1
|
Carvalho C, Moreira PI. MitoTempo protects against nε-carboxymethyl lysine-induced mitochondrial dyshomeostasis and neuronal cells injury. Free Radic Biol Med 2024; 220:192-206. [PMID: 38734265 DOI: 10.1016/j.freeradbiomed.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of β-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.
Collapse
Affiliation(s)
- Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute for Interdisciplinary Research (III), University of Coimbra, Portugal.
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Gonzales CR, Moca EN, Chandra PK, Busija DW, Rutkai I. Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H1291-H1303. [PMID: 38517228 PMCID: PMC11630827 DOI: 10.1152/ajpheart.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.
Collapse
Affiliation(s)
- Christopher R Gonzales
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Eric N Moca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Feter N, de Paula D, Dos Reis RCP, Raichlen D, Patrão AL, Barreto SM, Suemoto CK, Duncan BB, Schmidt MI. Leisure-Time Physical Activity May Attenuate the Impact of Diabetes on Cognitive Decline in Middle-Aged and Older Adults: Findings From the ELSA-Brasil Study. Diabetes Care 2024; 47:427-434. [PMID: 38181314 DOI: 10.2337/dc23-1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE To assess leisure-time physical activity (LTPA) as a modifier of the diabetes/cognitive decline association in middle-aged and older participants in the Estudo Longitudinal de Saude do Adulto (ELSA-Brasil) study. RESEARCH DESIGN AND METHODS ELSA-Brasil is a cohort of 15,105 participants (age 35-74 years) enrolled between 2008 and 2010. We evaluated global cognitive function, summing the scores of six standardized tests evaluating memory and verbal fluency, including the Trail-Making Test, at baseline and follow-up. Incident cognitive impairment was defined as a global cognitive function score at follow-up lower than -1 SD from baseline mean. Participants reporting ≥150 min/week of moderate to vigorous LTPA at baseline were classified as physically active. We assessed the association of LTPA with global cognition change in those with diabetes in the context of our overall sample through multivariable regression models. RESULTS Participants' (N = 12,214) mean age at baseline was 51.4 (SD 8.8) years, and 55.5% were women. During a mean follow-up of 8.1 (SD 0.6) years, 9,345 (76.5%) inactive participants and 1,731 (14.1%) participants with diabetes at baseline experienced faster declines in global cognition than those who were active (β = -0.003, -0.004, and -0.002) and those without diabetes (β = -0.004, -0.005, and -0.003), respectively. Diabetes increased the risk of cognitive impairment (hazard ratio [HR] 1.71; 95% Cl 1.22, 2.39) in inactive but not in active adults (HR 1.18; 95% CI 0.73, 1.90). Among participants with diabetes, those who were active showed a delay of 2.73 (95% CI 0.94, 4.51) years in the onset of cognitive impairment. CONCLUSIONS In adults living with diabetes, LTPA attenuated the deleterious association between diabetes and cognitive function.
Collapse
Affiliation(s)
- Natan Feter
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo de Paula
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Citton P Dos Reis
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - David Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Ana Luísa Patrão
- Center for Psychology at University of Porto, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Sandhi Maria Barreto
- Deparment of Preventive and Social Medicine, Faculdade de Medicina and Clinical Hospital/Empresa Brasileira de Serviços Hospitalares, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bruce B Duncan
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Inês Schmidt
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Jiang X, Li J, Yao X, Ding H, Gu A, Zhou Z. Neuroprotective effects of dipeptidyl peptidase 4 inhibitor on Alzheimer's disease: a narrative review. Front Pharmacol 2024; 15:1361651. [PMID: 38405664 PMCID: PMC10884281 DOI: 10.3389/fphar.2024.1361651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Insulin resistance in brain and amyloidogenesis are principal pathological features of diabetes-related cognitive decline and development of Alzheimer's disease (AD). A growing body of evidence suggests that maintaining glucose under control in diabetic patients is beneficial for preventing AD development. Dipeptidyl peptidase 4 inhibitors (DDP4is) are a class of novel glucose-lowering medications through increasing insulin excretion and decreasing glucagon levels that have shown neuroprotective potential in recent studies. This review consolidates extant evidence from earlier and new studies investigating the association between DPP4i use, AD, and other cognitive outcomes. Beyond DPP4i's benefits in alleviating insulin resistance and glucose-lowering, underlying mechanisms for the potential neuroprotection with DPP4i medications were categorized into the following sections: (Ferrari et al., Physiol Rev, 2021, 101, 1,047-1,081): the benefits of DPP4is on directly ameliorating the burden of β-amyloid plaques and reducing the formation of neurofibrillary tangles; DPP4i increasing the bioactivity of neuroprotective DPP4 substrates including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and stromal-derived factor-1α (SDF-1α) etc.; pleiotropic effects of DPP4is on neuronal cells and intracerebral structure including anti-inflammation, anti-oxidation, and anti-apoptosis. We further revisited recently published epidemiological studies that provided supportive data to compliment preclinical evidence. Given that there remains a lack of completed randomized trials that aim at assessing the effect of DPP4is in preventing AD development and progression, this review is expected to provide a useful insight into DPP4 inhibition as a potential therapeutic target for AD prevention and treatment. The evidence is helpful for informing the rationales of future clinical research and guiding evidence-based clinical practice.
