1
|
Go W, Ishak IH, Zarkasi KZ, Azzam G. Salvianolic acids modulate lifespan and gut microbiota composition in amyloid-β-expressing Drosophila melanogaster. World J Microbiol Biotechnol 2024; 40:358. [PMID: 39428437 DOI: 10.1007/s11274-024-04163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), a form of neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ), hyperphosphorylated Tau, and neuroinflammation. The increasing population affected by AD urges for the development of effective treatments. The correlation between AD and gut microbiome remains underexplored, potentially providing a better understanding of the disease. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B) are the active components extracted from Salvia miltiorrhiza (Danshen), and their antioxidant, anti-inflammation and Aβ inhibition activities were shown previously. In this study, these compounds were used to investigate their effects on Aβ toxicity, using Drosophila melanogaster expressing human Aβ42 as the model organism, by examining their lifespan and changes in gut bacterial communities. The study used two batches of flies, reared on food with or without methylparaben (MP) supplementation to evaluate the influence of MP on this animal model during pharmacological studies. MP is a common antimicrobial agent used in flies' food. The treatment of Sal A prolonged the lifespan of Aβ-expressing flies reared on MP-supplemented food significantly (P < 0.001), but not those without MP. The lifespan of Sal B-treated flies did not show a significant difference compared to untreated flies for both groups reared on food with and without MP. Sal A-treated flies in the presence of MP exhibited a lower abundance of Corynebacterium and Enterococcus than the untreated flies, while Lactiplantibacillus was the most dominant taxa. Urea cycle was predicted to be predominant in this group compared to the untreated group. The control group, Aβ-expressing flies treated with Sal A and Sal B on MP-supplemented food had improved lifespan compared to their respective groups reared on food without MP, while untreated Aβ-expressing flies was the exception. The gut microbiota composition of flies reared on MP-supplemented food was also significantly different from those without MP (P < 0.001).
Collapse
Affiliation(s)
- Wenchen Go
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Intan Haslina Ishak
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Saha P, Sisodia SS. Role of the gut microbiome in mediating sex-specific differences in the pathophysiology of Alzheimer's disease. Neurotherapeutics 2024; 21:e00426. [PMID: 39054179 PMCID: PMC11585881 DOI: 10.1016/j.neurot.2024.e00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) presents distinct pathophysiological features influenced by biological sex, with women disproportionately affected due to sex-specific genetic, hormonal, and epigenetic factors. This review delves into three critical areas of sex differences in AD: First, we explore how genetic predisposition and hormonal changes, particularly those involving sex-specific modifications, influence susceptibility and progression of the disease. Second, we examine the neuroimmune dynamics in AD, emphasizing variations in microglial activity between sexes during crucial developmental stages and the effects of hormonal interventions on disease outcomes. Crucially, this review highlights the significant role of gut microbiome perturbations in shaping AD pathophysiology in a sex-specific manner, suggesting that these alterations can further influence microglial activity and overall disease trajectory. Third, we provide a viewpoint that advocates for personalized therapeutic strategies that integrate the understanding of hormonal fluctuations and microbiome dynamics into treatment plans in order to optimize patient outcomes.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang J, Zhang A, Hu Y, Yuan X, Qiu Y, Dong C. Polysaccharides from fructus corni: Extraction, purification, structural features, and biological activities. Carbohydr Res 2024; 538:109072. [PMID: 38484601 DOI: 10.1016/j.carres.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
Fructus Corni, derived from the dried fruit of Cornus officinalis Sieb. Et Zucc., is widely used as a food source and Chinese herb. Fructus Corni, as an indispensable ingredient in Liuwei Dihuang decoction, tonifies the liver and kidneys. As the main component of water decoctions, Fructus Corni polysaccharides demonstrate multifaceted effects, including hypoglycemic, hypolipidemic, antioxidant, anti-aging, sexual function regulation, and anti-epileptic, The ultrasound-assisted extraction method obtained the highest yields of Fructus Corni polysaccharides. However, it has notable shortcomings and lacks further innovation. The homogeneous polysaccharides obtained from Fructus Corni are mostly neutral polysaccharides with relatively limited structure, and the mechanism of their biological activity needs to be further elucidated. In addition, different extraction, isolation and purification methods may change the molecular weight, monosaccharide composition, and biological activity of polysaccharides. Therefore, this study systematically summarized the extraction, purification, structural features, and biological activities of Fructus Corni polysaccharides. This study aimed to provide support for the ongoing development and application of Fructus Corni polysaccharides.
Collapse
Affiliation(s)
- Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Xin Yuan
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
4
|
Liang J, Wang Y, Liu B, Dong X, Cai W, Zhang N, Zhang H. Deciphering the intricate linkage between the gut microbiota and Alzheimer's disease: Elucidating mechanistic pathways promising therapeutic strategies. CNS Neurosci Ther 2024; 30:e14704. [PMID: 38584341 PMCID: PMC10999574 DOI: 10.1111/cns.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The gut microbiome is composed of various microorganisms such as bacteria, fungi, and protozoa, and constitutes an important part of the human gut. Its composition is closely related to human health and disease. Alzheimer's disease (AD) is a neurodegenerative disease whose underlying mechanism has not been fully elucidated. Recent research has shown that there are significant differences in the gut microbiota between AD patients and healthy individuals. Changes in the composition of gut microbiota may lead to the development of harmful factors associated with AD. In addition, the gut microbiota may play a role in the development and progression of AD through the gut-brain axis. However, the exact nature of this relationship has not been fully understood. AIMS This review will elucidate the types and functions of gut microbiota and their relationship with AD and explore in depth the potential mechanisms of gut microbiota in the occurrence of AD and the prospects for treatment strategies. METHODS Reviewed literature from PubMed and Web of Science using key terminologies related to AD and the gut microbiome. RESULTS Research indicates that the gut microbiota can directly or indirectly influence the occurrence and progression of AD through metabolites, endotoxins, and the vagus nerve. DISCUSSION This review discusses the future challenges and research directions regarding the gut microbiota in AD. CONCLUSION While many unresolved issues remain regarding the gut microbiota and AD, the feasibility and immense potential of treating AD by modulating the gut microbiota are evident.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Xiaohong Dong
- Jiamusi CollegeHeilongjiang University of Traditional Chinese MedicineJiamusiHeilongjiang ProvinceChina
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Hong Zhang
- Heilongjiang Jiamusi Central HospitalJiamusiHeilongjiang ProvinceChina
| |
Collapse
|
5
|
Chen Y, Shi Y, Liang C, Min Z, Deng Q, Yu R, Zhang J, Chang K, Chen L, Yan K, Wang C, Tan Y, Wang X, Chen J, Hua Q. MicrobeTCM: A comprehensive platform for the interactions of microbiota and traditional Chinese medicine. Pharmacol Res 2024; 201:107080. [PMID: 38272335 DOI: 10.1016/j.phrs.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Thanks to the advancements in bioinformatics, drugs, and other interventions that modulate microbes to treat diseases have been emerging continuously. In recent years, an increasing number of databases related to traditional Chinese medicine (TCM) or gut microbes have been established. However, a database combining the two has not yet been developed. To accelerate TCM research and address the traditional medicine and micro ecological system connection between short board, we have developed the most comprehensive micro-ecological database of TCM. This initiative includes the standardization of the following advantages: (1) A repeatable process achieved through the standardization of a retrieval strategy to identify literature. This involved identifying 419 experiment articles from PubMed and six authoritative databases; (2) High-quality data integration achieved through double-entry extraction of literature, mitigating uncertainties associated with natural language extraction; (3) Implementation of a similar strategy aiding in the prediction of mechanisms of action. Leveraging drug similarity, target entity similarity, and known drug-target entity association, our platform enables the prediction of the effects of a new herb or acupoint formulas using the existing data. In total, MicrobeTCM includes 171 diseases, 725 microbes, 1468 herb-formulas, 1032 herbs, 15780 chemical compositions, 35 acupoint-formulas, and 77 acupoints. For further exploration, please visit https://www.microbetcm.com.
