1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Ramalingam M, Jang S, Hwang J, Cho HH, Kim BC, Jeong HS. Neural-induced human adipose tissue-derived stem cell secretome exerts neuroprotection against rotenone-induced Parkinson's disease in rats. Stem Cell Res Ther 2025; 16:193. [PMID: 40254594 PMCID: PMC12010609 DOI: 10.1186/s13287-025-04306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a multifactorial disease that involves genetic and environmental factors, which play an essential role in the pathogenesis of PD. Mesenchymal stem cells release a set of bioactive molecules called "secretome" that regulates intercellular communication and cargo transfer in signaling pathways for PD treatment. Thus, this study aimed to evaluate the neuroprotective effects of neural-induced human adipose tissue-derived stem cell (NI-hADSC)-conditioned medium (NI-hADSC-CM) and its exosomes (NI-hADSC-Exo) in a rotenone (ROT)-induced model of PD in rats. METHODS The NI-hADSC-CM was collected from NI-hADSC after 14 days of neural differentiation, and its NI-hADSC-Exo were isolated using a tangential flow filtration system. ROT (1 mg/kg) was subcutaneously administered for 28 days to establish a model of PD in rats. The treatment of NI-hADSC-CM or NI-hADSC-Exo was intravenously injected on days 15, 18, 21, 24, and 27. Animal behavioral effects were explored via a rotarod test. After 28 days, histological and western blot analyses were performed to investigate the tyrosine hydroxylase (TH), α-synuclein (α-syn) aggregation, and downstream signaling pathways for experimental validation. RESULTS NI-hADSC-Exo improved the motor balance and coordination skills against ROT toxicity. ROT reproduced the pathological features of PD, such as a decrease in TH-positive dopaminergic neurons and an increase in α-syn aggregation and glial fibrillary acidic protein (GFAP)-positive cells. NI-hADSC-CM and NI-hADSC-Exo improved the TH expression, decreased the Triton X-100 soluble and insoluble oligomeric p-S129 α-syn, and influenced the differential reactivity to astrocytes and microglia. Secretome treatment could reverse the ROT-induced damages in the neuronal structural and functional proteins, mitochondrial apoptosis, and caspase cascade. The treatment of NI-hADSC-CM and NI-hADSC-Exo ameliorated the ROT toxicity-induced serine-threonine protein kinase dysregulation and autophagy impairment to clear the aggregated α-syn. CONCLUSIONS NI-hADSC-CM and NI-hADSC-Exo significantly exerted neuroprotection by decreasing α-syn toxicity, inhibiting neuroinflammation and apoptosis, restoring autophagic flux properties, and promoting the neuronal function in ROT-injected rats; however, the influence of these treatments on signaling pathways differed slightly between the midbrain and striatum regions. Targeting α-syn degradation pathways provides a novel strategy to elucidate the beneficial effects of MSC secretome and future safe cell-free treatments for PD.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
3
|
Bhalala OG, Beamish J, Eratne D, Summerell P, Porter T, Laws SM, Kang MJY, Huq AJ, Chiu WH, Cadwallader C, Walterfang M, Farrand S, Evans AH, Kelso W, Churilov L, Watson R, Yassi N, Velakoulis D, Loi SM. Blood biomarker profiles in young-onset neurocognitive disorders: A cohort study. Aust N Z J Psychiatry 2025; 59:378-388. [PMID: 39825484 PMCID: PMC11924289 DOI: 10.1177/00048674241312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses. METHODS Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease (n = 18), non-Alzheimer's disease neurodegeneration (n = 23) or primary psychiatric disorders (n = 24). Levels of neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181, apolipoprotein E genotype and late-onset Alzheimer's disease polygenic risk scores were determined. Information-theoretic model selection identified discriminatory factors. RESULTS Neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181 levels were elevated in early-onset Alzheimer's disease compared with other diagnostic categories. A multi-omic model selection identified that a combination of cognitive and blood biomarkers, but not the polygenic risk score, discriminated between early-onset Alzheimer's disease and primary psychiatric disorders (area under the curve ⩾ 0.975, 95% confidence interval: 0.825-1.000). Phosphorylated-tau 181 alone significantly discriminated between early-onset Alzheimer's disease and non-Alzheimer's disease neurodegeneration causes (area under the curve = 0.950, 95% confidence interval: 0.877-1.00). DISCUSSION Discriminating between early-onset Alzheimer's disease, non-Alzheimer's disease neurodegeneration and primary psychiatric disorders causes of young-onset neurocognitive symptoms is possible by combining cognitive profiles with blood biomarkers. These results support utilizing blood biomarkers for the work-up of young-onset neurocognitive symptoms and highlight the need for the development of a young-onset Alzheimer's disease-specific polygenic risk score.
Collapse
Affiliation(s)
- Oneil G Bhalala
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Beamish
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Summerell
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Matthew JY Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Aamira J Huq
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wei-Hsuan Chiu
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Claire Cadwallader
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Sarah Farrand
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew H Evans
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leonid Churilov
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha M Loi
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Sheth U, Öijerstedt L, Heckman MG, White LJ, Heuer HW, Lario Lago A, Forsberg LK, Faber KM, Foroud TM, Rademakers R, Ramos EM, Appleby BS, Bozoki AC, Darby RR, Dickerson BC, Domoto-Reilly K, Galasko DR, Ghoshal N, Graff-Radford NR, Grant IM, Hales CM, Hsiung GYR, Huey ED, Irwin D, Kwan JY, Litvan I, Mackenzie IR, Masdeu JC, Mendez MF, Onyike CU, Pascual B, Pressman PS, Roberson ED, Snyder A, Tartaglia MC, Seeley WW, Dickson DW, Rosen HJ, Boeve BF, Boxer AL, Petrucelli L, Gendron TF. Comprehensive cross-sectional and longitudinal comparisons of plasma glial fibrillary acidic protein and neurofilament light across FTD spectrum disorders. Mol Neurodegener 2025; 20:30. [PMID: 40075459 PMCID: PMC11905702 DOI: 10.1186/s13024-025-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Therapeutic development for frontotemporal dementia (FTD) is hindered by the lack of biomarkers that inform susceptibility/risk, prognosis, and the underlying causative pathology. Blood glial fibrillary acidic protein (GFAP) has garnered attention as a FTD biomarker. However, investigations of GFAP in FTD have been hampered by symptomatic and histopathologic heterogeneity and small cohort sizes contributing to inconsistent findings. Therefore, we evaluated plasma GFAP as a FTD biomarker and compared its performance to that of neurofilament light (NfL) protein, a leading FTD biomarker. METHODS We availed ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources to conduct a comprehensive cross-sectional and longitudinal examination of the susceptibility/risk, prognostic, and predictive performance of GFAP and NfL in the largest series of well-characterized presymptomatic FTD mutation carriers and participants with sporadic or familial FTD syndromes. Utilizing single molecule array technology, we measured GFAP and NfL in plasma from 161 controls, 127 presymptomatic mutation carriers, 702 participants with a FTD syndrome, and 67 participants with mild behavioral and/or cognitive changes. We used multivariable linear regression and Cox proportional hazard models adjusted for co-variates to examine the biomarker utility of baseline GFAP and NfL concentrations or their rates of change. RESULTS Compared to controls, GFAP and NfL were elevated in each FTD syndrome but GFAP, unlike NfL, poorly discriminated controls from participants with mild symptoms. Similarly, both baseline GFAP and NfL were higher in presymptomatic mutation carriers who later phenoconverted, but NfL better distinguished non-converters from phenoconverters. We additionally observed that GFAP and NfL were associated with disease severity indicators and survival, but NfL far outperformed GFAP. Nevertheless, we validated findings that the GFAP/NfL ratio may discriminate frontotemporal lobar degeneration with tau versus TDP-43 pathology. CONCLUSIONS Our head-to-head comparison of plasma GFAP and NfL as biomarkers for FTD indicate that NfL consistently outmatched GFAP as a prognostic and predictive biomarker for participants with a FTD syndrome, and as a susceptibility/risk biomarker for people at genetic risk of FTD. Our findings underscore the need to include leading biomarkers in investigations evaluating new biomarkers if the field is to fully ascertain their performance and clinical value.
Collapse
Affiliation(s)
- Udit Sheth
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Linn Öijerstedt
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Argentina Lario Lago
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Leah K Forsberg
- Department of Neurology, Mayo Clinic, 200 First St, SW, Rochester, MN, 55905, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, The National Centralized Repository for Alzheimer's Disease and Related Dementias, 351 W. 10Th St TK-217, Indianapolis, IN, 46202, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, The National Centralized Repository for Alzheimer's Disease and Related Dementias, 351 W. 10Th St TK-217, Indianapolis, IN, 46202, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- VIB Center for Molecular Neurology, VIB, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Brian S Appleby
- Department of Neurology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University, 1161 21St Ave S, Nashville, TN, 37212, USA
| | - Bradford C Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Boston, MA, 02129, USA
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195-6465, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, 9500 Gilman Drive, La Jolla, CA, 92037-0948, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, 660 South Euclid, St. Louis, MO, 63110, USA
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ian M Grant
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern Feinberg School of Medicine, 300 E. Superior, Tarry 8-715, Chicago, IL, 60610, USA
| | - Chadwick M Hales
- Center for Neurodegenerative Disease, Department of Neurology, Emory University School of Medicine and Emory, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, University of British Columbia, S151-2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - David Irwin
- Department of Neurology and Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Justin Y Kwan
- Disorders and Stroke, National Institute of Neurological, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Neurological Institute, Weill Cornell Medicine, 6560 Fannin St, Houston, TX, 77030, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Reed Neurological Research Center, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist Neurological Institute, Weill Cornell Medicine, 6560 Fannin St, Houston, TX, 77030, USA
| | - Peter S Pressman
- Department of Neurology, University of Colorado School of Medicine, 12631 East 17Th Avenue, Aurora, CO, 80045, USA
- Layton Aging and Alzheimer's Disease Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA
| | - Allison Snyder
- Disorders and Stroke, National Institute of Neurological, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - M Carmela Tartaglia
- Division of Neurology, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 6 Queen's Park Crescent West, Third Floor, Toronto, ON, M5S 3H2, Canada
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
- Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 First St, SW, Rochester, MN, 55905, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 91358, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Taweephol T, Pongpitakmetha T, Booncharoen K, Khieukhajee J, Luechaipanit W, Haethaisong T, Chongsuksantikul A, Likitjaroen Y, Thanapornsangsuth P. Short communication: Evaluating roles of plasma glial fibrillary acidic protein as Alzheimer's disease biomarker in real-world multi-center memory clinics in Thailand. J Alzheimers Dis 2025; 104:325-330. [PMID: 39924865 DOI: 10.1177/13872877251316546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The roles of reactive astrocytes in Alzheimer's disease (AD) and the correlation between plasma glial fibrillary acidic protein (GFAP) and amyloid-β are emerging. Among 133 patients with cognitive complaints from multi-center memory clinics in Thailand, 73 had AD as defined either by cerebrospinal fluid core biomarkers or amyloid PET. Plasma GFAP demonstrated an AUC of 0.74 (95%CI: 0.65-0.83) for detecting AD and showed large effects on identifying AD status with Cohen's d = 0.81 (95%CI 0.44-1.18). LOESS regression illustrated that plasma GFAP increased from the early stages of AD. Plasma GFAP has potential applications across diverse populations.