Collapse
Affiliation(s)
- Xin Jiang
- Baoying People’s Hospital, Yangzhou, China
| | | | | | - Hao Ding
- Baoying People’s Hospital, Yangzhou, China
| | - Aihong Gu
- Baoying People’s Hospital, Yangzhou, China
| | - Zhen Zhou
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Díaz-Jara E, Pereyra K, Vicencio S, Olesen MA, Schwarz KG, Toledo C, Díaz HS, Quintanilla RA, Del Rio R. Superoxide dismutase 2 deficiency is associated with enhanced central chemoreception in mice: Implications for breathing regulation. Redox Biol 2024; 69:102992. [PMID: 38142585 PMCID: PMC10788617 DOI: 10.1016/j.redox.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
AIMS In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Katherine Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Physiology, Universidad Austral de Chile, Valdivia, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile; Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
6
|
Ertas B, Hazar-Yavuz AN, Topal F, Keles-Kaya R, Karakus Ö, Ozcan GS, Taskin T, Cam ME. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116541. [PMID: 37088237 DOI: 10.1016/j.jep.2023.116541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recent studies claim that Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) overlap in several common pathological pathways which from neuronal damage to impaired memory performance. It is known that the use of Rosa canina L. (R. canina) as medicine in folk medicine dates back to ancient times and is used in the treatment of nervous diseases in Persian medicine. However, the effect of R. canina on diabetes-related cognitive decline and memory impairment has not yet been studied. AIM OF THE STUDY We evaluated the impact of T2DM on AD-like alterations and examined the molecular mechanism of a possible effect of R. canina on cognitive alterations in diabetic rats. MATERIALS&METHODS R. canina ethanol extract was obtained by maceration method. This study was performed with male Spraque-Dawley rats fed with a high-fat diet (HFD) for 8 weeks, low-dose streptozotocin (STZ; 35 mg/kg IP) injection for 4 weeks, and R. canina (250 mg/kg; per oral) and metformin (400 mg/kg; per oral) administration for 4 weeks. The weight and blood glucose of rats were measured weekly. To evaluate glucose tolerance area under the curve (AUC) was calculated by performing an oral glucose tolerance test. Then the rats were subjected to behavioural tests, and their hippocampus and cortex tissues were obtained for biochemical and morphological analyses. RESULTS R. canina could manage glucose responsiveness by reducing post-prandial blood glucose levels, preventing weight loss, and raising serum insulin levels in T2DM-induced rats. Behavioural tests showed that R. canina significantly improves diabetes-related cognitive decline in recall and long-term memory. Treatment with R. canina significantly reversed HFD/STZ-induced increases in insulin, amyloid-β, amyloid precursor protein levels, and acetylcholinesterase activity in the prefrontal cortex and hippocampus. Furthermore, histological analyzes revealed the protection of R. canina against neuronal disruption in the cortical and hippocampal CA3 region caused by chronic hyperglycemia. CONCLUSION Analyzed collectively, these results suggest that R. canina can correct T2DM-related cognitive decline may be attributed to insulin pathway modulation, prevention of amyloid deposition, and increased cholinergic transmission.