Collapse
Affiliation(s)
- Yufeng Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Yu Shi
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Chengbang Liang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Zhuochao Min
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Zoology, The George S. Wise Faculty of Life Sciences Tel Aviv Tel Aviv University, Tel Aviv 69978, Israel
| | - Qiqi Deng
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Rui Yu
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Kexin Chang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Luyao Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Ke Yan
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Chunxiang Wang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Yan Tan
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Xu Wang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China.
| | - Qian Hua
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China.
| |
Collapse
|
6
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
7
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
8
|
Cheng CH, Liu YC, Yang YCS, Lin KJ, Wu D, Liu YR, Chang CC, Hong CT, Hu CJ. Plasmon-activated water as a therapeutic strategy in Alzheimer's disease by altering gut microbiota. Aging (Albany NY) 2023; 15:3715-3737. [PMID: 37166426 PMCID: PMC10449311 DOI: 10.18632/aging.204706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Gut microbiota (GM) are involved in the pathophysiology of Alzheimer's disease (AD) and might correlate to the machinery of the gut-brain axis. Alteration of the GM profiles becomes a potential therapy strategy in AD. Here, we found that plasmon-activated water (PAW) therapy altered GM profile and reduced AD symptoms in APPswe/PS1dE9 transgenic mice (AD mice). GM profile showed the difference between AD and WT mice. PAW therapy in AD mice altered GM profile and fecal microbiota transplantation (FMT) reproduced GM profile in AD mice. PAW therapy and FMT in AD mice reduced cognitive decline and amyloid accumulation by novel object recognition (NOR) test and amyloid PET imaging. Immunofluorescent staining and western blot analysis of β-amyloid (Aβ) and phosphorylated (p)-tau in the brain of AD mice were reduced in PAW therapy and FMT. The inflammatory markers, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and pro-inflammatory indicator of arginase-1/CD86 ratio were also reduced. Furthermore, immunohistochemistry (IHC) analysis of occludin and claudin-5 in the intestine and AXL in the brain were increased to correlate with the abundant GM in PAW therapy and FMT. Our results showed the machinery of gut-brain axis, and PAW might be a potential therapeutic strategy in AD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology and Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology and Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- PhD program of Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Matheson JAT, Holsinger RMD. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int J Mol Sci 2023; 24:1001. [PMID: 36674517 PMCID: PMC9864694 DOI: 10.3390/ijms24021001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are highly prevalent but poorly understood, and with few treatment options despite decades of intense research, attention has recently shifted toward other mediators of neurological disease that may present future targets for therapeutic research. One such mediator is the gut microbiome, which communicates with the brain through the gut-brain axis and has been implicated in various neurological disorders. Alterations in the gut microbiome have been associated with numerous neurological and other diseases, and restoration of the dysbiotic gut has been shown to improve disease conditions. One method of restoring a dysbiotic gut is via fecal microbiota transplantation (FMT), recolonizing the "diseased" gut with normal microbiome. Fecal microbiota transplantation is a treatment method traditionally used for Clostridium difficile infections, but it has recently been used in neurodegenerative disease research as a potential treatment method. This review aims to present a summary of neurodegenerative research that has used FMT, whether as a treatment or to investigate how the microbiome influences pathogenesis.
Collapse
Affiliation(s)
- Julie-Anne T. Matheson
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
10
|
Huang Y, Wang J, Liu F, Wang C, Xiao Z, Zhou W. Liuwei Dihuang formula ameliorates chronic stress-induced emotional and cognitive impairments in mice by elevating hippocampal O-GlcNAc modification. Front Neurosci 2023; 17:1134176. [PMID: 37152609 PMCID: PMC10157057 DOI: 10.3389/fnins.2023.1134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
A substantial body of evidence has indicated that intracerebral O-linked N-acetyl-β-D-glucosamine (O-GlcNAc), a generalized post-translational modification, was emerging as an effective regulator of stress-induced emotional and cognitive impairments. Our previous studies showed that the Liuwei Dihuang formula (LW) significantly improved the emotional and cognitive dysfunctions in various types of stress mouse models. In the current study, we sought to determine the effects of LW on intracerebral O-GlcNAc levels in chronic unpredictable mild stress (CUMS) mice. The dynamic behavioral tests showed that anxiety- and depression-like behaviors and object recognition memory of CUMS mice were improved in a dose-dependent manner after LW treatment. Moreover, linear discriminate analysis (LEfSe) of genera abundance revealed a significant difference in microbiome among the study groups. LW showed a great impact on the relative abundance of these gut microbiota in CUMS mice and reinstated them to control mouse levels. We found that LW potentially altered the Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis process, and the abundance of O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) in CUMS mice, which was inferred using PICRUSt analysis. We further verified advantageous changes in hippocampal O-GlcNAc modification of CUMS mice following LW administration, as well as changes in the levels of OGA and OGT. In summary, LW intervention increased the levels of hippocampal O-GlcNAc modification and ameliorated the emotional and cognitive impairments induced by chronic stress in CUMS mice. LW therefore could be considered a potential prophylactic and therapeutic agent for chronic stress.
Collapse
Affiliation(s)
- Yan Huang
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Zhiyong Xiao,
| | - Wenxia Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
11
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
12
|
Li ZL, Ma HT, Wang M, Qian YH. Research trend of microbiota-gut-brain axis in Alzheimer’s disease based on CiteSpace (2012–2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 2022; 14:1036120. [DOI: 10.3389/fnagi.2022.1036120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundRecently, research on the microbiota-gut-brain axis (MGBA) has received increasing attention, and the number of studies related to Alzheimer’s disease (AD) has increased rapidly, but there is currently a lack of summary of MGBA in AD.ObjectiveTo capture research hotspots, grasp the context of disciplinary research, and explore future research development directions.MethodsIn the core dataset of Web of Science, documents are searched according to specific subject words. CiteSpace software is used to perform statistical analysis on measurement indicators such as the number of published papers, publishing countries, institutions, subject areas, authors, cocited journals, and keywords, and to visualize of a network of relevant content elements.ResultsThe research of MGBA in AD has shown an upward trend year by year, and the cooperation between countries is relatively close, and mainly involves the intersection of neuroscience, pharmacy, and microbiology. This research focuses on the relationship between MGBA and AD symptoms. Keyword hotspots are closely related to new technologies. Alzheimer’s disease, anterior cingulate cortex, inflammatory degeneration, dysbiosis, and other research are the focus of this field.ConclusionThe study revealed that the research and development of MGBA in AD rapidly progressed, but no breakthrough has been made in the past decade, it still needs to be closely combined with multidisciplinary technology to grasp the frontier hotspots. Countries should further strengthen cooperation, improve the disciplinary system, and increase the proportion of empirical research in all research.