Collapse
Affiliation(s)
- Thanapoom Taweephol
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kittithatch Booncharoen
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Neurology Center, Phyathai 1 Hospital, Bangkok, Thailand
| | - Jedsada Khieukhajee
- Department of Neurology, Neurological Institute of Thailand, Bangkok, Thailand
| | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thanaporn Haethaisong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Adipa Chongsuksantikul
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Yuttachai Likitjaroen
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poosanu Thanapornsangsuth
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
7
|
Cotelli MS, Tarantino B, Tan K, Huber H, Cantoni V, Bracca V, Gasparotti R, Premi E, Logroscino G, Benedet AL, Blennow K, Zetterberg H, Grassi M, Ashton NJ, Borroni B. Predicting survival rate by plasma biomarkers and clinical variables in syndromes associated with frontotemporal lobar degeneration. Alzheimers Dement 2025; 21:e14558. [PMID: 39936177 PMCID: PMC11815202 DOI: 10.1002/alz.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Modeling the survival rate in syndromes associated with frontotemporal lobar degeneration (FTLD) is essential to assess disease trajectories. METHODS In 262 patients with FTLD, we considered plasma neurofilament light chain (NfL), glial fibrillary acidic protein, brain-derived tau, phosphorylated tau217 and amyloid beta (Aβ42/Aβ40). The FTLD Survival Score (FTLD-SS) was calculated by the β coefficients of the variables independently associated with survival rate. RESULTS Increased plasma NfL levels (p < 0.001), older age at evaluation (p = 0.002), positive family history (p = 0.04), and motor phenotypes (p < 0.001) were associated with reduced survival. The predictive validity of FTLD-SS was 0.75 (95% confidence interval, 0.59-0.91) at 1 year. DISCUSSION Survival rate in FTLD is shaped by intensity of neurodegeneration (using plasma NfL as proxy) together with certain clinical variables. The FTLD-SS may serve as a simple tool for survival rate estimation and for patient stratification in clinical trials. HIGHLIGHTS Plasma neurofilament light chain and clinical variables can predict survival in frontotemporal lobar degeneration (FTLD)-associated syndromes. FTLD Survival Score (FTLD-SS), computed with survival predictors, may serve as a simple tool for patient stratification. FTLD-SS is associated with greater atrophy in frontal and putamen areas.
Collapse
Affiliation(s)
| | - Barbara Tarantino
- Department of Brain and Behavioural SciencesMedical and Genomic Statistics UnitUniversity of PaviaPaviaItaly
| | - Kübra Tan
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hanna Huber
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Valentina Cantoni
- Department of Continuity of Care and FrailtyASST Spedali CiviliBresciaItaly
| | - Valeria Bracca
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | | | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging BrainPia Fondazione Cardinale Giovanni PanicoUniversity of Bari‐Aldo MoroBariItaly
| | - Andrea L. Benedet
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- Paris Brain InstituteICMPitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Mario Grassi
- Department of Brain and Behavioural SciencesMedical and Genomic Statistics UnitUniversity of PaviaPaviaItaly
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Banner Sun Health Research InstituteSun CityArizonaUSA
- Banner Alzheimer's Institute and University of ArizonaPhoenixArizonaUSA
| | - Barbara Borroni
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| |
Collapse
|
8
|
Eratne D, Kang MJY, Lewis C, Dang C, Malpas C, Ooi S, Brodtmann A, Darby D, Zetterberg H, Blennow K, Berk M, Dean O, Bousman C, Thomas N, Everall I, Pantelis C, Wannan C, Cicognola C, Hansson O, Janelidze S, Santillo AF, Velakoulis D. Plasma neurofilament light outperforms glial fibrillary acidic protein in differentiating behavioural variant frontotemporal dementia from primary psychiatric disorders. J Neurol Sci 2024; 467:123291. [PMID: 39577322 DOI: 10.1016/j.jns.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE Timely, accurate distinction between behavioural variant frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD) is a clinical challenge. Blood biomarkers such as neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have shown promise. Prior work has shown NfL helps distinguish FTD from PPD. Few studies have assessed NfL together with GFAP. METHODS We investigated plasma GFAP and NfL levels in participants with bvFTD, bipolar affective disorder (BPAD), major depressive disorder (MDD), treatment-resistant schizophrenia (TRS), healthy controls (HC), adjusting for age and sex. We compared ability of GFAP and NfL to distinguish bvFTD from PPD. RESULTS Plasma GFAP levels were significantly (all p < 0.001) elevated in bvFTD (n = 22, mean (M) = 273 pg/mL) compared to BPAD (n = 121, M = 96 pg/mL), MDD (n = 42, M = 105 pg/mL), TRS (n = 82, M = 67.9 pg/mL), and HC (n = 120, M = 76.8 pg/mL). GFAP distinguished bvFTD from all PPD with an area under the curve (AUC) of 0.85, 95 % confidence interval [0.76, 0.95]. The optimal cut-off of 105 pg/mL was associated with 73 % specificity and 86 % sensitivity. NfL had AUC 0.95 [0.91, 0.99], 13.3 pg/mL cut-off, 88 % specificity, 86 % sensitivity, and was superior to GFAP (p = 0.02863) and combination of GFAP and NfL (p = 0.04726). CONCLUSIONS This study found elevated GFAP levels in bvFTD compared to a large cohort of PPD, but NfL levels exhibited better performance in this distinction. These findings extend the literature on GFAP in bvFTD and build evidence for plasma NfL as a useful biomarker to assist with distinguishing bvFTD from PPD. Utilisation of NfL may improve timely and accurate diagnosis of bvFTD.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia; The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Matthew J Y Kang
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia
| | - Courtney Lewis
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Christa Dang
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia; National Ageing Research Institute, 34-54 Poplar Rd, Parkville, VIC 3052, Australia; Department of General Practice, University of Melbourne, Grattan St Parkville VIC, 3052 Melbourne, Australia
| | - Charles Malpas
- Department of Medicine, Royal Melbourne Hospital, Grattan St Parkville, VIC 3052, Melbourne, Australia; University of Melbourne, Grattan St Parkville, VIC, Melbourne 3052, Australia
| | - Suyi Ooi
- The Florey Institute, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Amy Brodtmann
- School of Translational Medicine, Monash University, Melbourne, Australia; Department of Neurology, RMH, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne 3050, Australia
| | - David Darby
- School of Translational Medicine, Monash University, Melbourne, Australia; Department of Neurology, RMH, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne 3050, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Universitetsplatsen 1, 405 30, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal SE-43180, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Universitetsplatsen 1, 405 30, Sweden
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Chad Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | | | | | - Chris Pantelis
- Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia; Western Centre for Health Research & Education, University of Melbourne & Western Health, Sunshine Hospital, St Albans, Victoria, Australia; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Melbourne, Victoria, Australia
| | - Cassandra Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Parkville, VIC, Australia
| | - Claudia Cicognola
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia
| |
Collapse
|
9
|
Peretti DE, Boccalini C, Ribaldi F, Scheffler M, Marizzoni M, Ashton NJ, Zetterberg H, Blennow K, Frisoni GB, Garibotto V. Association of glial fibrillary acid protein, Alzheimer's disease pathology and cognitive decline. Brain 2024; 147:4094-4104. [PMID: 38940331 PMCID: PMC11629700 DOI: 10.1093/brain/awae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Increasing evidence shows that neuroinflammation is a possible modulator of tau spread effects on cognitive impairment in Alzheimer's disease. In this context, plasma levels of the glial fibrillary acidic protein (GFAP) have been suggested to have a robust association with Alzheimer's disease pathophysiology. This study aims to assess the correlation between plasma GFAP and Alzheimer's disease pathology, and their synergistic effect on cognitive performance and decline. A cohort of 122 memory clinic subjects with amyloid and tau PET, MRI scans, plasma GFAP and Mini-Mental State Examination (MMSE) was included in the study. A subsample of 94 subjects had a follow-up MMSE score at ≥1 year after baseline. Regional and voxel-based correlations between Alzheimer's disease biomarkers and plasma GFAP were assessed. Mediation analyses were performed to evaluate the effects of plasma GFAP on the association between amyloid and tau PET and between tau PET and cognitive impairment and decline. GFAP was associated with increased tau PET ligand uptake in the lateral temporal and inferior temporal lobes in a strong left-sided pattern independently of age, sex, education, amyloid and APOE status (β = 0.001, P < 0.01). The annual rate of MMSE change was significantly and independently correlated with both GFAP (β = 0.006, P < 0.01) and global tau standardized uptake value ratio (β = 4.33, P < 0.01), but not with amyloid burden. Partial mediation effects of GFAP were found on the association between amyloid and tau pathology (13.7%) and between tau pathology and cognitive decline (17.4%), but not on global cognition at baseline. Neuroinflammation measured by circulating GFAP is independently associated with tau Alzheimer's disease pathology and with cognitive decline, suggesting neuroinflammation as a potential target for future disease-modifying trials targeting tau pathology.