Collapse
Affiliation(s)
- Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Fadime Topal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Rumeysa Keles-Kaya
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, 34854, Turkey
| | - Özge Karakus
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul, 34722, Turkey.
| |
Collapse
|
7
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
8
|
Chandra PK, Cikic S, Baddoo MC, Rutkai I, Guidry JJ, Flemington EK, Katakam PV, Busija DW. Transcriptome analysis reveals sexual disparities in gene expression in rat brain microvessels. J Cereb Blood Flow Metab 2021; 41:2311-2328. [PMID: 33715494 PMCID: PMC8392780 DOI: 10.1177/0271678x21999553] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Jankowska A, Pawłowski M, Chłoń-Rzepa G. Diabetic Theory in Anti-Alzheimer's Drug Research and Development. Part 2: Therapeutic Potential of cAMP-Specific Phosphodiesterase Inhibitors. Curr Med Chem 2021; 28:3535-3553. [PMID: 32940168 DOI: 10.2174/0929867327666200917125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3',5'-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| |
Collapse
|
10
|
Deshwal A, Maiti S. Macromolecular Crowding Effect on the Activity of Liposome-Bound Alkaline Phosphatase: A Paradoxical Inhibitory Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7273-7284. [PMID: 34086469 DOI: 10.1021/acs.langmuir.1c01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoplasm of a cell is extremely crowded, with 20-30% being large biomolecules. This crowding enforces a significant amount of the physical and chemical barrier around biomolecules, so understanding any biomolecular event within the cellular system is challenging. Unsurprisingly, enzymes show a diverse kind of catalytic behavior inside a crowded environment and thus have remained an area of active interest in the last few decades. The situation can become even more complex and exciting in the case of understanding the behavior of a membrane-bound enzyme (almost 25-30% of enzymes are membrane-bound) in such a crowded environment that until now has remained unexplored. Herein, we have particularly investigated how a membrane-bound enzyme (using liposome-bound alkaline phosphatase) can behave in a crowded environment comprising polymer molecule-like poly(ethylene glycol) (PEG) of different weights (PEG400, PEG4000, and PEG9000) and Ficoll 400. We have compared the activity using a polymer microbead conjugated enzyme and have found that liposome-bound alkaline phosphatase had much higher activity in crowded environments, showing the importance and superiority of soft-deformable particles (i.e., vesicles) over hard spheres in macro-molecularly crowded media. Interstingly, we have found a paradoxical behavior of inhibitors in terms of both their extent and pathway of inhibitory action. For instance, phosphates, known as competitive inhibitors in buffer, behave as uncompetitive inhibitors in liposome-bound enzymes in crowded media with an ∼5-fold less inhibitory effect, whereas phenyl alanine (an uncompetitive inhibitor in buffer) did not show any inhibitory potential when the enzyme was membrane-bound and in crowded media containing PEG9000 (30 wt %). Overall, this demonstration elucidates aspects of membrane-bound enzymes in crowded media in terms of both catalytic behavior and inhibitory actions and can lead to further studies of the understanding of enzymatic behavior in such complex crowded environments having a dampening effect in regular diffusive transport.
Collapse
Affiliation(s)
- Akshi Deshwal
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| |
Collapse
|
11
|
Jurcau A, Simion A. Oxidative Stress in the Pathogenesis of Alzheimer's Disease and Cerebrovascular Disease with Therapeutic Implications. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:94-108. [PMID: 32124703 DOI: 10.2174/1871527319666200303121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The significant gain in life expectancy led to an increase in the incidence and prevalence of dementia. Although vascular risk factors have long and repeatedly been shown to increase the risk of Alzheimer's Disease (AD), translating these findings into effective preventive measures has failed. In addition, the finding that incident ischemic stroke approximately doubles the risk of a patient to develop AD has been recently reinforced. Current knowledge and pathogenetic hypotheses of AD are discussed. The implication of oxidative stress in the development of AD is reviewed, with special emphasis on its sudden burst in the setting of acute ischemic stroke and the possible link between this increase in oxidative stress and consequent cognitive impairment. Current knowledge and future directions in the prevention and treatment of AD are discussed outlining the hypothesis of a possible beneficial effect of antioxidant treatment in acute ischemic stroke in delaying the onset/progression of dementia.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurology Ward, Oradea, Romania
| | - Aurel Simion
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurological Rehabilitation Ward, Oradea, Romania
| |
Collapse
|
12
|
Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, Lopatina OL, Komleva YK. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int J Mol Sci 2021; 22:4661. [PMID: 33925080 PMCID: PMC8125678 DOI: 10.3390/ijms22094661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
- Research Center of Neurology, 125367 Moscow, Russia
| | - Ekaterina V. Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yana V. Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena A. Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Natalia A. Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena D. Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Angelina I. Mosyagina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Andrey V. Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Vladimir V. Salmin