Collapse
|
13
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
14
|
Huang Y, Li D, Wang C, Sun N, Zhou WX. Stachyose Alleviates Corticosterone-Induced Long-Term Potentiation Impairment via the Gut–Brain Axis. Front Pharmacol 2022; 13:799244. [PMID: 35370743 PMCID: PMC8965576 DOI: 10.3389/fphar.2022.799244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Stress can induce learning and memory impairment; corticosterone is often used to study the effects and mechanisms of stress in animal models. Long-term potentiation (LTP) has been widely used for tackling the mechanisms of memory. Liuwei Dihuang decoction-active fraction combination (LW-AFC) can improve stress-induced LTP and cognition impairment; stachyose is an oligosaccharide in LW-AFC. The effects and mechanisms of stachyose on stress are unknown. In this study, stachyose showed protective effects against LTP impairment by corticosterone in vivo only via intragastric administration for 7 consecutive days, but there was little effect even after direct intracerebroventricular injection; the protective effect of stachyose could be canceled by non-absorbable antibiotics (ATB) which disturbed gut flora. 16S rRNA sequencing, alpha diversity, and principal coordinate analysis (PCoA) revealed that the gut flora in corticosterone-treated mice was disturbed and stachyose could improve corticosterone-induced gut flora disturbance. Bacteroidetes were decreased and Deferribacteres were increased significantly in corticosterone-treated mice, and stachyose restored Bacteroidetes and Deferribacteres to the normal level. D-serine, a coactivator of NMDA receptors, plays an important role in synaptic plasticity and cognition. Here, corticosterone had little effect on the content of D-serine and L-serine (the precursor of D-serine), but it reduced the D-serine release-related proteins, Na+-independent alanine–serine–cysteine transporter-1 (ASC-1), and vesicle-associated membrane protein 2 (VAMP2) significantly in hippocampus; stachyose significantly increased ASC-1 and VAMP2 in corticosterone-treated mice, and ATB blocked stachyose’s effects on ASC-1 and VAMP2. NMDA receptors co-agonists L-serine, D-serine, and glycine significantly improved LTP impairment by corticosterone. These results indicated that stachyose might indirectly increase D-serine release through the gut–brain axis to improve LTP impairment by corticosterone in the hippocampus in vivo.
Collapse
Affiliation(s)
- Yan Huang
- *Correspondence: Yan Huang, ; Wen-Xia Zhou,
| | | | | | | | | |
Collapse
|
15
|
Zhang Z, Tan X, Sun X, Wei J, Li QX, Wu Z. Isoorientin Affects Markers of Alzheimer's Disease via Effects on the Oral and Gut Microbiota in APP/PS1 Mice. J Nutr 2022; 152:140-152. [PMID: 34636875 DOI: 10.1093/jn/nxab328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There is growing evidence of strong associations between the pathogenesis of Alzheimer's disease (AD) and dysbiotic oral and gut microbiota. Recent studies demonstrated that isoorientin (ISO) is anti-inflammatory and alleviates markers of AD, which were hypothesized to be mediated by the oral and gut microbiota. OBJECTIVES We studied the effects of oral administration of ISO on AD-related markers and the oral and gut microbiota in mice. METHODS Eight-month-old amyloid precursor protein/presenilin-1 (AP) transgenic male mice were randomly allocated to 3 groups of 15 mice each: vehicle (AP) alone or with a low dose of ISO (AP + ISO-L; 25 mg/kg) or a high dose of ISO (AP + ISO-H; 50 mg/kg). Age-matched wild-type (WT) C57BL/6 male littermates were used as controls. The 4 groups were treated intragastrically with ISO or sterilized ultrapure water for 2 months. AD-related markers in the brain, serum, colon, and liver were analyzed with immunohistochemical and histochemical staining, Western blotting, and ELISA. Oral and gut microbiotas were analyzed using 16S ribosomal RNA gene sequencing. RESULTS The high-dose ISO treatment significantly decreased amyloid beta 42-positive deposition by 38.1% and 45.2% in the cortex and hippocampus, respectively, of AP mice (P < 0.05). Compared with the AP group, both ISO treatments reduced brain phospho-Tau, phosphor-p65, phosphor-inhibitor of NF-κB, and brain and serum LPS and TNF-α by 17.9%-72.5% and increased brain and serum IL-4 and IL-10 by 130%-210% in the AP + ISO-L and AP + ISO-H groups (P < 0.05). Abundances of 26, 25, and 23 microbial taxa in oral, fecal and cecal samples, respectively, were increased in both the AP + ISO-L and AP + ISO-H groups relative to the AP group [linear discriminant analysis (LDA) >3.0; P < 0.05]. Gram-negative bacteria, Alteromonas, Campylobacterales, and uncultured Bacteroidales bacterium were positively correlated (rho = 0.28-0.59; P < 0.05) with the LPS levels and responses of inflammatory cytokines. CONCLUSIONS The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoqin Tan
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaorong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhongyi Wu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Song X, Zhao Z, Zhao Y, Wang Z, Wang C, Yang G, Li S. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl 3 induced mouse model of Alzheimer's disease via modulating gut microbiota and PI3K/Akt/GSK-3β signaling pathway. Nutr Neurosci 2021; 25:2588-2600. [PMID: 34755592 DOI: 10.1080/1028415x.2021.1991556] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotic intervention has beneficial effects on host brain function and behavior via regulating microbiota-gut-brain axis; however, the underlying mechanism is not yet understood. Herein, we investigated that the effects of Lactobacillus plantarum DP189 (DP189) administration in preventing cognitive dysfunction and pathology of Alzheimer's disease (AD) in D-galactose (D-gal) and AlCl3-induced AD model mice. After L. plantarum DP189 intervention for 10 weeks, we assessed cognitive behavior, neurotransmitter expression, histological changes, microbial communities, and the mechanisms underlying the disease in AD model mice. The results showed that L. plantarum DP189 intervention prevented cognitive dysfunction by behavioral test. Increased levels of serotonin, dopamine, and gamma-aminobutyric acid positively affected the pathological processes by ameliorating neuronal damage, beta-amyloid deposition, and tau pathology. L. plantarum DP189 intervention simultaneously modulated the gut microbial communities to alleviate gut dysbiosis. Moreover, L. plantarum DP189 inhibited tau hyperphosphorylation by regulating the PI3 K/Akt/GSK-3β pathway. These findings indicated that L. plantarum DP189 intervention is a promising therapeutic strategy to prevent the onset and development of AD.