Collapse
Grants
- Private Foundation of Geneva University Hospitals
- Association Suisse pour la Recherche sur la Maladie d'Alzheimer, Genève
- Fondation Segré, Genève
- Race Against Dementia Foundation, London, UK
- Fondation Child Care, Genève
- Fondation Edmond J. Safra, Genève
- Fondation Minkoff, Genève
- Fondazione Agusta, Lugano
- McCall Macbain Foundation, Canada
- Nicole et René Keller, Genève
- Fondation AETAS, Genève
- Association Suisse pour la Recherche sur la Maladie d’Alzheimer, Genève
Collapse
Affiliation(s)
- Débora E Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre and Faculty of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre and Faculty of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva 1205, Switzerland
- Geneva Memory Centre, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
| | - Nicholas J Ashton
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger 4011, Norway
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 413 90, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
- Mental Health & Biomedical Research Unit for Dementia, Maudsley NIHR Biomedical Research Centre, London SE5 8AF, UK
| | - Henrik Zetterberg
- Mental Health & Biomedical Research Unit for Dementia, Maudsley NIHR Biomedical Research Centre, London SE5 8AF, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
- Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Units 1501–1502, Hong Kong 1512–1518, China
- Wisconsin Alzheimer’s Disease Research Centre, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
- Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Sorbonne University, Paris 75013, France
- Neurodegenerative Disorder Research Centre, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230001, China
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva 1205, Switzerland
- Geneva Memory Centre, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre and Faculty of Medicine, University of Geneva, Geneva 1205, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva 1205, Switzerland
- Centre for Biomedical Imaging, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
10
|
Liu Y, Wang J, Ning F, Wang G, Xie A. Longitudinal correlation of cerebrospinal fluid GFAP and the progression of cognition decline in different clinical subtypes of Parkinson's disease. Clin Transl Sci 2024; 17:e70111. [PMID: 39676304 DOI: 10.1111/cts.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed mainly in astrocytes of the central nervous system (CNS), a potential biomarker of cognitive decline in Parkinson's disease (PD). The central motor subtypes of PD include tremor-dominant (TD), postural instability and gait disorder (PIGD), and indeterminate subtypes, whose different course of disease requires the development of biomarkers that can predict progression based on motor subtypes. In this study, we aimed to assess the predictive value of cerebrospinal fluid (CSF) GFAP for PD motor subtypes in PD. Two hundred and sixteen PD patients were recruited in our study from the progression markers initiative. Patients were subgrouped into TD, PIGD, and indeterminate subtypes. Longitudinal relationships between baseline CSF GFAP and cognitive function and CSF biomarkers were assessed using linear mixed-effects models. Cox regression was used to detect cognitive progression in TD patients. The baseline and longitudinal increases in CSF GFAP were associated with a greater decline in episodic memory, CSF α-syn, and a greater increase of CSF NfL in TD and TD-male subtypes. Cox regression showed that higher baseline CSF GFAP levels were corrected with a higher risk of developing mild cognitive impairment (MCI) over a 4-year period in the PD with normal cognition (NC) group (adjusted HR = 1.607, 95% CI 1.907-2.354, p = 0.01). CSF GFAP might be a promising predictor of cognition decline in TD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangbo Ning
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
12
|
Schöll M, Verberk IMW, Del Campo M, Delaby C, Therriault J, Chong JR, Palmqvist S, Alcolea D. Challenges in the practical implementation of blood biomarkers for Alzheimer's disease. THE LANCET. HEALTHY LONGEVITY 2024; 5:100630. [PMID: 39369727 DOI: 10.1016/j.lanhl.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
Blood biomarkers have emerged as accessible, cost-effective, and highly promising tools for advancing the diagnostics of Alzheimer's disease. However, transitioning from cerebrospinal fluid biomarkers to blood biomarkers-eg, to verify amyloid β pathology-requires careful consideration. This Series paper highlights the main challenges in the implementation of blood biomarkers for Alzheimer's disease in different possible contexts of use. Despite the robustness of measuring blood biomarker concentrations, the widespread adoption of blood biomarkers requires rigorous standardisation efforts to address inherent challenges in diverse contexts of use. The challenges include understanding the effect of pre-analytical and analytical conditions, potential confounding factors, and comorbidities that could influence outcomes of blood biomarkers and their use in diverse populations. Additionally, distinct scenarios present their own specific challenges. In memory clinics, the successful integration of blood biomarkers in diagnostic tests will require well-established diagnostic accuracy and comprehensive assessments of the effect of blood biomarkers on the diagnostic confidence and patient management of clinicians. In primary care settings, and even more when implemented in population-based screening programmes for which no experience with any biomarkers for Alzheimer's disease currently exists, the implementation of blood biomarkers will be challenged by the need for education of primary care clinical staff and clear guidelines. However, despite the challenges, blood biomarkers hold great promise for substantially enhancing the diagnostic accuracy and effectively streamlining referral processes, leading to earlier diagnosis and access to treatments. The ongoing efforts that are shaping the integration of blood biomarkers across diverse clinical settings pave the way towards precision medicine in Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK; Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marta Del Campo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Constance Delaby
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health Systems, Singapore
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
13
|
Chadarevian JP, Hasselmann J, Lahian A, Capocchi JK, Escobar A, Lim TE, Le L, Tu C, Nguyen J, Kiani Shabestari S, Carlen-Jones W, Gandhi S, Bu G, Hume DA, Pridans C, Wszolek ZK, Spitale RC, Davtyan H, Blurton-Jones M. Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy. Neuron 2024; 112:2686-2707.e8. [PMID: 38897209 DOI: 10.1016/j.neuron.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Alina Lahian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sunil Gandhi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Guojun Bu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - David A Hume
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Clare Pridans
- University of Edinburgh, University of Edinburgh Center for Inflammation Research, Edinburgh, UK
| | | | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Saraceno C, Cervellati C, Trentini A, Crescenti D, Longobardi A, Geviti A, Bonfiglio NS, Bellini S, Nicsanu R, Fostinelli S, Mola G, Riccetti R, Moretti DV, Zanetti O, Binetti G, Zuliani G, Ghidoni R. Serum Beta-Secretase 1 Activity Is a Potential Marker for the Differential Diagnosis between Alzheimer's Disease and Frontotemporal Dementia: A Pilot Study. Int J Mol Sci 2024; 25:8354. [PMID: 39125924 PMCID: PMC11313328 DOI: 10.3390/ijms25158354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two major neurodegenerative diseases causing dementia. Due to similar clinical phenotypes, differential diagnosis is challenging without specific biomarkers. Beta-site Amyloid Precursor Protein cleaving enzyme 1 (BACE1) is a β-secretase pivotal in AD pathogenesis. In AD and mild cognitive impairment subjects, BACE1 activity is increased in brain/cerebrospinal fluid, and plasma levels appear to reflect those in the brain. In this study, we aim to evaluate serum BACE1 activity in FTD, since, to date, there is no evidence about its role. The serum of 30 FTD patients and 30 controls was analyzed to evaluate (i) BACE1 activity, using a fluorescent assay, and (ii) Glial Fibrillary Acid Protein (GFAP) and Neurofilament Light chain (NfL) levels, using a Simoa kit. As expected, a significant increase in GFAP and NfL levels was observed in FTD patients compared to controls. Serum BACE1 activity was not altered in FTD patients. A significant increase in serum BACE1 activity was shown in AD vs. FTD and controls. Our results support the hypothesis that serum BACE1 activity is a potential biomarker for the differential diagnosis between AD and FTD.
Collapse
Affiliation(s)
- Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Natale Salvatore Bonfiglio
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Silvia Fostinelli
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Gianmarco Mola
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Raffaella Riccetti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Davide Vito Moretti
- Alzheimer’s Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Orazio Zanetti
- Alzheimer’s Research Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Giuliano Binetti
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| |
Collapse
|
15
|
Premi E, Diano M, Mattioli I, Altomare D, Cantoni V, Bocchetta M, Gasparotti R, Buratti E, Pengo M, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, Heller C, van Swieten JC, Jiskoot LC, Seelaar H, Moreno F, Sanchez-Valle R, Galimberti D, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Finger E, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tiraboschi P, Santana I, Pasquier F, Synofzik M, Levin J, Otto M, Sorbi S, Rohrer JD, Borroni B. Impaired glymphatic system in genetic frontotemporal dementia: a GENFI study. Brain Commun 2024; 6:fcae185. [PMID: 39015769 PMCID: PMC11249959 DOI: 10.1093/braincomms/fcae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
The glymphatic system is an emerging target in neurodegenerative disorders. Here, we investigated the activity of the glymphatic system in genetic frontotemporal dementia with a diffusion-based technique called diffusion tensor image analysis along the perivascular space. We investigated 291 subjects with symptomatic or presymptomatic frontotemporal dementia (112 with chromosome 9 open reading frame 72 [C9orf72] expansion, 119 with granulin [GRN] mutations and 60 with microtubule-associated protein tau [MAPT] mutations) and 83 non-carriers (including 50 young and 33 old non-carriers). We computed the diffusion tensor image analysis along the perivascular space index by calculating diffusivities in the x-, y- and z-axes of the plane of the lateral ventricle body. Clinical stage and blood-based markers were considered. A subset of 180 participants underwent cognitive follow-ups for a total of 640 evaluations. The diffusion tensor image analysis along the perivascular space index was lower in symptomatic frontotemporal dementia (estimated marginal mean ± standard error, 1.21 ± 0.02) than in old non-carriers (1.29 ± 0.03, P = 0.009) and presymptomatic mutation carriers (1.30 ± 0.01, P < 0.001). In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity (β = -1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image analysis along the perivascular space and higher plasma neurofilament light chain was reported (β = -0.28, P = 0.063). Analysis of longitudinal data demonstrated that worsening of disease severity was faster in patients with low diffusion tensor image analysis along the perivascular space at baseline than in those with average (P = 0.009) or high (P = 0.006) diffusion tensor image analysis along the perivascular space index. Using a non-invasive imaging approach as a proxy for glymphatic system function, we demonstrated glymphatic system abnormalities in the symptomatic stages of genetic frontotemporal dementia. Such measures of the glymphatic system may elucidate pathophysiological processes in human frontotemporal dementia and facilitate early phase trials of genetic frontotemporal dementia.