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Olga L. Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yulia K. Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| |
Collapse
|
13
|
Carvalho C, Cardoso S. Diabetes-Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxid Redox Signal 2021; 34:631-649. [PMID: 32098477 DOI: 10.1089/ars.2020.8056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: It is of common sense that the world population is aging and life expectancy is increasing. However, as the population ages, there is also an exponential risk to live into the ages where the brain-related frailties and neurodegenerative diseases develop. Hand in hand with those events, the world is witnessing a major upsurge in diabetes diagnostics. Remarkably, all of this seems to be narrowly related, and clinical and research communities highlight for the upcoming threat that it will represent for the present and future generations. Recent Advances: It is of utmost importance to clarify the influence of diabetes-related metabolic features on brain health and the mechanisms underlying the increased likelihood of developing neurodegenerative diseases, in particular Alzheimer's disease. Thereupon, a wealth of evidence suggests that mitochondria and associated oxidative stress are at the root of the link between diabetes and co-occurring disorders in the brain. Critical Issues: The scientific community has been challenged with constant failures of clinical trials raising major issues in the advance of the therapeutic field to fight chronic diseases epidemics. Thus, a change of paradigms is urgently needed. Future Directions: It has become urgent to identify new and solid candidates able to clinically reproduce the positive outcomes obtained in preclinical studies. On this basis, strategies settled to counteract diabetes-induced neurodegeneration encompassing mitochondrial dysfunction, redox status imbalance, and/or insulin dysregulation seem worth to follow. Hopefully, ongoing innovative research based on reliable experimental tools will soon bring the desired answers allowing pharmaceutical industry to apply such knowledge to human medicine.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Brzecka A, Madetko N, Nikolenko VN, Ashraf GM, Ejma M, Leszek J, Daroszewski C, Sarul K, Mikhaleva LM, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Sleep Disturbances and Cognitive Impairment in the Course of Type 2 Diabetes-A Possible Link. Curr Neuropharmacol 2020; 19:78-91. [PMID: 32148197 PMCID: PMC7903492 DOI: 10.2174/1570159x18666200309101750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing number of patients worldwide with sleep disturbances and diabetes. Various sleep disorders, including long or short sleep duration and poor sleep quality of numerous causes, may increase the risk of diabetes. Some symptoms of diabetes, such as painful peripheral neuropathy and nocturia, or associated other sleep disorders, such as sleep breathing disorders or sleep movement disorders, may influence sleep quality and quantity. Both sleep disorders and diabetes may lead to cognitive impairment. The risk of development of cognitive impairment in diabetic patients may be related to vascular and non-vascular and other factors, such as hypoglycemia, hyperglycemia, central insulin resistance, amyloid and tau deposits and other causes. Numerous sleep disorders, e.g., sleep apnea, restless legs syndrome, insomnia, and poor sleep quality are most likely are also associated with cognitive impairment. Adequate functioning of the system of clearance of the brain from toxic substances, such as amyloid β, i.e. glymphatic system, is related to undisturbed sleep and prevents cognitive impairment. In the case of coexistence, sleep disturbances and diabetes either independently lead to and/or mutually aggravate cognitive impairment.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Sarul
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology,3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
15
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
16
|
Berberine ameliorates rats model of combined Alzheimer's disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotech 2020; 10:359. [PMID: 32832321 DOI: 10.1007/s13205-020-02354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
This study is aimed to investigate the protective effect against type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) of Berberine (BBR), and the underlying mechanism of action is explored. We established a rat model of combined AD and T2DM and used it to investigate the effect of BBR (150 mg/kg) on the course of these pathologies. The Morris water maze, biochemical analysis, hematoxylin-eosin staining, immunohistochemical study, immunofluorescent staining, TUNEL assay, RT-qPCR and western blot were used to reveal the effect of BBR on blood glucose, lipid changes, hippocampal injuries and cognitive impairment. The results showed that BBR could alleviate memory deficits, restore the disordered arrangement of nerve cells, the damage of neurons, improve TUNEL-positive cells and decrease the elevated levels of fasting blood glucose, triglyceride, total cholesterol and glycosylated serum protein levels in Alzheimer diabetic rats. Moreover, BBR treatment reduces the transcription of mRNAs and expression of proteins related to endoplasmic reticulum (ER) stress. These findings conclude that BBR can protect neurons by inhibiting the pathway of ER stress and thereby play an essential role in the preventive and therapeutic of AD and T2DM.