Collapse
Affiliation(s)
- Xinping Song
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China.,College of Agriculture, Yanbian university, Yanji, People's Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| |
Collapse
|
17
|
Zhang M, Hong Y, Wu W, Li N, Liu B, Sun J, Cao X, Ye T, Zhou L, Liu C, Yang C, Zhang X. Pivotal role of the gut microbiota in congenital insensitivity to pain with anhidrosis. Psychopharmacology (Berl) 2021; 238:3131-3142. [PMID: 34341834 DOI: 10.1007/s00213-021-05930-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increasing evidence has shown that the occurrence and development of various human diseases are closely related to the gut microbiota. We compared the gut microbial communities of human subjects with congenital insensitivity to pain with anhidrosis (CIPA) and healthy controls (HCs) to assess whether fecal microbiota transplantation (FMT) into germ-free mice and mice in acute pain influenced the behaviors of the host. METHODS We utilized 16 s rRNA analysis to compare the gut microbial communities of CIPA subjects and HCs and assessed whether FMT into germ-free mice and mice in acute pain influenced the behaviors of the host. RESULTS In a 16 s RNA analysis, the CIPA group had significant decreases in the relative abundance of 11 bacteria, whereas 7 bacteria were significantly increased. In further animal experiments, the transplantation of fecal samples from CIPA patients to healthy mice significantly increased their scores on both the mechanical withdrawal test and the tail flick test; in an acute plantar incision model, scores were also significantly increased on the mechanical withdrawal test at 4 and 5 days after the operation. Moreover, pseudo-germ-free mice receiving fecal bacteria from patients with CIPA took significantly longer to escape and had a significantly longer path length on training days 1, 2, and 5 and also had fewer platform crossings and spent less time in the target quadrant in the probe trial. CONCLUSIONS Our results suggest that the gut microbiota in CIPA subjects plays a key role in behaviors. Therapeutic strategies for improving the gut microbiota might alleviate CIPA symptoms.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Ye
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie 2021; 193:38-63. [PMID: 34688789 DOI: 10.1016/j.biochi.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.
Collapse
|
19
|
Li JZ, Hao XH, Wu HP, Li M, Liu XM, Wu ZB. An enriched environment delays the progression from mild cognitive impairment to Alzheimer's disease in senescence-accelerated mouse prone 8 mice. Exp Ther Med 2021; 22:1320. [PMID: 34630674 PMCID: PMC8495563 DOI: 10.3892/etm.2021.10755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
A previous study demonstrated that middle-aged (5-6 months of age) senescence-accelerated mouse prone 8 (SAMP8) mice can be used as animal models of mild cognitive impairment (MCI). An enriched environment (EE) can mitigate cognitive decline and decrease the pathological changes associated with various neurodegenerative diseases. In the present study, the learning-memory abilities of SAMP8 mice during the MCI phase (5 months of age) was evaluated and neuropathological changes in the hippocampus were examined after the mice were exposed to an EE for 60 days. In the Morris water maze test, EE-exposed mice demonstrated significantly decreased escape latency and increased time spent in the target quadrant and number of platform crossings compared with control mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining showed that EE-exposed mice had reduced neuronal apoptosis and increased number of surviving neurons compared with control mice. Golgi staining, transmission electron microscopy, and immunohistochemical staining demonstrated that EE-exposed mice exhibited increased dendritic spine densities among secondary and tertiary apical dendrites; increases in synaptic numerical density, synaptic surface density, and expression of synaptophysin; and reduced deposition of amyloid-β (Aβ) and expression of amyloid-precursor protein (APP) in the hippocampal CA1 region compared with control mice. These results demonstrate that EE exposure effectively decreases neuronal loss and regulates neuronal synaptic plasticity by reducing the expression of APP and the deposition of Aβ in the hippocampal CA1 region, thereby mitigating cognitive decline in SAMP8 mice during the MCI phase and delaying the progression from MCI to Alzheimer's disease.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xing-Hua Hao
- Department of Clinical Psychology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Hai-Ping Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Ming Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xue-Min Liu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Zhi-Bing Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| |
Collapse
|
20
|
Liu L, Shu A, Zhu Y, Chen Y. Cornuside Alleviates Diabetes Mellitus-Induced Testicular Damage by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5301942. [PMID: 34497657 PMCID: PMC8421159 DOI: 10.1155/2021/5301942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Male reproductive damage, as a common complication of diabetes mellitus (DM), is getting more attention lately. We aimed to explore the protective effects and mechanism of cornuside (Cor) modulating gut microbiota to alleviate diabetes mellitus- (DM-) induced testicular damage. METHODS KK-Ay mice with reproductive damage were randomly divided into the model and Cor treatment groups, and the C57BL/6J mice were used as the normal group. These mice were orally administered Cor for 8 weeks. RESULTS Cor administration ameliorated the diabetes-related symptoms of polydipsia and polyphagia and lowered the fasting blood glucose (FBG) level. The results of pathological injury showed that Cor improved testicular lesions (the rupture of seminiferous tubules, degeneration of germ cells, and structural shrinkage and separation from each other) in DM model mice. Cor significantly increased the testis/body weight ratio, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels in KK-Ay mice. Cor also protected from reproductive damage by inhibiting apoptosis in the testes of KK-Ay mice. Moreover, Cor significantly increased the sperm count and sperm motility. Additionally, 16S rDNA sequencing analysis showed that Cor could notably reverse the changes in the distribution of gut microbiota and decrease the abundance of Weissella confusa (Weissella), Clostridium sp. ND2 (Clostridium sensu stricto 1), uncultured bacterium (Roseburia), Anaerotruncus colihominis DSM 17241 (Anaerotruncus), [Clostridium] leptum (Anaerotruncus), unidentified (Ruminococcus 1), and uncultured bacterium (Bilophila), which may be a potential biomarker for diagnosing the testicular injury caused by DM. Meanwhile, the heat map of phylum level suggested that the testicular injury caused by DM is closely related to gut microbiota. CONCLUSIONS Cor could alleviate DM-induced testicular damage, probably by modulating the gut microbiota.