Collapse
Affiliation(s)
- Enrico Premi
- Stroke Unit, ASST Spedali Civili Brescia, Brescia, 25123, Italy
| | - Matteo Diano
- Department of Psychology, University of Torino, Turin, 10124, Italy
| | - Irene Mattioli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Daniele Altomare
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Valentina Cantoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UB8 3PN, UK
| | | | - Emanuele Buratti
- International Centre for Genetic Enginneering and Biotechnology, Trieste, 34149, Italy
| | - Marta Pengo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 2040 3000, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, 20014, Spain
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, 08036, Spain
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, 20122, Italy
- Centro Dino Ferrari, University of Milan, Milan, 20122, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Quebec City, G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, 17177, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, 17177, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON N6A 5A5, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX1 4BH, UK
- Department of Brain Sciences, Imperial College London, London, SW7 2BX, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M13 9GB, UK
- Department of Geriatric Medicine, University of Duisburg-Essen, Duisburg, 47057, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, 47057, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, H3H 2R9, Québec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, H3H 2R9, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, Paris, 75013, France
- Centre de Référence des Démences Rares ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, 75651, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, 5783, France
| | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, 3000-214, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, 3000-214, Portugal
| | - Florence Pasquier
- University of Lille, Lille, 59000, France
- Inserm 1172, Lille, Lille, 59000, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, 59000, France
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, 72074, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, 80539, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, 89081, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, 50139, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, 50124, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N, UK
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy
- Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia, Brescia, 25123, Italy
| |
Collapse
|
16
|
Park Y, KC N, Paneque A, Cole PD. Tau, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain as Brain Protein Biomarkers in Cerebrospinal Fluid and Blood for Diagnosis of Neurobiological Diseases. Int J Mol Sci 2024; 25:6295. [PMID: 38928000 PMCID: PMC11204270 DOI: 10.3390/ijms25126295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.
Collapse
Affiliation(s)
- Yongkyu Park
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Nirajan KC
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Alysta Paneque
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Peter D. Cole
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Altomare D, Libri I, Alberici A, Rivolta J, Padovani A, Ashton NJ, Zetterberg H, Blennow K, Borroni B. Plasma biomarkers increase diagnostic confidence in patients with Alzheimer's disease or frontotemporal lobar degeneration. Alzheimers Res Ther 2024; 16:107. [PMID: 38734612 PMCID: PMC11088144 DOI: 10.1186/s13195-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center. METHODS Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aβ42, Aβ42/Aβ40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information. RESULTS Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis. CONCLUSIONS In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.
Collapse
Affiliation(s)
- Daniele Altomare
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, UCL, London, W1T 7NF, UK
- Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
- Department of Continuity of Care and Frailty, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy.
| |
Collapse
|
18
|
Gogishvili D, Illes-Toth E, Harris MJ, Hopley C, Teunissen CE, Abeln S. Structural flexibility and heterogeneity of recombinant human glial fibrillary acidic protein (GFAP). Proteins 2024; 92:649-664. [PMID: 38149328 DOI: 10.1002/prot.26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eva Illes-Toth
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Matthew J Harris
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Christopher Hopley
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Che N, Ou R, Li C, Zhang L, Wei Q, Wang S, Jiang Q, Yang T, Xiao Y, Lin J, Zhao B, Chen X, Shang H. Plasma GFAP as a prognostic biomarker of motor subtype in early Parkinson's disease. NPJ Parkinsons Dis 2024; 10:48. [PMID: 38429295 PMCID: PMC10907600 DOI: 10.1038/s41531-024-00664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Parkinson's disease (PD) is a heterogeneous movement disorder with different motor subtypes including tremor dominant (TD), indeterminate and postural instability, and gait disturbance (PIGD) motor subtypes. Plasma glial fibrillary acidic protein (GFAP) was elevated in PD patients and may be regarded as a biomarker for motor and cognitive progression. Here we explore if there was an association between plasma GFAP and different motor subtypes and whether baseline plasma GFAP level can predict motor subtype conversion. Patients with PD classified as TD, PIGD or indeterminate subtypes underwent neurological evaluation at baseline and 2 years follow-up. Plasma GFAP in PD patients and controls were measured using an ultrasensitive single molecule array. The study enrolled 184 PD patients and 95 control subjects. Plasma GFAP levels were significantly higher in the PIGD group compared to the TD group at 2-year follow-up. Finally, 45% of TD patients at baseline had a subtype shift and 85% of PIGD patients at baseline remained as PIGD subtypes at 2 years follow-up. Baseline plasma GFAP levels were significantly higher in TD patients converted to PIGD than non-converters in the baseline TD group. Higher baseline plasma GFAP levels were significantly associated with the TD motor subtype conversion (OR = 1.283, P = 0.033) and lower baseline plasma GFAP levels in PIGD patients were likely to shift to TD and indeterminate subtype (OR = 0.551, P = 0.021) after adjusting for confounders. Plasma GFAP may serve as a clinical utility biomarker in differentiating motor subtypes and predicting baseline motor subtypes conversion in PD patients.
Collapse
Affiliation(s)
- Ningning Che
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Hsiao-Nakamoto J, Chiu CL, VandeVrede L, Ravi R, Vandenberg B, De Groot J, Tsogtbaatar B, Fang M, Auger P, Gould NS, Marchioni F, Powers CA, Davis SS, Suh JH, Alkabsh J, Heuer HW, Lago AL, Scearce-Levie K, Seeley WW, Boeve BF, Rosen HJ, Berger A, Tsai R, Di Paolo G, Boxer AL, Bhalla A, Huang F. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579529. [PMID: 38405775 PMCID: PMC10888909 DOI: 10.1101/2024.02.09.579529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
Collapse
Affiliation(s)
- Jennifer Hsiao-Nakamoto
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Brittany Vandenberg
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Brittany Vandenberg, Washington State University, Pullman, WA 99164, USA
| | - Jack De Groot
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Jack DeGroot: Prime Medicine Inc., Cambridge, MA 02139, USA
| | | | - Meng Fang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Paul Auger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Paul Auger: Nurix Therapeutics, San Francisco, CA 94158, USA
| | - Neal S Gould
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Filippo Marchioni
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Casey A Powers
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Casey A. Powers: Stanford University, Stanford, CA 94305, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jung H Suh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jamal Alkabsh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Kimberly Scearce-Levie: Cajal Neuroscience, Seattle, WA 98109, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Berger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Richard Tsai
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
- These authors contributed equally
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Fen Huang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| |
Collapse
|
21
|
Li M, Liu H, Xu M, Yu B, Guo M, Wang X, Shi G, Zhou R. Glial Fibrillary Acidic Protein as a Potential Indicator for Symptomatic Intracranial Hemorrhage in Acute Ischemic Patients Undergoing Endovascular Thrombectomy. Clin Interv Aging 2024; 19:123-132. [PMID: 38283765 PMCID: PMC10813222 DOI: 10.2147/cia.s448180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Background The correlation between glial fibrillary acidic protein (GFAP) and symptomatic intracranial hemorrhage (sICH) in acute ischemic stroke (AIS) patients undergoing endovascular thrombectomy (EVT) treatment remains uncertain. We aimed to assess the association between levels of GFAP in the bloodstream and the occurrence of sICH. Methods Between June 2019 and May 2023, 142 consecutive AIS patients undergoing EVT at Stroke Center and 35 controls from the Physical Examination Center were retrospectively included. The levels of GFAP in the bloodstream were quantified using enzyme-linked immunosorbent assay prior to endovascular treatment (T1) and 24 h after the procedure (T2). The identification of sICH was based on the Heidelberg Bleeding Classification. Results Serum GFAP levels at T1 in AIS patients were significantly higher than those in the controls (0.249 [0.150-0.576] versus 0.065 [0.041-0.110] ng/mL, p = 0.001), and there was a notably elevation in GFAP levels at T2 compared to T1 (3.813 [1.474, 5.876] versus 0.249 [0.150-0.576] ng/mL, p = 0.001). Of the 142 AIS patients, 18 (14.5%) had sICH after EVT. Serum GFAP levels at T2 showed significant associations with sICH in both the unadjusted model (OR 1.513, 95% CI 1.269-1.805, p = 0.001) and multivariable adjusted model (OR 1.518, 95% CI 1.153-2.000, p = 0.003). Furthermore, the addition of GFAP at T2 to conventional model resulted in a significant enhancement of risk reclassification for sICH (integrated discrimination improvement [IDI] 0.183, 95% CI 0.070-0.295, p = 0.001). Conclusion Serum GFAP levels were notably increased in AIS patients 24 h after EVT. Elevated GFAP levels were correlated to an elevated risk of sICH. GFAP could potentially serve as a dependable indicator for sICH in AIS individuals who treated with EVT.
