual-luciferase reporter gene experiments were performed to study the potential mechanism. circBC048201 was abnormally highly expressed in bladder cancer tissues and cells, and the interference with circBC048201 inhibited bladder cancer cell proliferation, migration, and invasion. From the potential mechanism analysis, our data suggested that circBC048201 and miR-1184, miR-1184 and ITGA3 could bind to each other, and the interference with circBC048201 repressed bladder cancer cell proliferation, migration, and invasion through the miR-1184/ITGA3 axis. In summary, our results showed that circBC048201 was abnormally highly expressed in bladder cancer tissues and cells, and the interference with circBC048201 inhibited the proliferation, migration, and invasion of bladder cancer cells through the miR-1184/ITGA3 axis.
Collapse
|
42
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
43
|
Sun Y, Zhang L, Zhang S. microRNA-124-3p inhibits tumourigenesis by targeting mitogen-activated protein kinase 4 in papillary thyroid carcinoma. Cell Biochem Funct 2020; 38:1017-1024. [PMID: 32495394 DOI: 10.1002/cbf.3532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/09/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022]
Abstract
The study aimed to investigate the role of miR-124-3p and its potential molecular mechanism in papillary thyroid cancer (PTC). The expression of miR-124-3p and mitogen-activated protein kinase 4 (MAP2K4) in human thyroid follicular epithelial cell line (NTHY-ORI3-1) and human papillary thyroid carcinoma cell lines (SW1736, BCPAP, TPC-1 and K1) was measured by RT-qPCR. Cell proliferation was measured by CCK-8, while cell cycle and apoptosis rate were measured by flow cytometry. Invasive ability and migrative ability were measured by transwell assay and wound healing assay, respectively. Western blot was used to detect the levels of relative proteins. In vivo, TPC-1 cells transfected with miR-124-3p mimic were subcutaneously injected into the flank of the mice to form tumour. After successful modelling, mice were divided into two groups (n = 10): Control group and miR-124-3p mimic group. The present study showed that miR-124-3p was lowly expressed, while MAP2K4 was highly expressed in PTC cell lines. Besides, miR-124-3p targeted MAP2K4 and negatively regulated MAP2K4 in TPC-1 cells. In addition, miR-124-3p inhibited the proliferation and motility, and induced apoptosis and cell cycle arrest of TPC-1 cells by inactivating MAP2K4/JNK/JunD pathway. Furthermore, miR-124-3p inhibited tumour formation by downregulating MAP2K4 level in vivo. In conclusion, the study provided a novel molecular mechanism of miR-124-3p in the progress of PTC. SIGNIFICANCE OF THE STUDY: Papillary thyroid cancer (PTC) is the most important pathological type of thyroid cancer, accounting for 80% of thyroid cancer. miR-124-3p exhibited significant inhibitory role in the transformation and development of malignant tumours. However, in PTC, the roles and its potential molecular mechanism are unclear. Here, the study investigated the roles of miR-124-3p in the progress of PTC and its potential molecular mechanism. We found that miR-124-3p inhibited the proliferation and motility, and induced apoptosis and cell cycle arrest in PTC cells. This study provided a novel molecular mechanism of miR-124-3p in the progress of PTC.