Collapse
Affiliation(s)
- Liping Liu
- College of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, Jiangsu, China
| | - Anmei Shu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yihui Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, Jiangsu, China
| |
Collapse
|
21
|
Liu B, Liu J, Shi JS. SAMP8 Mice as a Model of Age-Related Cognition Decline with Underlying Mechanisms in Alzheimer's Disease. J Alzheimers Dis 2021; 75:385-395. [PMID: 32310176 DOI: 10.3233/jad-200063] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a highly age-related cognitive decline frequently attacking the elderly. Senescence-accelerated mouse-prone 8 (SAMP8) is an ideal model to study AD, displaying age-related learning and memory disorders. SAMP8 mice exhibit most features of pathogenesis of AD, including an abnormal expression of anti-aging factors, oxidative stress, inflammation, amyloid-β (Aβ) deposits, tau hyperphosphorylation, endoplasmic reticulum stress, abnormal autophagy activity, and disruption of intestinal flora. SAMP8 mice, therefore, have visualized the understanding of AD, and also provided effective ways to find new therapeutic targets. This review focused on the age-related pathogenesis in SAMP8 mice, to advance the understanding of age-related learning and memory decline and clarify the mechanisms. Furthermore, this review will provide extensive foundations for SAMP8 mice used in therapeutics for AD.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Bello-Medina PC, Hernández-Quiroz F, Pérez-Morales M, González-Franco DA, Cruz-Pauseno G, García-Mena J, Díaz-Cintra S, Pacheco-López G. Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Front Neurosci 2021; 15:595583. [PMID: 33994914 PMCID: PMC8116633 DOI: 10.3389/fnins.2021.595583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The irreversible and progressive neurodegenerative Alzheimer's disease (AD) is characterized by cognitive decline, extracellular β-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Marcel Pérez-Morales
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Diego A. González-Franco
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Guadalupe Cruz-Pauseno
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Gustavo Pacheco-López
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| |
Collapse
|
23
|
Li X, Wu D, Niu J, Sun Y, Wang Q, Yang B, Kuang H. Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:237-268. [PMID: 33622213 DOI: 10.1142/s0192415x21500130] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Dan Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Jingjie Niu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| |
Collapse
|
24
|
Tang W, Meng Z, Li N, Liu Y, Li L, Chen D, Yang Y. Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors. Front Cell Infect Microbiol 2021; 10:611014. [PMID: 33585279 PMCID: PMC7873527 DOI: 10.3389/fcimb.2020.611014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
The study of the gut microbiota-brain axis has become an intriguing field, attracting attention from both gastroenterologists and neurobiologists. The hippocampus is the center of learning and memory, and plays a pivotal role in neurodegenerative diseases, such as Alzheimer’s disease (AD). Previous studies using diet administration, antibiotics, probiotics, prebiotics, germ-free mice, and fecal analysis of normal and specific pathogen-free animals have shown that the structure and function of the hippocampus are affected by the gut microbiota. Furthermore, hippocampal pathologies in AD are positively correlated with changes in specific microbiota. Genomic and neurochemical analyses revealed significant alterations in genes and amino acids in the hippocampus of AD subjects following a remarkable shift in the gut microbiota. In a recent study, when young animals were transplanted with fecal microbiota derived from AD patients, the recipients showed significant impairment of cognitive behaviors, AD pathologies, and changes in neuronal plasticity and cytokines. Other studies have demonstrated the side effects of antibiotic administration along with the beneficial effects of probiotics, prebiotics, and specific diets on the composition of the gut microbiota and hippocampal functions, but these have been mostly preliminary with unclear mechanisms. Since some specific gut bacteria are positively or negatively correlated to the structure and function of the hippocampus, it is expected that specific gut bacteria administration and other microbiota-based interventions could be potentially applied to prevent or treat hippocampus-based memory impairment and neuropsychiatric disorders such as AD.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ning Li
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiyan Liu
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Li Li
- Department of Gastroenterology, The First People's Hospital in Chongqing Liangjiang New Area, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Yang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Killingsworth J, Sawmiller D, Shytle RD. Propionate and Alzheimer's Disease. Front Aging Neurosci 2021; 12:580001. [PMID: 33505301 PMCID: PMC7831739 DOI: 10.3389/fnagi.2020.580001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Propionate, a short-chain fatty acid, serves important roles in the human body. However, our review of the current literature suggests that under certain conditions, excess levels of propionate may play a role in Alzheimer's disease (AD). The cause of the excessive levels of propionate may be related to the Bacteroidetes phylum, which are the primary producers of propionate in the human gut. Studies have shown that the relative abundance of the Bacteroidetes phylum is significantly increased in older adults. Other studies have shown that levels of the Bacteroidetes phylum are increased in persons with AD. Studies on the diet, medication use, and propionate metabolism offer additional potential causes. There are many different mechanisms by which excess levels of propionate may lead to AD, such as hyperammonemia. These mechanisms offer potential points for intervention.
Collapse
Affiliation(s)
- Jessica Killingsworth
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
26
|
Cheng X, Zhang J, Jing H, Qi Y, Yan T, Wu B, Du Y, Xiao F, Jia Y. Pharmacokinetic Differences of Grape Seed Procyanidins According to the Gavage Administration Between Normal Rats and Alzheimer's Disease Rats. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190916161225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Grape Seed Procyanidins (GSP) refers to a type of natural polyphenols
that have to roust antioxidant capacity. Studies have shed light on the fact that GSP significantly
impacts the alleviation of Alzheimer's Disease (AD).
Objective:
This study aimed at investigating whether there exists a pharmacokinetics difference in
GSP between normal and AD rats, a rapid UPLC-MS/MS methodology, for the detection of its
content in plasma samples was put forward. We carried out an analysis of the plasma concentrations
of procyanidin B2, procyanidin B3, catechin and epicatechin in normal and AD rats over time
for determining the plasma concentration of GSP.
Methods:
We made use of 400 μL of methanol for the protein precipitation solvent in the plasma
treatment. The chromatographic separation was carried out on a C18 column at a temperature of 20 °C.
The mobile phase was a gradient of 0.1% formic acid in water and methanol within 15 min.
Results:
: In the current research work, the plasma concentrations of procyanidin B2, procyanidin
B3, catechin and epicatechin in AD rats were significantly higher as compared with those in normal
rats (P < 0.05) and the content of epicatechin constituted the highest as compared with catechin,
procyanidin B2 and procyanidin B3 following the administration of GSP.
Conclusion:
We discovered the better absorptions of these analytes in the AD group as compared
with that in the normal group, providing an analytical basis for treating the AD with procyanidins.
Collapse
Affiliation(s)
- Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jingying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
27
|
Sun YX, Jiang XJ, Lu B, Gao Q, Chen YF, Wu DB, Zeng WY, Yang L, Li HH, Yu B. Roles of Gut Microbiota in Pathogenesis of Alzheimer's Disease and Therapeutic Effects of Chinese Medicine. Chin J Integr Med 2020; 28:1048-1056. [PMID: 32876860 DOI: 10.1007/s11655-020-3274-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive cognitive impairment. The pathogenesis of AD is complex, and its susceptibility and development process are affected by age, genetic and epigenetic factors. Recent studies confirmed that gut microbiota (GM) might contribute to AD through a variety of pathways including hypothalamic pituitary adrenal axis and inflflammatory and immune processes. CM formula, herbs, and monomer enjoy unique advantages to treat and prevent AD. Hence, the purpose of this review is to outline the roles of GM and its core metabolites in the pathogenesis of AD. Research progress of CMs regarding the mechanisms of how they regulate GM to improve cognitive impairment of AD is also reviewed. The authors tried to explore new therapeutic strategies to AD based on the regulation of GM using CM.
Collapse
Affiliation(s)
- Ying-Xin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye-Fei Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dan-Bin Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Yun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu-Hu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
28
|
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, Zhang Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY) 2020; 11:3463-3486. [PMID: 31160541 PMCID: PMC6594795 DOI: 10.18632/aging.101990] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mounting evidence points to alterations in the gut microbiota-neuroendocrine immunomodulation (NIM) network that might drive Alzheimer’s Disease (AD) pathology. In previous studies, we found that Liuwei Dihuang decoction (LW) had beneficial effects on the cognitive impairments and gastrointestinal microbiota dysbiosis in an AD mouse model. In particular, CA-30 is an oligosaccharide fraction derived from LW. We sought to determine the effects of CA-30 on the composition and function of the intestinal microbiome in the senescence-accelerated mouse prone 8 (SAMP8) mouse strain, an AD mouse model. Treatment with CA-30 delayed aging processes, ameliorated cognition in SAMP8 mice. Moreover, CA-30 ameliorated abnormal NIM network in SAMP8 mice. In addition, we found that CA-30 mainly altered the abundance of four genera and 10 newborn genera. Advantageous changes in carbohydrate-active enzymes of SAMP8 mice following CA-30 treatment, especially GH85, were also noted. We further found that seven genera were significantly correlated with the NIM network and cognitive performance. CA-30 influenced the relative abundance of these intestinal microbiomes in SAMP8 mice and restored them to SAMR1 mouse levels. CA-30 ameliorated the intestinal microbiome, rebalanced the NIM network, improved the AD-like cognitive impairments in SAMP8 mice, and can thus be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jianhui Wang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xi Lei
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zongjie Xie
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
29
|
He Y, Li B, Sun D, Chen S. Gut Microbiota: Implications in Alzheimer's Disease. J Clin Med 2020; 9:jcm9072042. [PMID: 32610630 PMCID: PMC7409059 DOI: 10.3390/jcm9072042] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a neurodegenerative disease that seriously threatens human health and life quality. The main pathological features of AD include the widespread deposition of amyloid-beta and neurofibrillary tangles in the brain. So far, the pathogenesis of AD remains elusive, and no radical treatment has been developed. In recent years, mounting evidence has shown that there is a bidirectional interaction between the gut and brain, known as the brain–gut axis, and that the intestinal microbiota are closely related to the occurrence and development of neurodegenerative diseases. In this review, we will summarize the laboratory and clinical evidence of the correlation between intestinal flora and AD, discuss its possible role in the pathogenesis, and prospect its applications in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (B.L.)