Collapse
Affiliation(s)
- Minghao Li
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Vascular Surgery, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Hua Liu
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Mingyang Xu
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Baiyang Yu
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing Clinical College of Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Minwang Guo
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Xiaorong Wang
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Guomei Shi
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Rujuan Zhou
- Stroke Center, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
- Department of Neurology, Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| |
Collapse
|
22
|
Bhalala OG, Watson R, Yassi N. Multi-Omic Blood Biomarkers as Dynamic Risk Predictors in Late-Onset Alzheimer's Disease. Int J Mol Sci 2024; 25:1231. [PMID: 38279230 PMCID: PMC10816901 DOI: 10.3390/ijms25021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Late-onset Alzheimer's disease is the leading cause of dementia worldwide, accounting for a growing burden of morbidity and mortality. Diagnosing Alzheimer's disease before symptoms are established is clinically challenging, but would provide therapeutic windows for disease-modifying interventions. Blood biomarkers, including genetics, proteins and metabolites, are emerging as powerful predictors of Alzheimer's disease at various timepoints within the disease course, including at the preclinical stage. In this review, we discuss recent advances in such blood biomarkers for determining disease risk. We highlight how leveraging polygenic risk scores, based on genome-wide association studies, can help stratify individuals along their risk profile. We summarize studies analyzing protein biomarkers, as well as report on recent proteomic- and metabolomic-based prediction models. Finally, we discuss how a combination of multi-omic blood biomarkers can potentially be used in memory clinics for diagnosis and to assess the dynamic risk an individual has for developing Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Oneil G. Bhalala
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| |
Collapse
|
23
|
Lin J, Ou R, Li C, Hou Y, Zhang L, Wei Q, Pang D, Liu K, Jiang Q, Yang T, Xiao Y, Zhao B, Chen X, Song W, Yang J, Wu Y, Shang H. Plasma glial fibrillary acidic protein as a biomarker of disease progression in Parkinson's disease: a prospective cohort study. BMC Med 2023; 21:420. [PMID: 37932720 PMCID: PMC10626747 DOI: 10.1186/s12916-023-03120-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Reactive astrogliosis has been demonstrated to have a role in Parkinson's disease (PD); however, astrocyte-specific plasma glial fibrillary acidic protein (GFAP)'s correlation with PD progression remains unknown. We aimed to determine whether plasma GFAP can monitor and predict PD progression. METHODS A total of 184 patients with PD and 95 healthy controls (HCs) were included in this prospective cohort study and followed-up for 5 years. Plasma GFAP, amyloid-beta (Aβ), p-tau181, and neurofilament light chain (NfL) were measured at baseline and at 1- and 2-year follow-ups. Motor and non-motor symptoms, activities of daily living, global cognitive function, executive function, and disease stage were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) part III, UPDRS-I, UPDRS-II, Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB), and Hoehn and Yahr (H&Y) scales at each visit, respectively. RESULTS Plasma GFAP levels were higher in patients with PD (mean [SD]: 69.80 [36.18], pg/mL) compared to HCs (mean [SD]: 57.89 [23.54], pg/mL). Higher levels of GFAP were observed in female and older PD patients. The adjusted linear mixed-effects models showed that plasma GFAP levels were significantly associated with UPDRS-I scores (β: 0.006, 95% CI [0.001-0.011], p = 0.027). Higher baseline plasma GFAP correlated with faster increase in UPDRS-I (β: 0.237, 95% CI [0.055-0.419], p = 0.011) and UPDRS-III (β: 0.676, 95% CI [0.023-1.330], p = 0.043) scores and H&Y stage (β: 0.098, 95% CI [0.047-0.149], p < 0.001) and faster decrease in MoCA (β: - 0.501, 95% CI [- 0.768 to - 0.234], p < 0.001) and FAB scores (β: - 0.358, 95% CI [- 0.587 to - 0.129], p = 0.002). Higher baseline plasma GFAP predicted a more rapid progression to postural instability (hazard ratio: 1.009, 95% CI [1.001-1.017], p = 0.033). CONCLUSIONS Plasma GFAP might be a potential biomarker for monitoring and predicting disease progression in PD.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Chatzidimitriou E, Ioannidis P, Aretouli E, Papaliagkas V, Moraitou D. Correlates of Functional Impairment in Patients with the Behavioral Variant of Frontotemporal Dementia: A PRISMA-Compliant Systematic Review. Int J Mol Sci 2023; 24:13810. [PMID: 37762113 PMCID: PMC10531075 DOI: 10.3390/ijms241813810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The behavioral variant of frontotemporal dementia (bvFTD) has a devastating effect on multiple domains of daily living. The purpose of this PRISMA-compliant systematic review is to summarize the most important factors associated with functional impairment in this clinical group by critically analyzing the existing literature spanning the period from 2000 to 2023. To be included in the review, a study had to investigate any kind of correlates of functional status in bvFTD patients, using a previously validated instrument of functional assessment. Out of 40 articles assessed for eligibility, 18 met the inclusion criteria. The anatomical pattern of cerebral atrophy at baseline appeared to be the strongest predictor of the rate of functional decline over time, with the frontal-dominant anatomical subtype being associated with a faster rate of functional impairment. Additionally, executive dysfunction as well as apathy appeared to contribute significantly to functional disability in bvFTD patients. A comparative examination of bvFTD in relation to other clinical subtypes of FTD and other types of dementia in general suggests that it is the predominant atrophy of the frontal lobes along with the subsequent unique combination of cognitive and neuropsychiatric manifestations that account for the pronounced functional limitations observed in these individuals, even from the early stages of the disease.
Collapse
Affiliation(s)
- Electra Chatzidimitriou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
- Laboratory of Neurodegenerative Diseases, Center of Interdisciplinary Research and Innovation (CIRI-AUTH), Balcan Center, Buildings A & B, 57001 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Eleni Aretouli
- Department of Psychology, School of Social Sciences, University of Ioannina, 45500 Ioannina, Greece
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Thessaloniki, Greece
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
- Laboratory of Neurodegenerative Diseases, Center of Interdisciplinary Research and Innovation (CIRI-AUTH), Balcan Center, Buildings A & B, 57001 Thessaloniki, Greece
| |
Collapse
|
25
|
Alcolea D, Beeri MS, Rojas JC, Gardner RC, Lleó A. Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology 2023; 101:172-180. [PMID: 36878698 PMCID: PMC10435056 DOI: 10.1212/wnl.0000000000207193] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Blood-based biomarkers offer a major advance in the clinical evaluation of neurodegenerative diseases. Currently, research studies have reported robust assays of blood markers for the detection of amyloid and tau pathologies specific to Alzheimer disease (amyloid-β peptides, and p-tau) and nonspecific blood markers of neuronal (neurofilament light, β-synuclein, and ubiquitin-C-terminal-hydrolase-L1) and glial degeneration (glial fibrillary acidic protein) that can measure key pathophysiologic processes in several neurodegenerative diseases. In the near future, these markers may be used for screening, diagnosis, or disease and treatment response monitoring. Blood-based biomarkers for neurodegenerative diseases have been rapidly implemented in research, and they have the potential to enter clinical use soon in different clinical settings. In this review, we will describe the main developments and their potential implications for the general neurologist.
Collapse
Affiliation(s)
- Daniel Alcolea
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| | - Michal Schnaider Beeri
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Julio C Rojas
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Raquel C Gardner
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Alberto Lleó
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| |
Collapse
|
26
|
Comeau D, Martin M, Robichaud GA, Chamard-Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: which liquid biomarker should we use? Front Neurol 2023; 14:1233192. [PMID: 37545721 PMCID: PMC10400889 DOI: 10.3389/fneur.2023.1233192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Long COVID syndrome, also known as post-acute sequelae of COVID-19 (PASC), is characterized by persistent symptoms lasting 3-12 weeks post SARS-CoV-2 infection. Patients suffering from PASC can display a myriad of symptoms that greatly diminish quality of life, the most frequent being neuropsychiatric. Thus, there is an eminent need to diagnose and treat PASC related neuropsychiatric manifestation (neuro-PASC). Evidence suggests that liquid biomarkers could potentially be used in the diagnosis and monitoring of patients. Undoubtedly, such biomarkers would greatly benefit clinicians in the management of patients; however, it remains unclear if these can be reliably used in this context. In this mini review, we highlight promising liquid (blood and cerebrospinal fluid) biomarkers, namely, neuronal injury biomarkers NfL, GFAP, and tau proteins as well as neuroinflammatory biomarkers IL-6, IL-10, TNF-α, and CPR associated with neuro-PASC and discuss their limitations in clinical applicability.