Collapse
Affiliation(s)
- Yu Sun
- Physical Examination Center, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Liwei Zhang
- Physical Examination Center, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Suzhen Zhang
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
44
|
Sun CB, Wang HY, Han XQ, Liu YN, Wang MC, Zhang HX, Gu YF, Leng XG. LINC00511 promotes gastric cancer cell growth by acting as a ceRNA. World J Gastrointest Oncol 2020; 12:394-404. [PMID: 32368318 PMCID: PMC7191338 DOI: 10.4251/wjgo.v12.i4.394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies, with a high incidence and poor prognosis worldwide. Recently, accumulating evidence has illustrated that long noncoding RNAs (lncRNAs) play pivotal roles in many cancers. It has been reported that LINC00511 contributes to tumorigenesis in various diseases. However, the role of LINC00511 in GC cell growth remains mostly unknown. AIM To determine whether the lncRNA LINC00511 exerted its carcinogenic function in GC via the miR-124-3p/PDK4 axis. METHODS Cell culture and transfection, RNA extraction and quantitative real-time PCR, CCK-8 assay, Colony formation assay, Luciferase reporter assay, RIP assay, RNA pull-down assay, and Western blot analysis were used to show expression and mechanisms of LINC00511 in GC progression and apoptosis. Rescue assays were performed to verify the relationships among LINC00511, miR-124-3p and PDK4 further. RESULTS The expression of LINC00511 was remarkably upregulated in GC cells compared to that in corresponding normal cell lines. Compared to the controls, cell proliferation was inhibited, and cell apoptosis was increased upon LINC00511 knockdown, demonstrating that LINC00511 influenced GC cell growth. An exploration of the molecular mechanism revealed that LINC00511 functioned as a molecular sponge of miR-124-3p and that PDK4 was a downstream target of miR-124-3p in GC. Rescue assays showed that the overexpression of PDK4 could partly restore the inhibitory function of si-LINC00511 in GC. CONCLUSION These data demonstrate that LINC00511 promotes gastric cancer cell growth by acting as a ceRNA to regulate the miR-124-3p/PDK4 axis, which may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Chong-Bing Sun
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Hong-Yi Wang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Xiao-Qing Han
- Department of Spine Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Yong-Ning Liu
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Meng-Chun Wang
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Hong-Xia Zhang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - You-Feng Gu
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Xiao-Gang Leng
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| |
Collapse
|
45
|
Liu P, Chen S, Huang Y, Xu S, Song H, Zhang W, Sun N. LINC00667 promotes Wilms' tumor metastasis and stemness by sponging miR-200b/c/429 family to regulate IKK-β. Cell Biol Int 2020; 44:1382-1393. [PMID: 32129525 DOI: 10.1002/cbin.11334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/01/2020] [Indexed: 12/17/2022]
Abstract
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR-200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR-200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real-time polymerase chain reaction revealed that the expression of miR-200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit-8 assay revealed that cell viability was reduced by overexpressing miR-200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR-200b/c/429 overexpression. Sphere-forming and western blot assays demonstrated that miR-200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor-κB (NF-κB) pathway was confirmed to be associated with Wilms' tumor progression; miR-200b/c/429 overexpression inactivated NF-κB pathway as miR-200b/c/429 was identified to target IκB kinase β (IKK-β), an NF-κB pathway-related gene. Moreover, miR-200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR-200b/c/429 to regulate IKK-β expression and then activated NF-κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK-β could reverse the effect of miR-200b/c/429 inhibition on the progression of sh-LINC00667-transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR-200b/c/429 family to regulate IKK-β.
Collapse
Affiliation(s)
- Pei Liu
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Shuofan Chen
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Yangyue Huang
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Shuai Xu
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Hongcheng Song
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Weiping Zhang
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| | - Ning Sun
- Department of Pediatric Urology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishilu Street, Xicheng District, 100045, Beijing, China
| |
Collapse
|
46
|
Yin X, Chai Z, Sun X, Chen J, Wu X, Yang L, Zhou X, Liu F. Overexpression of microRNA-96 is associated with poor prognosis and promotes proliferation, migration and invasion in cholangiocarcinoma cells via MTSS1. Exp Ther Med 2020; 19:2757-2765. [PMID: 32256758 DOI: 10.3892/etm.2020.8502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-96 (miR-96) has been revealed serve an oncogenic role in various types of cancer. However, the role of miR-96 in cholangiocarcinoma (CCA) development and progression is yet to be elucidated. Thus, the aim of the present study was to investigate the role of miR-96 in CCA. The expression pattern of miR-96 in CCA tissues and cell lines was evaluated using reverse transcription-quantitative PCR analysis. Kaplan-Meier curves and Cox regression analyses were conducted to investigate the prognostic significance of miR-96 in CCA. Cell Counting Kit-8 and Transwell assays were performed to identify the functions of miR-96. The association between miR-96 and metastasis suppressor-1 (MTSS1) was verified using a dual-luciferase assay. The results demonstrated that miR-96 expression levels were increased in CCA tissues and cell lines compared with those in adjacent normal tissues and normal human intrahepatic biliary epithelial cell lines, respectively. High expression levels of miR-96 were significantly associated with lymph node metastasis, differentiation and TNM stage. In addition, upregulated expression of miR-96 was associated with a poorer prognosis and was predicted to be a prognostic factor in patients with CCA. Overexpression of miR-96 in vitro promoted CCA cell proliferation, migration and invasion. Additionally, MTSS1 was identified as a direct target of miR-96. The results of the present study indicated the clinical and biological importance of miR-96 as an oncogene in CCA. miR-96 may represent an independent prognostic biomarker and may promote CCA cell proliferation, migration and invasion by targeting MTSS1.