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (B.L.)
| | - Dingya Sun
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai 200433, China;
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (B.L.)
- Correspondence:
| |
Collapse
|
30
|
Cheng X, Huang Y, Zhang Y, Zhou W. LW-AFC, a new formula from the traditional Chinese medicine Liuwei Dihuang decoction, as a promising therapy for Alzheimer's disease: Pharmacological effects and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:159-177. [PMID: 32089232 DOI: 10.1016/bs.apha.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LW-AFC is a new formula derived from the Liuwei Dihuang decoction, a classical traditional Chinese medicine prescription. Based on our research, LW-AFC is a promising drug for Alzheimer's disease (AD). The studies were conducted primarily in two typical AD mouse models: SAMP8 and APP/PS1 mice. The results showed that LW-AFC could improve many cognitive behaviors, such as spatial learning and memory ability, passive and active avoidance response, and object recognition memory capability. In addition, LW-AFC could also alleviate the AD-like pathology in animal models, such as neuron loss and Aβ deposition. Subsequent studies found that LW-AFC could rebalance hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-gonadal (HPG) axis, and modulate the disturbance of immune system and gut flora. These data suggested that the anti-AD effects of LW-AFC might be mainly via modulating the neuroendocrine immunomodulation (NIM) network. As inhibiting the immune function by immunosuppressant could abolish the protective effects of LW-AFC against long-term potentiation (LTP) impairment model, it is likely that LW-AFC balancing the NIM network is initiated by modulating the immune system.
Collapse
Affiliation(s)
- Xiaorui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
31
|
Oligosaccharides from Morinda officinalis Slow the Progress of Aging Mice by Regulating the Key Microbiota-Metabolite Pairs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9306834. [PMID: 31929824 PMCID: PMC6942866 DOI: 10.1155/2019/9306834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
The gut microbiota is considered an important factor in the progression of Alzheimer's disease (AD). Active research on the association between the metabolome and the gut microbiome is ongoing and can provide a large amount of beneficial information about the interactions between the microbiome and the metabolome. Previous studies have shown that the oligosaccharides from Morinda officinalis (OMO) can delay the progress of AD in model animals by regulating the diversity of the gut microbiome and metabolic components, and the correlation between the gut microbiome and metabolic components still needs to be further verified. This study applied a new two-level strategy to investigate and ensure the accuracy and consistency of the results. This strategy can be used to determine the association between the gut microbiome and serum metabolome in APP/PS1 transgenic mice and C57BL/6J male mice. The “4C0d-2 spp.-Cholesterol,” “CW040 spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39 spp.-L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-acetylcarnitine” associations among specific “microbiota-metabolite” pairs were further identified based on univariate and multivariate correlation analyses and functional analyses. The key relevant pairs were verified by an independent oligosaccharide intervention study, and the gut microbiome and serum metabolome of the OMO intervention group were similar to those of the normal group. The results indicate that OMO can significantly suppress Alzheimer's disease by regulating the key microbiota-metabolite pairs. Therefore, this two-level strategy is effective in identifying the principal correlations in large datasets obtained from combinations of multiomic studies and further enhancing our understanding of the correlation between the brain and gut in patients with AD.
Collapse
|
32
|
Gao Y, Li H, Yang H, Su J, Huang L. The current novel therapeutic regimens for Clostridium difficile infection (CDI) and the potentials of Traditional Chinese Medicine in treatment of CDI. Crit Rev Microbiol 2019; 45:729-742. [PMID: 31838936 DOI: 10.1080/1040841x.2019.1700905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) is featured as the dysbiosis of gut microbiota and consequent mild diarrhoea or severe pseudomembranous colitis. However, the frequent recurrence of CDI following treatment course challenged the antibiotic therapy. Currently, to address the relapse of CDI, several novel therapeutic approaches have emerged, including Bezlotoxumab, SYN-004 (Ribaxamase), RBX2660, and faecal microbial transplant. Traditional Chinese Medicine (TCM) is an old medical system accumulated for thousands of years. Orientated by syndrome-based treatment, TCM functions in a multicomponent and multitarget mode. This old medical system showed superiority over conventional medical treatment, particularly in the treatment of complex disorders, including CDI. In the present review, we will elaborate the TCM intervention in the management of CDI and others disorders via restoring the gut microbiota dysbiosis. We hope that this review will deepen our understanding of TCM as an alternative to CDI treatment. However, more rigorously designed basic researches and randomised controlled trials need to conduct to appraise the function mechanisms and effects of TCM. Finally, it is concluded that the combined therapeutic potentials of TCM and western medicine could be harness to resolve the recurrence and improve the outcome of CDI.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019; 1724:146385. [PMID: 31419428 PMCID: PMC6886714 DOI: 10.1016/j.brainres.2019.146385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Several neurologic diseases exhibit different prevalence and severity in males and females, highlighting the importance of understanding the influence of biologic sex and gender. Beyond host-intrinsic differences in neurologic development and homeostasis, evidence is now emerging that the microbiota is an important environmental factor that may account for differences between men and women in neurologic disease. The gut microbiota is composed of trillions of bacteria, archaea, viruses, and fungi, that can confer benefits to the host or promote disease. There is bidirectional communication between the intestinal microbiota and the brain that is mediated via immunologic, endocrine, and neural signaling pathways. While there is substantial interindividual variation within the microbiota, differences between males and females can be detected. In animal models, sex-specific microbiota differences can affect susceptibility to chronic diseases. In this review, we discuss the ways in which neurologic diseases may be regulated by the microbiota in a sex-specific manner.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Julia Vincentini
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
34
|
Cox LM, Schafer MJ, Sohn J, Vincentini J, Weiner HL, Ginsberg SD, Blaser MJ. Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. Sci Rep 2019; 9:17904. [PMID: 31784610 PMCID: PMC6884494 DOI: 10.1038/s41598-019-54187-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) affects an estimated 5.8 million Americans, and advanced age is the greatest risk factor. AD patients have altered intestinal microbiota. Accordingly, depleting intestinal microbiota in AD animal models reduces amyloid-beta (Aβ) plaque deposition. Age-related changes in the microbiota contribute to immunologic and physiologic decline. Translationally relevant dietary manipulations may be an effective approach to slow microbiota changes during aging. We previously showed that calorie restriction (CR) reduced brain Aβ deposition in the well-established Tg2576 mouse model of AD. Presently, we investigated whether CR alters the microbiome during aging. We found that female Tg2576 mice have more substantial age-related microbiome changes compared to wildtype (WT) mice, including an increase in Bacteroides, which were normalized by CR. Specific gut microbiota changes were linked to Aβ levels, with greater effects in females than in males. In the gut, Tg2576 female mice had an enhanced intestinal inflammatory transcriptional profile, which was reversed by CR. Furthermore, we demonstrate that Bacteroides colonization exacerbates Aβ deposition, which may be a mechanism whereby the gut impacts AD pathogenesis. These results suggest that long-term CR may alter the gut environment and prevent the expansion of microbes that contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA.