Collapse
Affiliation(s)
- Dominique Comeau
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
| | - Mykella Martin
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- The New Brunswick Center for Precision Medicine, Moncton, NB, Canada
- The Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Ludivine Chamard-Witkowski
- Centre de Formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
- Department of Neurology, Dr. Georges-L. Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
27
|
Afridi R, Lee WH, Kim JH, Suk K. Utilizing databases for astrocyte secretome research. Expert Rev Proteomics 2023; 20:371-379. [PMID: 37978891 DOI: 10.1080/14789450.2023.2285311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Astrocytes are the most abundant cell type in the central nervous system (CNS). They play a pivotal role in supporting neuronal function and maintaining homeostasis by releasing a variety of bioactive proteins, collectively known as the astrocyte secretome. Investigating secretome provides insights into the molecular mechanisms underlying astrocyte function and dysfunction, as well as novel strategies to prevent and treat diseases affecting the CNS. AREAS COVERED Proteomics databases are a valuable resource for studying the role of astrocytes in healthy and diseased brain function, as they provide information about gene expression, protein expression, and cellular function. In this review, we discuss existing databases that are useful for astrocyte secretome research. EXPERT OPINION Astrocyte secretomics is a field that is rapidly progressing, yet the availability of dedicated databases is currently limited. To meet the increasing demand for comprehensive omics data in glia research, developing databases specifically focused on astrocyte secretome is crucial. Such databases would allow researchers to investigate the intricate molecular landscape of astrocytes and comprehend their involvement in diverse physiological and pathological processes. Expanding resources through the development of databases dedicated to the astrocyte secretome may facilitate further advancements in this field.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
29
|
Kim KY, Shin KY, Chang KA. GFAP as a Potential Biomarker for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Cells 2023; 12:cells12091309. [PMID: 37174709 PMCID: PMC10177296 DOI: 10.3390/cells12091309] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Blood biomarkers have been considered tools for the diagnosis, prognosis, and monitoring of Alzheimer's disease (AD). Although amyloid-β peptide (Aβ) and tau are primarily blood biomarkers, recent studies have identified other reliable candidates that can serve as measurable indicators of pathological conditions. One such candidate is the glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein that can be detected in blood samples. Increasing evidence suggests that blood GFAP levels can be used to detect early-stage AD. In this systematic review and meta-analysis, we aimed to evaluate GFAP in peripheral blood as a biomarker for AD and provide an overview of the evidence regarding its utility. Our analysis revealed that the GFAP level in the blood was higher in the Aβ-positive group than in the negative groups, and in individuals with AD or mild cognitive impairment (MCI) compared to the healthy controls. Therefore, we believe that the clinical use of blood GFAP measurements has the potential to accelerate the diagnosis and improve the prognosis of AD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Bio-Medical Sciences, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
30
|
Mao S, Teng X, Li Z, Zu J, Zhang T, Xu C, Cui G. Association of serum neurofilament light chain and glial fibrillary acidic protein levels with cognitive decline in Parkinson's disease. Brain Res 2023; 1805:148271. [PMID: 36754139 DOI: 10.1016/j.brainres.2023.148271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVES To investigate whether serum neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) levels are associated with motor and cognitive function in Parkinson's disease (PD). METHODS This cross-sectional study recruited 140 participants, including 103 PD patients and 37 healthy controls (HC). Serum NfL and GFAP levels were measured using the ultrasensitive single-molecule array (Simoa) technique. Motor and cognitive function were evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III) and Beijing version of the Montreal Cognitive Assessment (MoCA). Spearman's correlation analyses were used to determine the correlation between serum NfL and GFAP levels and clinical features in PD patients. Binary logistic regression analysis was used to assess the association between serum biomarkers and cognitive impairment in PD patients. RESULTS We observed significantly higher serum NfL and GFAP levels in PD patients than in HC (p < 0.001). Serum NfL and GFAP levels were negatively correlated with MoCA scores (NfL: r = - 0.472, p < 0.001; r = 0.395, p < 0.001) and multiple cognitive domains and showed no correlation with motor symptom severity after adjusting for age and sex. Binary logistic regression analysis showed that the serum NfL and GFAP levels were independent contributors to PD with dementia (p < 0.05). CONCLUSIONS Both serum NfL and GFAP levels correlated with cognitive impairment, but not motor symptoms, in PD patients. Serum NfL and GFAP levels can serve as biomarkers for PD patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Xing Teng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Zhen Li
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| |
Collapse
|
31
|
Youssef P, Hughes L, Kim WS, Halliday GM, Lewis SJG, Cooper A, Dzamko N. Evaluation of plasma levels of NFL, GFAP, UCHL1 and tau as Parkinson's disease biomarkers using multiplexed single molecule counting. Sci Rep 2023; 13:5217. [PMID: 36997567 PMCID: PMC10063670 DOI: 10.1038/s41598-023-32480-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Objective biomarkers for Parkinson's Disease (PD) could aid early and specific diagnosis, effective monitoring of disease progression, and improved design and interpretation of clinical trials. Although alpha-synuclein remains a biomarker candidate of interest, the multifactorial and heterogenous nature of PD highlights the need for a PD biomarker panel. Ideal biomarker candidates include markers that are detectable in easily accessible samples, (ideally blood) and that reflect the underlying pathological process of PD. In the present study, we explored the diagnostic and prognostic PD biomarker potential of the SIMOA neurology 4-plex-A biomarker panel, which included neurofilament light (NFL), glial fibrillary acid protein (GFAP), tau and ubiquitin C-terminal hydrolase L1 (UCHL-1). We initially performed a serum vs plasma comparative study to determine the most suitable blood-based matrix for the measurement of these proteins in a multiplexed assay. The levels of NFL and GFAP in plasma and serum were highly correlated (Spearman rho-0.923, p < 0.0001 and rho = 0.825, p < 0.001 respectively). In contrast, the levels of tau were significantly higher in plasma compared to serum samples (p < 0.0001) with no correlation between sample type (Spearman p > 0.05). The neurology 4-plex-A panel, along with plasma alpha-synuclein was then assessed in a cross-sectional cohort of 29 PD patients and 30 controls. Plasma NFL levels positively correlated with both GFAP and alpha-synuclein levels (rho = 0.721, p < 0.0001 and rho = 0.390, p < 0.05 respectively). As diagnostic biomarkers, the control and PD groups did not differ in their mean NFL, GFAP, tau or UCHL-1 plasma levels (t test p > 0.05). As disease state biomarkers, motor severity (MDS-UPDRS III) correlated with increased NFL (rho = 0.646, p < 0.0001), GFAP (rho = 0.450, p < 0.05) and alpha-synuclein levels (rho = 0.406, p < 0.05), while motor stage (Hoehn and Yahr) correlated with increased NFL (rho = 0.455, p < 0.05) and GFAP (rho = 0.549, p < 0.01) but not alpha-synuclein levels (p > 0.05). In conclusion, plasma was determined to be most suitable blood-based matrix for multiplexing the neurology 4-plex-A panel. Given their correlation with motor features of PD, NFL and GFAP appear to be promising disease state biomarker candidates and further longitudinal validation of these two proteins as blood-based biomarkers for PD progression is warranted.
Collapse
Affiliation(s)
- Priscilla Youssef
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Laura Hughes
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Woojin S Kim
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Glenda M Halliday
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Antony Cooper
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW-Sydney, Darlinghurst, NSW, 2010, Australia
| | - Nicolas Dzamko
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Several plasma biomarkers for Alzheimer's disease and related disorders (ADRD) have demonstrated clinical and technical robustness. However, are they ready for clinical implementation? This review critically appraises current evidence for and against the immediate use of plasma biomarkers in clinical care. RECENT FINDINGS Plasma biomarkers have significantly improved our understanding of ADRD time-course, risk factors, diagnosis and prognosis. These advances are accelerating the development and in-human testing of therapeutic candidates, and the selection of individuals with subtle biological evidence of disease who fit the criteria for early therapeutic targeting. However, standardized tests and well validated cut-off values are lacking. Moreover, some assays (e.g., plasma Aβ methods) have poor robustness to withstand inevitable day-to-day technical variations. Additionally, recent reports suggest that common comorbidities of aging (e.g., kidney disease, diabetes, hypertension) can erroneously affect plasma biomarker levels, clinical utility and generalizability. Furthermore, it is unclear if health disparities can explain reported racial/ethnic differences in biomarker levels and functions. Finally, current clinically approved plasma methods are more expensive than CSF assays, questioning their cost effectiveness. SUMMARY Plasma biomarkers have biological and clinical capacity to detect ADRD. However, their widespread use requires issues around thresholds, comorbidities and diverse populations to be addressed.
Collapse
Affiliation(s)
- Wasiu G. Balogun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
34
|
Huang SY, Chen SF, Cui M, Zhao M, Shen XN, Guo Y, Zhang YR, Zhang W, Wang HF, Huang YY, Cheng W, Zuo CT, Dong Q, Yu JT. Plasma Biomarkers and Positron Emission Tomography Tau Pathology in Progressive Supranuclear Palsy. Mov Disord 2023; 38:676-682. [PMID: 36781585 DOI: 10.1002/mds.29339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Development of disease-modifying therapeutic trials of progressive supranuclear palsy (PSP) urges the need for sensitive fluid biomarkers. OBJECTIVES The objectives of this study were to explore the utility of plasma biomarkers in the diagnosis, differential diagnosis, and assessment of disease severity, brain atrophy, and tau deposition in PSP. METHODS Plasma biomarkers were measured using a single-molecule array in a cohort composed of patients with PSP, Parkinson's disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P), and healthy controls (HCs). RESULTS Plasma neurofilament light chain (NfL) outperformed other plasma makers (ie, glial fibrillary acidic protein [GFAP], phosphorylated-tau 181 [p-tau181], amyloid-β 1-40, amyloid-β 1-42) in identifying PSP from HC (area under the curve [AUC] = 0.904) and from MSA-P (AUC = 0.711). Plasma GFAP aided in distinguishing PSP from HC (AUC = 0.774) and from MSA-P (AUC = 0.832). It correlated with brainstem atrophy and higher regional tau accumulation. However, plasma p-tau181 neither helped in diagnosis nor was it associated with clinical or neuroimaging measures. CONCLUSIONS Plasma NfL and GFAP showed different values in differentiating PSP from HC or controls with other forms of neurodegenerative parkinsonism and detecting disease severity, brain atrophy, or tau deposition in PSP. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Mei Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Meng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xue-Ning Shen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yu-Yuan Huang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wei Cheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
35
|
Chatterjee P, Doré V, Pedrini S, Krishnadas N, Thota R, Bourgeat P, Ikonomovic MD, Rainey-Smith SR, Burnham SC, Fowler C, Taddei K, Mulligan R, Ames D, Masters CL, Fripp J, Rowe CC, Martins RN, Villemagne VL. Plasma Glial Fibrillary Acidic Protein Is Associated with 18F-SMBT-1 PET: Two Putative Astrocyte Reactivity Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 92:615-628. [PMID: 36776057 PMCID: PMC10041433 DOI: 10.3233/jad-220908] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS Plasma GFAP and Aβ were measured using the Simoa ® platform in participants who underwent brain 18F-SMBT-1 and Aβ-PET imaging, comprising 54 healthy control (13 Aβ-PET+ and 41 Aβ-PET-), 11 mild cognitively impaired (3 Aβ-PET+ and 8 Aβ-PET-) and 6 probable AD (5 Aβ-PET+ and 1 Aβ-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aβ deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aβ (plasma Aβ 42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aβ (Aβ-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aβ load.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Vincent Doré
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rohith Thota
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pennsylvania, PA, USA.,Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, PA, USA
| | - Stephanie R Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Samantha C Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Queensland, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jürgen Fripp
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ralph N Martins
- Macquarie Medical School, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, PA, USA
| | | |
Collapse
|
36
|
Guo Y, Shen XN, Wang HF, Chen SD, Zhang YR, Chen SF, Cui M, Cheng W, Dong Q, Ma T, Yu JT. The dynamics of plasma biomarkers across the Alzheimer's continuum. Alzheimers Res Ther 2023; 15:31. [PMID: 36750875 PMCID: PMC9906840 DOI: 10.1186/s13195-023-01174-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Failures in drug trials strengthen the necessity to further determine the neuropathological events during the development of Alzheimer's disease (AD). We sought to investigate the dynamic changes and performance of plasma biomarkers across the entire Alzheimer's continuum in the Chinese population. METHODS Plasma amyloid-β (Αβ)42, Aβ40, Aβ42/Aβ40, phosphorylated tau (p-tau)181, neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were measured utilizing the ultrasensitive single-molecule array technology across the AD continuum (n=206), wherein Aβ status was defined by the values of cerebrospinal fluid (CSF) Aβ42 or Aβ positron emission tomography (PET). Their trajectories were compared with those of putative CSF biomarkers. RESULTS Plasma GFAP and p-tau181 increased only in Aβ-positive individuals throughout aging, whereas NfL increased with aging regardless of Aβ status. Among the plasma biomarkers studied, GFAP was the one that changed first. It had a prominent elevation early in the cognitively unimpaired (CU) A+T- phase (CU A+T- phase: 97.10±41.29 pg/ml; CU A-T- phase: 49.18±14.39 pg/ml; p<0.001). From preclinical to symptomatic stages of AD, plasma GFAP started to rise sharply as soon as CSF Aβ became abnormal and continued to increase until reaching its highest level during the AD dementia phase. The greatest slope of change was seen in plasma GFAP. This is followed by CSF p-tau181 and total-tau, and, to a lesser extent, then plasma p-tau181. In contrast, the changes in plasma NfL, Aβ42/Aβ40, Aβ42, and Aβ40 were less pronounced. Of note, these plasma biomarkers exhibited smaller dynamic ranges than their CSF counterparts, except for GFAP which was the opposite. Plasma GFAP and p-tau181 were tightly associated with AD pathologies and amyloid tracer uptake in widespread brain areas. Plasma GFAP could accurately identify CSF Aβ42 (area under the curve (AUC)=0.911) and Aβ PET (AUC=0.971) positivity. Plasma p-tau181 also performed well in discriminating Aβ PET status (AUC=0.916), whereas the discriminative accuracy was relatively low for other plasma biomarkers. CONCLUSIONS This study is the first to delineate the trajectories of plasma biomarkers throughout the Alzheimer's continuum in the Chinese population, providing important implications for future trials targeting plasma GFAP to facilitate AD prevention and treatment.