Collapse
Affiliation(s)
- Xiaolan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Xiaoting Sun
- General Practitioners of Traditional Chinese Medicine, Wusong Street Community Health Service Center, Shanghai 200940, P.R. China
| | - Jin Chen
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Xiufang Wu
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Liying Yang
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Xiaobao Zhou
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| | - Feng Liu
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated with Naval Medical University, Shanghai 200081, P.R. China
| |
Collapse
|
47
|
Rutz J, Maxeiner S, Justin S, Bachmeier B, Bernd A, Kippenberger S, Zöller N, Chun FKH, Blaheta RA. Low Dosed Curcumin Combined with Visible Light Exposure Inhibits Renal Cell Carcinoma Metastatic Behavior In Vitro. Cancers (Basel) 2020; 12:cancers12020302. [PMID: 32012894 PMCID: PMC7072295 DOI: 10.3390/cancers12020302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recent documentation shows that a curcumin-induced growth arrest of renal cell carcinoma (RCC) cells can be amplified by visible light. This study was designed to investigate whether this strategy may also contribute to blocking metastatic progression of RCC. Low dosed curcumin (0.2 µg/mL; 0.54 µM) was applied to A498, Caki1, or KTCTL-26 cells for 1 h, followed by exposure to visible light for 5 min (400–550 nm, 5500 lx). Adhesion to human vascular endothelial cells or immobilized collagen was then evaluated. The influence of curcumin on chemotaxis and migration was also investigated, as well as curcumin induced alterations of α and β integrin expression. Curcumin without light exposure or light exposure without curcumin induced no alterations, whereas curcumin plus light significantly inhibited RCC adhesion, migration, and chemotaxis. This was associated with a distinct reduction of α3, α5, β1, and β3 integrins in all cell lines. Separate blocking of each of these integrin subtypes led to significant modification of tumor cell adhesion and chemotactic behavior. Combining low dosed curcumin with light considerably suppressed RCC binding activity and chemotactic movement and was associated with lowered integrin α and β subtypes. Therefore, curcumin combined with visible light holds promise for inhibiting metastatic processes in RCC.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
- Correspondence: ; Tel.: +49-69-6301-7109; Fax: +49-69-6301-7108
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Saira Justin
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Beatrice Bachmeier
- Institute of Laboratory Medicine, University Hospital, Ludwig-Maximilians-University, 80539 Munich, Germany;
| | - August Bernd
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Nadja Zöller
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| |
Collapse
|
48
|
Zhang H, Cui X, Cao A, Li X, Li L. ITGA3 interacts with VASP to regulate stemness and epithelial-mesenchymal transition of breast cancer cells. Gene 2020; 734:144396. [PMID: 31987909 DOI: 10.1016/j.gene.2020.144396] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interaction of integrin and extracellular matrix (ECM) has a profound implication on pathological conditions such as tumor growth and infiltration. Related reports have confirmed that integrin α3 (ITGA3) influences the development of bladder cancer, head and neck cancer, colorectal cancer and other cancers. However, the mechanism of ITGA3 in breast cancer is unknown. METHODS The impact of ITGA3 on the biological features of breast cancer cells was explored using the Transwell and wound healing assays. In addition, its influence on stemness of breast cancer cells was examined with the sphere formation assay. The possible mechanism by which ITGA3 regulates breast cancer was explored using Western blot. The interaction between ITGA3 and VASP was determined by co-immunoprecipitation and immunofluorescence staining assays. RESULTS Results show that downregulation of ITGA3 promotes breast cancer cell proliferation, apoptosis, invasion and migration. Indeed, suppression of ITGA3 negatively regulates the stemness of breast cancer cells and EMT process. Our findings indicate that ITGA3 interacts with VASP and regulates its expression, and knockdown of ITGA3 inhibits the activity of the PI3K-AKT axis. CONCLUSION Our results show that ITGA3-VASP modulates breast cancer cell stemness, EMT and PI3K-AKT pathways. Therefore, ITGA3 might be a druggable target for clinical breast cancer management.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - An'na Cao