| | - Marissa J Schafer
- Cellular and Molecular Biology Training Program, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, US
| | - Jiho Sohn
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Julia Vincentini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen D Ginsberg
- Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Martin J Blaser
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
35
|
An X, Bao Q, Di S, Zhao Y, Zhao S, Zhang H, Lian F, Tong X. The interaction between the gut Microbiota and herbal medicines. Biomed Pharmacother 2019; 118:109252. [DOI: 10.1016/j.biopha.2019.109252] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
|
36
|
Zhan G, Yang N, Li S, Huang N, Fang X, Zhang J, Zhu B, Yang L, Yang C, Luo A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY) 2019; 10:1257-1267. [PMID: 29886457 PMCID: PMC6046237 DOI: 10.18632/aging.101464] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer’s disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer’s disease.
Collapse
Affiliation(s)
- Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Yang
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci 2019; 20:E4472. [PMID: 31510091 PMCID: PMC6769561 DOI: 10.3390/ijms20184472] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that a chronic state of inflammation correlated with aging known as inflammaging, is implicated in multiple disease states commonly observed in the elderly population. Inflammaging is associated with over-abundance of reactive oxygen species in the cell, which can lead to oxidation and damage of cellular components, increased inflammation, and activation of cell death pathways. This review focuses on inflammaging and its contribution to various age-related diseases such as cardiovascular disease, cancer, neurodegenerative diseases, chronic obstructive pulmonary disease, diabetes, and rheumatoid arthritis. Recently published mechanistic details of the roles of reactive oxygen species in inflammaging and various diseases will also be discussed. Advancements in potential treatments to ameliorate inflammaging, oxidative stress, and consequently, reduce the morbidity of multiple disease states will be explored.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA.
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mykola Stetskiv
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James R Meade
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Timotheus I Peace
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Microbiota signatures relating to reduced memory and exploratory behaviour in the offspring of overweight mothers in a murine model. Sci Rep 2019; 9:12609. [PMID: 31471539 PMCID: PMC6717200 DOI: 10.1038/s41598-019-48090-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
An elevated number of women of reproductive age are overweight, predisposing their offspring to metabolic and neuropsychiatric disorders. Gut microbiota is influenced by maternal factors, and has been implicated in the pathogenesis of neurodegenerative diseases. Our aim was to explore the effects of maternal high-fat feeding on the relationship linking gut microbiota and cognitive development in the offspring. Murine offspring born to dams undergoing normal diet (NDm) and high-fat diet (HFDm) were studied at 1 or 6 months of age to assess cognitive function by Y-maze test, cerebral glucose metabolism and insulin sensitivity by Positron Emission Tomography, brain density by Computed Tomography, microbiota profile (colon, caecum) and inferred metabolic pathways (KEGG analysis) by 16S ribosomal RNA sequencing. From 3 weeks post-weaning, mice born to HFDm developed hyperphagia and overweight, showing reduction in memory and exploratory behaviour, and brain insulin resistance in adulthood. We identified a panel of bacteria characterizing offspring born to HFD dams from early life, and correlating with dysfunction in memory and exploratory behaviour in adults (including Proteobacteria phylum, Parabacteroides and unclassified Rikenellaceae genera). Microbiota-derived metabolic pathways involved in fatty acid, essential aminoacid and vitamin processing, sulphur metabolism, glutaminergic activation and Alzheimer’s disease were differently present in the HFDm and NDm offspring groups. Our results document tight relationships between gut dysbiosis and memory and behavioural impairment in relation to maternal HFD. Persistent bacterial signatures induced by maternal HFD during infancy can influence cognition during adulthood, opening the possibility of microbiota-targeted strategies to contrast cognitive decline.
Collapse
|
39
|
Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, Chen D, Liu J. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9:189. [PMID: 31383855 PMCID: PMC6683152 DOI: 10.1038/s41398-019-0525-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia in the elderly. Treatment for AD is still a difficult task in clinic. AD is associated with abnormal gut microbiota. However, little is known about the role of fecal microbiota transplantation (FMT) in AD. Here, we evaluated the efficacy of FMT for the treatment of AD. We used an APPswe/PS1dE9 transgenic (Tg) mouse model. Cognitive deficits, brain deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity as well as neuroinflammation were assessed. Gut microbiota and its metabolites short-chain fatty acids (SCFAs) were analyzed by 16S rRNA sequencing and 1H nuclear magnetic resonance (NMR). Our results showed that FMT treatment could improve cognitive deficits and reduce the brain deposition of amyloid-β (Aβ) in APPswe/PS1dE9 transgenic (Tg) mice. These improvements were accompanied by decreased phosphorylation of tau protein and the levels of Aβ40 and Aβ42. We observed an increases in synaptic plasticity in the Tg mice, showing that postsynaptic density protein 95 (PSD-95) and synapsin I expression were increased after FMT. We also observed the decrease of COX-2 and CD11b levels in Tg mice after FMT. We also found that FMT treatment reversed the changes of gut microbiota and SCFAs. Thus, FMT may be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jing Sun
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Jingxuan Xu
- 0000 0004 1764 2632grid.417384.dDepartment of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Yi Ling
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Fangyan Wang
- 0000 0001 0348 3990grid.268099.cDepartment of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tianyu Gong
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Changwei Yang
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Shiqing Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Keyue Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Dianhui Wei
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ziqing Song
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Danna Chen
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
40
|
Huang Y, Li D, Cheng B, Liu G, Zhang YX, Zhou WX. Active fraction combination from Liuwei Dihuang decoction (LW-AFC) ameliorates corticosterone-induced long-term potentiation (LTP) impairment in mice in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:147-154. [PMID: 30851370 DOI: 10.1016/j.jep.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang decoction (LW), a classic formula in Traditional Chinese medicine (TCM), has been used for nearly one thousand years for various diseases with characteristic features of kidney yin deficiency. LW consists of 6 herbs including Dihuang (prepared root of Rehmannia glutinosa (Gaertn.) DC.), Shanyao (rhizome of Dioscorea polystachya Turcz.), Shanzhuyu (fruit of Cornus officinalis Siebold & Zucc.), Mudanpi (root bark of Paeonia × suffruticosa Andrews), Zexie (rhizome of Alisma plantago-aquatica L.) and Fuling (scleorotia of Wolfiporia extensa (Peck) Ginns). LW-active fraction combination (LW-AFC) is extracted from LW, it is effective for the treatment of kidney yin deficiency in many animal models. Recent researches indicate that the "kidney deficiency" is related to a disturbance in the neuroendocrine immunomodulation (NIM) network, and glucocorticoids play an important role in kidney deficiency. AIM OF THE STUDY This study evaluated the effects of LW-AFC and the active fractions (polysaccharide, LWB-B; glycoside, LWD-b; oligosaccharide, CA-30) on corticosterone (Cort)-induced long-term potentiation (LTP) impairment in vivo. MATERIALS AND METHODS In this study, LTP was used to evaluate the synaptic plasticity. LW-AFC was orally administered for seven days. The active fractions were given by either chronic administration (i.g., i.p., 7 days) or single administration (i.c.v., i.g., i.p.). Cort was injected subcutaneously 1 h before the high-frequency stimulation (HFS) to induce LTP impairment. Moreover, in order to research on the possible effective pathways, an antibiotic cocktail and an immunosuppressant were also used. RESULTS Chronic administration (i.g.) of LW-AFC and its three active fractions could ameliorate Cort-induced LTP impairment. Single administration (i.c.v., i.g., i.p.) of any of the active fractions had no effect on Cort-induced LTP impairment, while chronic administration (i.g., i.p.) of LWB-B or LWD-b showed positive effects against Cort. Interestingly, CA-30 only showed protective effects via i.g. administration, and there was little effect when CA-30 was administered i.p. In addition, when the intestinal microbiota was disrupted by application of the antibiotic cocktail, CA-30 showed little protective effects against Cort. The effects of LW-AFC were also abolished when the immune function was inhibited. In the hippocampal tissue, Cort treatment increased corticosterone and glutamate, and LW-AFC could inhibit the Cort-induced elevation of corticosterone and glutamate; there was little change in D-serine in Cort-treated animals, but LW-AFC could increase the D-serine levels. CONCLUSION LW-AFC and its three active fractions could ameliorate Cort-induced LTP impairment. Their protective effects are unlikely by a direct way, and immune modulation might be the common pathway. CA-30 could protect LTP from impairment via modulating the intestinal microbiota. Decreasing corticosterone and glutamate and increasing D-serine in the Cort-treated animals' hippocampal tissue might be one of the mechanisms for the neural protective effects of LW-AFC. Further study is needed to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Yan Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Dong Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Bin Cheng
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Gang Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.