Collapse
Affiliation(s)
- Yu Guo
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xue-Ning Shen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hui-Fu Wang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Mei Cui
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Cheng
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China ,grid.453534.00000 0001 2219 2654Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Qiang Dong
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Tao Ma
- Department of Neurology, Wuxi Second People Hospital, Jiangnan University Medical Center, Wuxi, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
37
|
Xu J, Xia Y, Meng M, Liu F, Che P, Zhang Y, Wang Y, Cai L, Qin W, Zhang N. Clinical features and biomarkers of semantic variant primary progressive aphasia with MAPT mutation. Alzheimers Res Ther 2023; 15:21. [PMID: 36707904 PMCID: PMC9881263 DOI: 10.1186/s13195-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) is generally sporadic, with very few reports of tau pathology caused by MAPT mutations. METHODS A 64-year-old man was diagnosed with svPPA with MAPT P301L mutation. Clinical information, cognitive and language functions, multimodal magnetic resonance imaging (MRI), blood biomarkers, fluorodeoxyglucose (FDG) imaging and tau positron emission tomography (PET) were obtained. RESULTS Semantic memory impairment was the earliest and most prominent symptom in this family. Tau accumulation and hypometabolism were observed prior to brain atrophy in mutation carriers. Plasma NfL and GFAP concentrations were elevated in the two svPPA patients. Some relative decreases and some relative increases in regional cerebral blood flow (CBF) as measured by arterial spin labelling (ASL) were observed in mutation carriers compared to noncarriers. CONCLUSIONS This study describes a large svPPA-affected family with the MAPT P301L mutation and provides an ideal model for inferring underlying pathology and pathophysiological processes in svPPA caused by tauopathies.
Collapse
Affiliation(s)
- Jing Xu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanmin Xia
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China ,grid.459324.dDepartment of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei China
| | - Meng Meng
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ping Che
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanxin Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ying Wang
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Li Cai
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Wen Qin
- grid.412645.00000 0004 1757 9434Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| |
Collapse
|
38
|
Tao QQ, Lin RR, Wu ZY. Early Diagnosis of Alzheimer's Disease: Moving Toward a Blood-Based Biomarkers Era. Clin Interv Aging 2023; 18:353-358. [PMID: 36911809 PMCID: PMC10001034 DOI: 10.2147/cia.s394821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China.,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Dorcet G, Benaiteau M, Pariente J, Ory‐Magne F, Cheuret E, Rafiq M, Brooks W, Puissant‐Lubrano B, Fortenfant F, Renaudineau Y, Bost C. Cerebrospinal fluid YKL-40 level evolution is associated with autoimmune encephalitis remission. Clin Transl Immunology 2023; 12:e1439. [PMID: 36938371 PMCID: PMC10015376 DOI: 10.1002/cti2.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 02/04/2023] [Indexed: 03/17/2023] Open
Abstract
Objective Because of its heterogeneity in clinical presentation and course, predicting autoimmune encephalitis (AIE) evolution remains challenging. Hence, our aim was to explore the correlation of several biomarkers with the clinical course of disease. Methods Thirty-seven cases of AIE were selected retrospectively and divided into active (N = 9), improved (N = 12) and remission (N = 16) AIE according to their disease evolution. Nine proteins were tested in both serum and cerebrospinal fluid (CSF) at diagnosis (T0) and during the follow-up (T1), in particular activated MMP-9 (MMP-9A) and YKL-40 (or chitinase 3-like 1). Results From diagnosis to revaluation, AIE remission was associated with decreased YKL-40 and MMP-9A levels in the CSF, and with decreased NfL and NfH levels in the serum. The changes in YKL-40 concentrations in the CSF were associated with (1) still active AIE when increasing >10% (P-value = 0.0093); (2) partial improvement or remission when the changes were between +9% and -20% (P-value = 0.0173); and remission with a reduction > -20% (P-value = 0.0072; overall difference between the three groups: P-value = 0.0088). At T1, the CSF YKL-40 levels were significantly decreased between active and improved as well as improved and remission AIE groups but with no calculable threshold because of patient heterogeneity. Conclusion The concentration of YKL-40, a cytokine-like proinflammatory protein produced by glial cells, is correlated in the CSF with the clinical course of AIE. Its introduction as a biomarker may assist in following disease activity and in evaluating therapeutic response.
Collapse
Affiliation(s)
- Guillaume Dorcet
- Département de NeurologieHôpital Pierre Paul Riquet, CHU de ToulouseToulouseFrance
- Laboratoire d'ImmunologieInstitut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM, INFINITyToulouseFrance
| | - Marie Benaiteau
- Département de NeurologieHôpital Pierre Paul Riquet, CHU de ToulouseToulouseFrance
| | - Jérémie Pariente
- Département de NeurologieHôpital Pierre Paul Riquet, CHU de ToulouseToulouseFrance
- INSERM, ToNICToulouseFrance
| | - Fabienne Ory‐Magne
- Département de NeurologieHôpital Pierre Paul Riquet, CHU de ToulouseToulouseFrance
| | - Emmanuel Cheuret
- Unité Pédiatrique Neuro‐céphaliqueHôpital des Enfants, CHU de ToulouseToulouseFrance
| | - Marie Rafiq
- Département de NeurologieHôpital Pierre Paul Riquet, CHU de ToulouseToulouseFrance
- INSERM, ToNICToulouseFrance
| | - Wesley Brooks
- Department of ChemistryUniversity of South FloridaTampaFLUSA
| | - Bénédicte Puissant‐Lubrano
- Laboratoire d'ImmunologieInstitut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM, INFINITyToulouseFrance
| | - Françoise Fortenfant
- Laboratoire d'ImmunologieInstitut Fédératif de Biologie, CHU de ToulouseToulouseFrance
| | - Yves Renaudineau
- Laboratoire d'ImmunologieInstitut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM, INFINITyToulouseFrance
| | - Chloé Bost
- Laboratoire d'ImmunologieInstitut Fédératif de Biologie, CHU de ToulouseToulouseFrance
- INSERM, INFINITyToulouseFrance
| |
Collapse
|
40
|
Baiardi S, Quadalti C, Mammana A, Dellavalle S, Zenesini C, Sambati L, Pantieri R, Polischi B, Romano L, Suffritti M, Bentivenga GM, Randi V, Stanzani-Maserati M, Capellari S, Parchi P. Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res Ther 2022; 14:153. [PMID: 36221099 PMCID: PMC9555092 DOI: 10.1186/s13195-022-01093-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Background Increasing evidence supports the use of plasma biomarkers of neurodegeneration and neuroinflammation to screen and diagnose patients with dementia. However, confirmatory studies are required to demonstrate their usefulness in the clinical setting. Methods We evaluated plasma and cerebrospinal fluid (CSF) samples from consecutive patients with frontotemporal dementia (FTD) (n = 59), progressive supranuclear palsy (PSP) (n = 31), corticobasal syndrome (CBS) (n = 29), dementia with Lewy bodies (DLB) (n = 49), Alzheimer disease (AD) (n = 97), and suspected non-AD physiopathology (n = 51), as well as plasma samples from 60 healthy controls (HC). We measured neurofilament light chain (NfL), phospho-tau181 (p-tau181), and glial fibrillary acid protein (GFAP) using Simoa (all plasma biomarkers and CSF GFAP), CLEIA (CSF p-tau181), and ELISA (CSF NfL) assays. Additionally, we stratified patients according to the A/T/N classification scheme and the CSF α-synuclein real-time quaking-induced conversion assay (RT-QuIC) results. Results We found good correlations between CSF and plasma biomarkers for NfL (rho = 0.668, p < 0.001) and p-tau181 (rho = 0.619, p < 0.001). Plasma NfL was significantly higher in disease groups than in HC and showed a greater increase in FTD than in AD [44.9 (28.1–68.6) vs. 21.9 (17.0–27.9) pg/ml, p < 0.001]. Conversely, plasma p-tau181 and GFAP levels were significantly higher in AD than in FTD [3.2 (2.4–4.3) vs. 1.1 (0.7–1.6) pg/ml, p < 0.001; 404.7 (279.7–503.0) vs. 198.2 (143.9–316.8) pg/ml, p < 0.001]. GFAP also allowed discriminating disease groups from HC. In the distinction between FTD and AD, plasma p-tau181 showed better accuracy (AUC 0.964) than NfL (AUC 0.791) and GFAP (AUC 0.818). In DLB and CBS, CSF amyloid positive (A+) subjects had higher plasma p-tau181 and GFAP levels than A− individuals. CSF RT-QuIC showed positive α-synuclein seeding activity in 96% DLB and 15% AD patients with no differences in plasma biomarker levels in those stratified by RT-QuIC result. Conclusions In a single-center clinical cohort, we confirm the high diagnostic value of plasma p-tau181 for distinguishing FTD from AD and plasma NfL for discriminating degenerative dementias from HC. Plasma GFAP alone differentiates AD from FTD and neurodegenerative dementias from HC but with lower accuracy than p-tau181 and NfL. In CBS and DLB, plasma p-tau181 and GFAP levels are significantly influenced by beta-amyloid pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01093-6.