Collapse
|
17
|
Forte M, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Vascular ageing in hypertension: Focus on mitochondria. Mech Ageing Dev 2020; 189:111267. [PMID: 32473170 DOI: 10.1016/j.mad.2020.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Hypertension is a common age-related disease, along with vascular and neurodegenerative diseases. Vascular ageing increases during hypertension, but hypertension itself accelerates vascular ageing, thus creating a vicious circle. Vascular stiffening, endothelial dysfunction, impaired contractility and vasorelaxation are the main alterations related to vascular ageing, as a consequence of vascular smooth muscle and endothelial cells senescence. Several molecular mechanisms have been involved into the functional and morphological changes of the aged vessels. Among them, oxidative stress, inflammation, extracellular matrix deregulation and mitochondrial dysfunction are the best characterized. In the present review, we discuss relevant literature about the biology of vascular and cerebrovascular ageing with a particular focus on mitochondria signalling. We underline the therapeutic strategies, able to improve mitochondrial health, which may represent a promising tool to decrease vascular dysfunction associated with ageing and hypertension-related complications.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Maria Cotugno
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | - Franca Bianchi
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Speranza Rubattu
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
| |
Collapse
|
18
|
Deshwal A, Chitra H, Maity M, Pal SK, Maiti S. Sucrose-mediated heat-stiffening microemulsion-based gel for enzyme entrapment and catalysis. Chem Commun (Camb) 2020; 56:10698-10701. [DOI: 10.1039/d0cc04294c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Formation of a thermo-stiffening microemulsion-based-gel showing the nanoconfinement effect of carbohydrates as an efficient batch bioreactor for entrapped enzymes has been reported.
Collapse
Affiliation(s)
- Akshi Deshwal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Knowledge City
- India
| | - Himanshu Chitra
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Knowledge City
- India
| | - Madhusudan Maity
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Knowledge City
- India
| | - Santanu Kumar Pal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Knowledge City
- India
| | - Subhabrata Maiti
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Knowledge City
- India
| |
Collapse
|
19
|
Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20164052. [PMID: 31434198 PMCID: PMC6719127 DOI: 10.3390/ijms20164052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023] Open
Abstract
Linagliptin is a representative of dipeptidyl peptidase 4 (DPP-4) inhibitors which are registered and used effectively in a treatment of diabetes mellitus type 2. They increase the levels of active forms of endogenous incretins such as GLP-1 and GIP by inhibiting their enzymatic decomposition. Scientific reports suggest beneficial effects of linagliptin administration via immunological and biochemical pathways involved in neuroprotective processes of CNS. Linagliptin’s administration leads to a decrease in the concentration of proinflammatory factors such as: TNF-α, IL-6 and increases the number of anti-inflammatory patrolling monocytes CX3CR1bright. Significant reduction in Aβ42 level has been associated with the use of linagliptin implying potential application in Alzheimer’s disease. Linagliptin improved vascular functions by increasing production of nitric oxide (NO) and limiting concentration of apolipoprotein B. Linagliptin-induced decrease in macrophages infiltration may provide improvement in atheromatous plaque stabilization. Premedication with linagliptin increases neuron’s survival after stroke and augments neuronal stem cells proliferation. It seems to be connected with SDF-1α/CXCR4 signaling pathway. Linagliptin prevented abnormal proliferation and migration of rat brain microvascular endothelial cells in a state of hypoperfusion via SIRT1/HIF-1α/VEGF pathway. The article presents a summary of the studies assessing neuroprotective properties of linagliptin with special emphasis on cerebral ischemia, vascular dysfunction and neurodegenerative diseases.
Collapse
|
20
|
Abstract
A growing body of evidence supports a clear association between Alzheimer's disease and diabetes and several mechanistic links have been revealed. This paper is mainly devoted to the discussion of the role of diabetes-associated mitochondrial defects in the pathogenesis of Alzheimer's disease. The research experience and views of the author on this subject will be highlighted.
Collapse
Affiliation(s)
- Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Li JC, Shen XF, Shao JA, Tao MM, Gu J, Li J, Huang N. The total alkaloids from Coptis chinensis Franch improve cognitive deficits in type 2 diabetic rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2695-2706. [PMID: 30214157 PMCID: PMC6124445 DOI: 10.2147/dddt.s171025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Coptis chinensis Franch is extensively used in traditional Chinese medicine to treat diabetes and dementia. Alkaloids are the main active ingredients of C. chinensis. Purpose This study was designed to probe the effects and possible mechanisms of the total alkaloids from C. chinensis (TAC) on cognitive deficits in type 2 diabetic rats. Methods Cognitive deficits were induced in rats by streptozotocin and high glucose/high fat diet. After treatment with TAC (80, 120, and 180 mg/kg) for 24 weeks, the behavioral parameters of each rat were assessed by Morris water maze and Y-maze tests. The indexes of glucose and lipid metabolism, pathological changes of brain tissue, and the phosphorylation levels of insulin signaling related proteins were also evaluated. Results The type 2 diabetic rats showed significantly elevated levels of fasting blood glucose, glycosylated hemoglobin and glycosylated serum protein, as well as apolipoprotein B, free fatty acid, triglyceride and total cholesterol but decreased the content of apolipoprotein A1, and TAC treatment dose-dependently reversed these abnormal changes. Furthermore, the behavioral results showed that TAC alleviated the cognitive deficits in type 2 diabetic rats. Moreover, immunohistochemical and histopathologic examinations indicated that the diabetic rats showed significant Aβ deposition, and neuronal damage and loss, which can be reversed by TAC treatment. The western blot results showed that TAC treatment markedly increased the phosphorylation of IRS, PI3K, and Akt, and inhibited the overactivation of GSK3β in the brain of type 2 diabetic rats. Conclusion These findings conclude that TAC prevents diabetic cognitive deficits, most likely by ameliorating the disorder of glucose and lipid metabolism, attenuating Aβ deposition, and enhancing insulin signaling.