| |
Collapse
|
41
|
Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, Fang N, Ye S, Si J, Liu J. Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3006-3017. [PMID: 30816709 DOI: 10.1021/acs.jafc.8b07313] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Suzhi Liu
- Department of Neurology, The Affiliated Taizhou Hospital , Wenzhou Medical University , 150# Ximen Road , Linhai District, Taizhou 317000 , Zhejiang China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310003 , China
| | - Fangyan Wang
- Departments of Pathophysiology, School of Basic Medicine Science , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yi Ling
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Na Fang
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Shiqing Ye
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jue Si
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiaming Liu
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
42
|
Characteristics of the traditional Liu-Wei-Di-Huang prescription reassessed in modern pharmacology. Chin J Nat Med 2019; 17:103-121. [DOI: 10.1016/s1875-5364(19)30013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/25/2022]
|
43
|
Wu XM, Tan RX. Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 2019; 36:788-809. [DOI: 10.1039/c8np00041g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This highlight reviews the interaction processes between gut microbiota and ethnomedicine constituents, which may conceptualize future therapeutic strategies.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- State Key Laboratory of Pharmaceutical Biotechnology
| |
Collapse
|
44
|
Gao L, Li J, Zhou Y, Huang X, Qin X, Du G. Effects of Baicalein on Cortical Proinflammatory Cytokines and the Intestinal Microbiome in Senescence Accelerated Mouse Prone 8. ACS Chem Neurosci 2018; 9:1714-1724. [PMID: 29668250 DOI: 10.1021/acschemneuro.8b00074] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Baicalein, a flavonoid derived from the roots of Scutellariae baicalensis Georgi, has shown health benefits for an array of human diseases including dementia. The senescence-accelerated mouse prone 8 (SAMP8) strain is extensively used as a senile dementia model. To further investigate the effects of baicalein in SAMP8 mice, behavioral testing, biochemical detection, and gut microbiota analysis were performed. The results demonstrated that treatment with baicalein ameliorated the senescence status of the SAMP8 mice, as manifested by reducing the grading score of senescence. Additionally, baicalein improved the cognitive functions of the SAMP8 mice, including spatial learning and memory abilities, object recognition memory, and olfactory memory. Furthermore, baicalein significantly inhibited the release of proinflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α) in the brain cortex of SAMP8 mice. Gut microbiota analysis revealed that treatment with baicalein markedly altered the abundance of six genera in SAMP8 mice. Correlation analysis indicated that the abundances of Mucispirillum, Bacteroides, and Sutterella were negatively correlated with cognitive abilities and that Christensenellaceae was positively correlated with cognition. Furthermore, the abundance of Christensenellaceae was negatively correlated with the levels of IL-6 and TNF-α, while [ Prevotella] was positively correlated with the levels of IL-1β and IL-6. In addition, Mucispirillum and Bacteroides were positively correlated with the level of IL-6 in the brain cortex. These data indicated that baicalein ameliorates senescence status and improves cognitive function in SAMP8 mice and that this effect might be attributable to suppression of cortical proinflammatory cytokines and modulation of the intestinal microbiome.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Jiaqi Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
- Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China
| |
Collapse
|
45
|
Wang J, Liu Y, Cheng X, Zhang X, Liu F, Liu G, Qiao S, Ni M, Zhou W, Zhang Y, Li F. The Effects of LW-AFC on the Hippocampal Transcriptome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 57:227-240. [PMID: 28222521 DOI: 10.3233/jad-161079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) strain is considered a robust experimental model for developing preventative and therapeutic treatments for Alzheimer's disease (AD), a neurodegenerative disease which cannot be effectively prevented, halted, or cured. Our previous studies showed that LW-AFC, a new formula derived from the classical traditional Chinese medicinal prescription Liuwei Dihuang decoction, ameliorates cognitive deterioration in PrP-hAβPPswe/PS1ΔE9 transgenic mice and SAMP8 mice. This study aims to investigate the mechanism that mediates how LW-AFC improves cognitive deficit on the basis of the transcriptome. We conducted a genome-wide survey of gene expression in the hippocampus in mice from the senescence accelerated mouse resistant 1 (SAMR1) strain, from SAMP8 and from LW-AFC treated SAMP8. The results showed that LW-AFC reversed the transcriptome in the hippocampus of SAMP8 mice. The specific investigation of altered gene expression in subtypes defined by cognitive profiles indicated that the systemic lupus erythematosus pathway, spliceosomes, amyotrophic lateral sclerosis, and the insulin signaling were involved in the improvement of cognitive ability by LW-AFC. The expression of genes Enpp2, Etnk1, Epdr1, and Gm5900 in the hippocampus were correlated with that of LW-AFC's ameliorating cognitive impairment in SAMP8 mice. Because LW-AFC is composed of polysaccharides, glycosides, and oligosaccharides, we infer that LW-AFC has direct or indirect effects on altering gene expressions and regulating pathways in the hippocampus of SAMP8 mice. These data are helpful for the enhanced identification of LW-AFC as new therapeutic modalities to AD.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaorui Cheng
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaorui Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Gang Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Shanyi Qiao
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenxia Zhou
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fei Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
46
|
Xu J, Chen HB, Li SL. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med Res Rev 2017; 37:1140-1185. [PMID: 28052344 DOI: 10.1002/med.21431] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery.
Collapse
Affiliation(s)
- Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P.R. China.,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, 210028, P.R. China
| |
Collapse
|