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Xinglong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
49
|
Han X, Du C, Chen Y, Zhong X, Wang F, Wang J, Liu C, Li M, Chen S, Li B. Overexpression of miR-939-3p predicts poor prognosis and promotes progression in lung cancer. Cancer Biomark 2020; 25:325-332. [PMID: 31322549 DOI: 10.3233/cbm-190271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung cancer is the main cancer-related deaths worldwide. In this study, we explored the clinical prognostic significance and functional role of miR-939-3p in lung cancer. METHODS We analyzed the expression of miR-939-3p in lung cancer tissues and cells by qRT-PCR. The prognostic significance of miR-939-3p was investigated using the Kaplan-Meier survival and Cox regression analyses. The CCK-8 assay was used to determine the role of miR-939-3p in cell proliferation. Transwell assays were used to determine the effects of miR-939-3p on cell migration and invasion abilities. RESULTS The expression of miR-939-3p was upregulated in cancer tissues and cell lines compared with adjacent normal tissues and normal cells, respectively. The upregulated miR-939-3p was significantly associated with lymph node metastasis, TNM stage and poor prognosis of lung cancer patients. After the transfection of miR-939 mimic, overexpression of miR-939-3p promoted lung cancer cell proliferation, migration, and invasion. CONCLUSION These findings suggested that miR-939-3p acts as an oncogene and promotes cell proliferation, migration, and invasion in lung cancer. miR-939-3p may be a potential independent prognostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Xia Han
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China.,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| | - Chunjuan Du
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| | - Yinghai Chen
- Tinajin 120 Emeroency Center, Tianjin 300070, China
| | - Xiaofei Zhong
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Juan Wang
- Department of Emergency, Dongying People's Hospital, Dongying, Shandong 257091, China
| | - Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Shaoshui Chen
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| |
Collapse
|
50
|
Wang L, Wang L, Zhang X. Knockdown of lncRNA HOXA-AS2 Inhibits Viability, Migration and Invasion of Osteosarcoma Cells by miR-124-3p/E2F3. Onco Targets Ther 2019; 12:10851-10861. [PMID: 31853184 PMCID: PMC6914662 DOI: 10.2147/ott.s220072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most frequent bone malignancies. Long noncoding RNAs (lncRNAs) have been revealed to participate in many cancers, including OS. This study aimed to explore the biological function of lncRNA homeobox A cluster antisense RNA2 (HOXA-AS2) and its potential mechanism in OS progression. Methods Twenty-seven OS patients were recruited for this study. U2OS and MG-63 cells were cultured for in vitro analyses. The levels of HOXA-AS2, microRNA-124-3p (miR-124-3p) and E2F transcription factor 3 (E2F3) were measured by quantitative real-time polymerase chain reaction or Western blot. OS progression was investigated by cell viability, migration and invasion using cell counting kit-8 or trans-well assay. The interaction among HOXA-AS2, miR-124-3p and E2F3 was explored by bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation and biotinylated RNA pull-down. Xenograft model was established by injecting U2OS cells into nude mice. Results HOXA-AS2 expression was increased in OS tissues and cells and associated with poor survival of patients. Knockdown of HOXA-AS2 inhibited cell viability, migration and invasion in OS cells. miR-124-3p could bind with HOXA-AS2 and its deficiency reversed the suppressive role of HOXA-AS2 knockdown. Moreover, E2F3 acted as a target of miR-124-3p and positively regulated by HOXA-AS2. Silence of E2F3 suppressed OS progression, which was abolished by miR-124-3p exhaustion. Interference of HOXA-AS2 attenuated U2OS xenograft tumor growth via upregulating miR-124-3p and downregulating E2F3. Conclusion HOXA-AS2 silence impeded OS progression possibly by functioning as a decoy of miR-124-3p to target E2F3, indicating novel evidence of HOXA-AS2 as a promising therapeutic target of OS.
Collapse
Affiliation(s)
- Linyi Wang
- Department of Spinal Trauma Surgery, Shouguang People's Hospital of Shandong Province, Shandong 262700, People's Republic of China
| | - Lijuan Wang
- Department of Anesthesiology, Shouguang People's Hospital of Shandong Province, Shouguang, Shandong 262700, People's Republic of China
| | - Xinhua Zhang
- Department of Spinal Trauma Surgery, Shouguang People's Hospital of Shandong Province, Shandong 262700, People's Republic of China
| |
Collapse
|