Collapse
Affiliation(s)
- Jia-Chuan Li
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ; .,Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ao Shao
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Meng-Min Tao
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ;
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China, ;
| |
Collapse
|
22
|
Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol 2018; 9:806. [PMID: 30018565 PMCID: PMC6037979 DOI: 10.3389/fphys.2018.00806] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
The brain is one of the most exquisite organs in the body with high metabolic demands, and requires a tight regulation of the surrounding environment. This tight control is exerted by the neurovascular unit (NVU) comprising different cell types, where endothelial cells play the commander-in-chief role. Thus, it is assumable that even slight perturbations in NVU might affect, in some cases irreversibly, brain homeostasis and health. In this line, recent findings support the two-hit vascular hypothesis for neurodegenerative conditions, where vascular dysfunction underlies the development of neurodegenerative diseases, such as Alzheimer’s disease (AD). Knowing that endothelial cells are rich in mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, two major reactive oxygen species (ROS) sources, this review aims to gather information on how oxidative stress is in the front line of vascular alterations observed in brain aging and neurodegenerative conditions, particularly AD. Also, a brief discussion about the therapeutic strategies aimed to protect against cerebrovascular diseases is included.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Cardoso SM, Correia SC, Carvalho C, Moreira PI. Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal! Handb Exp Pharmacol 2017; 240:281-308. [PMID: 28251365 DOI: 10.1007/164_2017_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a difficult puzzle to solve, in part because the etiology of this devastating neurodegenerative disorder remains murky. However, diabetes has been pinpointed as a major risk factor for the sporadic forms of AD. Several overlapping neurodegenerative mechanisms have been identified between AD and diabetes, including mitochondrial malfunction. This is not surprising taking into account that neurons are cells with a complex morphology, long lifespan, and high energetic requirements which make them particularly reliant on a properly organized and dynamic mitochondrial network to sustain neuronal function and integrity. In this sense, this chapter provides an overview on the role of mitochondrial bioenergetics and dynamics to the neurodegenerative events that occur in AD and diabetes, and how these organelles may represent a mechanistic link between these two pathologies. From a therapeutic perspective, it will be discussed how mitochondria can be targeted in order to efficaciously counteract neurodegeneration associated with AD and diabetes.
Collapse
Affiliation(s)
- Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal.
| |
Collapse
|
24
|
Zhou H, Yang J, Xie P, Dong Y, You Y, Liu J. Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus. Clin Chim Acta 2017; 470:14-19. [DOI: 10.1016/j.cca.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 02/08/2023]
|
25
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
26
|
Merdzo I, Rutkai I, Sure VNLR, McNulty CA, Katakam PVG, Busija DW. Impaired Mitochondrial Respiration in Large Cerebral Arteries of Rats with Type 2 Diabetes. J Vasc Res 2017; 54:1-12. [PMID: 28095372 DOI: 10.1159/000454812] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/27/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been suggested as a potential underlying cause of pathological conditions associated with type 2 diabetes (T2DM). We have previously shown that mitochondrial respiration and mitochondrial protein levels were similar in the large cerebral arteries of insulin-resistant Zucker obese rats and their lean controls. In this study, we extend our investigations into the mitochondrial dynamics of the cerebral vasculature of 14-week-old Zucker diabetic fatty obese (ZDFO) rats with early T2DM. Body weight and blood glucose levels were significantly higher in the ZDFO group, and basal mitochondrial respiration and proton leak were significantly decreased in the large cerebral arteries of the ZDFO rats compared with the lean controls (ZDFL). The expression of the mitochondrial proteins total manganese superoxide dismutase (MnSOD) and voltage-dependent anion channel (VDAC) were significantly lower in the cerebral microvessels, and acetylated MnSOD levels were significantly reduced in the large arteries of the ZDFO group. Additionally, superoxide production was significantly increased in the microvessels of the ZDFO group. Despite evidence of increased oxidative stress in ZDFO, exogenous SOD was not able to restore mitochondrial respiration in the ZDFO rats. Our results show, for the first time, that mitochondrial respiration and protein levels are compromised during the early stages of T2DM.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cardoso S, Seiça RM, Moreira PI. Mitochondria as a target for neuroprotection: implications for Alzheimer´s disease. Expert Rev Neurother 2016; 17:77-91. [PMID: 27366815 DOI: 10.1080/14737175.2016.1205488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), the most common form of dementia, is marked by progressive loss of memory and impairment of cognitive ability. Despite decades of intensive research and scientific advances, the intricate pathogenic mechanisms of AD are still not fully understood and, consequently, an effective treatment is yet to be developed. As widely accepted, the alterations of mitochondrial function are actively engaged in a plethora of neurodegenerative diseases, including AD. With growing interest in the mitochondria as a potential target for understanding AD, it has even been hypothesized that deficits in these organelles may be at the heart of the progression of AD itself. Areas covered: The purpose of this review is to summarize relevant studies that suggest a role for mitochondrial (dys)function in AD and to provide a survey on latest developments regarding AD-related mitochondrial therapeutics. Expert commentary: As outlined in a plethora of studies, there is no doubt that mitochondria play a major role in several stages of AD progression. Even though more in-depth studies are needed before pharmaceutical industry can apply such knowledge to human medicine, the continuous advances in AD research field will certainly facilitate and accelerate the development of more effective preventive or therapeutic strategies to fight this devastating disease.
Collapse
Affiliation(s)
- Susana Cardoso
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,b Institute for Interdisciplinary Research , University of Coimbra , Coimbra , Portugal
| | - Raquel M Seiça
- c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,d IBILI-Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- a CNC-Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,c Laboratory of Physiology - Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
28
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Parthasarathy R, Chow KM, Derafshi Z, Fautsch MP, Hetling JR, Rodgers DW, Hersh LB, Pepperberg DR. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin. Exp Eye Res 2015; 138:134-44. [PMID: 26142956 DOI: 10.1016/j.exer.2015.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
Amyloid-beta (Aβ) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aβ plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aβ levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aβ is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aβ in the living eye under physiological conditions could prove useful for research on ocular Aβ physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aβ monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aβ-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aβ levels in mice that exhibit readily measurable, aqueous buffer-extractable Aβ40 and Aβ42, two principal forms of Aβ. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 μg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aβ40 and Aβ42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aβ (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aβ40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 μg sNEP. At 4 ng sNEP the average Aβ40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 μg sNEP produced an Aβ40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aβ42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 μg sNEP, conditions that on average led, respectively, to an 82% and 91% Aβ40 reduction in C57BL/6J eyes, an 87% and 92% Aβ40 reduction in 5XFAD eyes, and a 23% and 52% Aβ42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aβ levels reported here represents a possible approach for determining effects of Aβ reduction in normally functioning eyes and in models of retinal degenerative disease.
Collapse
Affiliation(s)
- Rajni Parthasarathy
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - K Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Zahra Derafshi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | | | - John R Hetling
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - David R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Dutta S, Rutkai I, Katakam PVG, Busija DW. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. J Neurochem 2015; 134:845-56. [PMID: 26016889 DOI: 10.1111/jnc.13181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Abstract
We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets.
Collapse
Affiliation(s)
- Somhrita Dutta
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V G Katakam
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David W Busija
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
31
|
Gu L, Evans AR, Robinson RAS. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:615-630. [PMID: 25588721 DOI: 10.1007/s13361-014-1059-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/22/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Cysteine-selective proteomics approaches simplify complex protein mixtures and improve the chance of detecting low abundant proteins. It is possible that cysteinyl-peptide/protein enrichment methods could be coupled to isotopic labeling and isobaric tagging methods for quantitative proteomics analyses in as few as two or up to 10 samples, respectively. Here we present two novel cysteine-selective proteomics approaches: cysteine-selective dimethyl labeling (cysDML) and cysteine-selective combined precursor isotopic labeling and isobaric tagging (cPILOT). CysDML is a duplex precursor quantification technique that couples cysteinyl-peptide enrichment with on-resin stable-isotope dimethyl labeling. Cysteine-selective cPILOT is a novel 12-plex workflow based on cysteinyl-peptide enrichment, on-resin stable-isotope dimethyl labeling, and iodoTMT tagging on cysteine residues. To demonstrate the broad applicability of the approaches, we applied cysDML and cPILOT methods to liver tissues from an Alzheimer's disease (AD) mouse model and wild-type (WT) controls. From the cysDML experiments, an average of 850 proteins were identified and 594 were quantified, whereas from the cPILOT experiment, 330 and 151 proteins were identified and quantified, respectively. Overall, 2259 unique total proteins were detected from both cysDML and cPILOT experiments. There is tremendous overlap in the proteins identified and quantified between both experiments, and many proteins have AD/WT fold-change values that are within ~20% error. A total of 65 statistically significant proteins are differentially expressed in the liver proteome of AD mice relative to WT. The performance of cysDML and cPILOT are demonstrated and advantages and limitations of using multiple duplex experiments versus a single 12-plex experiment are highlighted.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | |
Collapse
|
32
|
Fonseca ACR, Resende R, Cardoso SM, Pereira CF. The role of proteotoxic stress in vascular dysfunction in the pathogenesis of Alzheimer’s disease. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2015. [DOI: 10.1515/ersc-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAlzheimer’s disease (AD) is the principal cause of dementia in the elderly; however, its prevalence is increasing due to the fact that current pharmaceuticals used to manage the symptoms are not capable of preventing, halting, or reversing disease progression. In the last decade, evidence has accumulated to support the hypothesis that a primary cerebral vascular dysfunction initiates the cascade of events that leads to neuronal injury and the subsequent cognitive decline observed in AD. The mechanisms underlying these vascular defects and their relationship with neurodegeneration are still poorly understood however. It is pathologically known that cerebrovascular dysfunctions can induce the deposition of amyloid-β (Aβ), an amyloidogenic and toxic peptide that in turn causes cerebrovascular degeneration. Mammalian cells regulate proteostasis and the functioning of intracellular organelles through diverse mechanisms such as the Unfolded Protein Response, the Ubiquitin-Proteasome System and autophagy; however, when these mechanisms cannot compensate for perturbations in homeostasis, the cell undergoes programmed death via apoptosis. This review summarizes recent studies that together correlate the deregulation of protein quality control pathways with dysfunction of vascular endothelial cells of the brain in AD, thus supporting the hypothesis that it is the vicious, progressive failure of the proteostatic network and endothelial activation that underlies the cerebrovascular changes that symptomize AD.
Collapse
|
33
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
34
|
Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1693-706. [PMID: 24949886 DOI: 10.1016/j.bbadis.2014.06.010] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.
Collapse
|
35
|
Fonseca ACRG, Moreira PI, Oliveira CR, Cardoso SM, Pinton P, Pereira CF. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol Neurobiol 2014; 51:610-22. [PMID: 24833600 DOI: 10.1007/s12035-014-8740-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease, the accumulation of amyloid-beta (Aβ) in the brain occurs in the parenchyma and cerebrovasculature. Several evidences support that the neuronal demise is potentiated by vascular alterations in the early stages of the disease, but the mechanisms responsible for the dysfunction of brain endothelial cells that underlie these cerebrovascular changes are unknown. Using rat brain microvascular endothelial cells, we found that short-term treatment with a toxic dose of Aβ1-40 inhibits the Ca(2+) refill and retention ability of the endoplasmic reticulum and enhances the mitochondrial and cytosolic response to adenosine triphosphate (ATP)-stimulated endoplasmic reticulum Ca(2+) release. Upon prolonged Aβ1-40 exposure, Ca(2+) homeostasis was restored concomitantly with a decrease in the levels of proteins involved in its regulation operating at the plasma membrane, endoplasmic reticulum, and mitochondria. Along with perturbations in Ca(2+) regulation, an early increase in the levels of oxidants and a decrease in the ratio between reduced and oxidized glutathione were observed in Aβ1-40-treated endothelial cells. Under these conditions, the nuclear levels of oxidative stress-related transcription factors, namely, hypoxia-inducible factor 1α and nuclear factor (erythroid-derived 2)-related factor 2, were enhanced as well as the protein levels of target genes. In conclusion, Aβ1-40 affects several mechanisms involved in Ca(2+) homeostasis and impairs the redox homeostasis simultaneously with stimulation of protective stress responses in brain endothelial cells. However, the imbalance between cell death and survival pathways leads to endothelial dysfunction that in turn contributes to cerebrovascular impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|