Collapse
Affiliation(s)
- Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy ,grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Corinne Quadalti
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Angela Mammana
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy ,grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Sofia Dellavalle
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Luisa Sambati
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Roberta Pantieri
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Barbara Polischi
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Luciano Romano
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Matteo Suffritti
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Giuseppe Mario Bentivenga
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Vanda Randi
- Emilia-Romagna Regional Blood Bank, Immunohematology and Transfusion Medicine Service, Bologna Metropolitan Area, Bologna, Italy
| | | | - Sabina Capellari
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Piero Parchi
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| |
Collapse
|
41
|
Katisko K, Huber N, Kokkola T, Hartikainen P, Krüger J, Heikkinen AL, Paananen V, Leinonen V, Korhonen VE, Helisalmi S, Herukka SK, Cantoni V, Gadola Y, Archetti S, Remes AM, Haapasalo A, Borroni B, Solje E. Serum total TDP-43 levels are decreased in frontotemporal dementia patients with C9orf72 repeat expansion or concomitant motoneuron disease phenotype. Alzheimers Res Ther 2022; 14:151. [PMID: 36217158 PMCID: PMC9552448 DOI: 10.1186/s13195-022-01091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with various clinical and neuropathological subtypes. The two major pathological proteins accumulating in the brains of FTD patients, depending on their genetic background, are TDP-43 and tau. We aimed to evaluate whether total TDP-43 levels measured from the serum associate with the genotype or clinical phenotype of the FTD patients and whether serum TDP-43 provides prognostic or diagnostic value in the FTD spectrum disorders. METHODS The study cohort included 254 participants with a clinical diagnosis of FTD (including all major genotypes and clinical phenotypes) and 105 cognitively healthy controls. Serum total TDP-43 levels measured with a single-molecule array (Simoa) were compared within the FTD group according to the genotype, clinical phenotype, and predicted neuropathological subtype of the patients. We also evaluated the associations between the TDP-43 levels and disease severity or survival in FTD. RESULTS Total TDP-43 levels in the serum were significantly lower in the FTD group as compared to the healthy control group (275.3 pg/mL vs. 361.8 pg/mL, B = 0.181, 95%CI = 0.014-0.348, p = 0.034). The lowest TDP-43 levels were observed in the subgroup of FTD patients harboring predicted TDP-43 brain pathology (FTD-TDP, 241.4 pg/mL). The low levels in the FTD-TDP group were especially driven by C9orf72 repeat expansion carriers (169.2 pg/mL) and FTD patients with concomitant motoneuron disease (FTD-MND, 113.3 pg/mL), whereas GRN mutation carriers did not show decreased TDP-43 levels (328.6 pg/mL). Serum TDP-43 levels showed no correlation with disease severity nor progression in FTD. CONCLUSIONS Our results indicate that the total levels of TDP-43 in the serum are decreased especially in FTD patients with the C9orf72 repeat expansion or FTD-MND phenotype, both subtypes strongly associated with TDP-43 type B brain pathology. Serum-based measurement of TDP-43 could represent a useful tool in indicating C9orf72 repeat expansion and FTD-MND-related TDP-43 neuropathology for future diagnostics and intervention studies.
Collapse
Affiliation(s)
- Kasper Katisko
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), FI-70211 Kuopio, Finland
| | - Nadine Huber
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Kokkola
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), FI-70211 Kuopio, Finland
| | - Päivi Hartikainen
- grid.410705.70000 0004 0628 207XNeuro center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Krüger
- grid.10858.340000 0001 0941 4873Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC, Oulu University Hospital, Oulu, Finland ,grid.412326.00000 0004 4685 4917Neurology, Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Anna-Leena Heikkinen
- grid.10858.340000 0001 0941 4873Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC, Oulu University Hospital, Oulu, Finland ,grid.412326.00000 0004 4685 4917Neurology, Neurocenter, Oulu University Hospital, Oulu, Finland ,grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Work Ability and Working Careers, Helsinki, Finland
| | - Veera Paananen
- grid.10858.340000 0001 0941 4873Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC, Oulu University Hospital, Oulu, Finland ,grid.412326.00000 0004 4685 4917Neurology, Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Ville Leinonen
- grid.410705.70000 0004 0628 207XNeuro Center, Neurosurgery, Kuopio University Hospital, 70029 Kuopio, Finland ,grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurosurgery, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ville E. Korhonen
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), FI-70211 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro Center, Neurosurgery, Kuopio University Hospital, 70029 Kuopio, Finland ,grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurosurgery, University of Eastern Finland, 70211 Kuopio, Finland
| | - Seppo Helisalmi
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), FI-70211 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Valentina Cantoni
- grid.7637.50000000417571846Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Yasmine Gadola
- grid.7637.50000000417571846Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Anne M. Remes
- grid.10858.340000 0001 0941 4873Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Annakaisa Haapasalo
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Barbara Borroni
- grid.7637.50000000417571846Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy ,grid.412725.7ASST Spedali Civili, Brescia, Italy
| | - Eino Solje
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine – Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), FI-70211 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro center, Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
42
|
Bolsewig K, Hok-A-Hin Y, Sepe F, Boonkamp L, Jacobs D, Bellomo G, Paoletti FP, Vanmechelen E, Teunissen C, Parnetti L, Willemse E. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J Alzheimers Dis 2022; 90:363-380. [DOI: 10.3233/jad-220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. Methods: We included 135 patients from the Centre for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy FTD versus MCI-AD: area under the curve (AUC [95% CI] = 0.89 [0.81–0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71–0.93]; FTD versus OND: AUC = 0.80 [0.70–0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47–0.74, p < 0.05). Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Yanaika Hok-A-Hin
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Federica Sepe
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Lynn Boonkamp
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | | | - Giovanni Bellomo
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte Teunissen
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Eline Willemse
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| |
Collapse
|
43
|
Tybirk L, Hviid CVB, Knudsen CS, Parkner T. Serum GFAP - reference interval and preanalytical properties in Danish adults. Clin Chem Lab Med 2022; 60:1830-1838. [PMID: 36067832 DOI: 10.1515/cclm-2022-0646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Glial fibrillary acidic protein (GFAP) is a promising biomarker that could potentially contribute to diagnosis and prognosis in neurological diseases. The biomarker is approaching clinical use but the reference interval for serum GFAP remains to be established, and knowledge about the effect of preanalytical factors is also limited. METHODS Serum samples from 371 apparently healthy reference subjects, 21-90 years of age, were measured by a single-molecule array (Simoa) assay. Continuous reference intervals were modelled using non-parametric quantile regression and compared with traditional age-partitioned non-parametric reference intervals established according to the Clinical and Laboratory Standards Institute (CLSI) guideline C28-A3. The following preanalytical conditions were also examined: stability in whole blood at room temperature (RT), stability in serum at RT and -20 °C, repeated freeze-thaw cycles, and haemolysis. RESULTS The continuous reference interval showed good overall agreement with the traditional age-partitioned reference intervals of 25-136 ng/L, 34-242 ng/L, and 5-438 ng/L for the age groups 20-39, 40-64, and 65-90 years, respectively. Both types of reference intervals showed increasing levels and variability of serum GFAP with age. In the preanalytical tests, the mean changes from baseline were 2.3% (95% CI: -2.4%, 6.9%) in whole blood after 9 h at RT, 3.1% (95% CI: -4.5%, 10.7%) in serum after 7 days at RT, 10.4% (95% CI: -6.0%, 26.8%) in serum after 133 days at -20 °C, and 10.4% (95% CI: 9.5%, 11.4%) after three freeze-thaw cycles. CONCLUSIONS The study establishes age-dependent reference ranges for serum GFAP in adults and demonstrates overall good stability of the biomarker.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Ramos-Campoy O, Lladó A, Bosch B, Ferrer M, Pérez-Millan A, Vergara M, Molina-Porcel L, Fort-Aznar L, Gonzalo R, Moreno-Izco F, Fernandez-Villullas G, Balasa M, Sánchez-Valle R, Antonell A. Differential Gene Expression in Sporadic and Genetic Forms of Alzheimer's Disease and Frontotemporal Dementia in Brain Tissue and Lymphoblastoid Cell Lines. Mol Neurobiol 2022; 59:6411-6428. [PMID: 35962298 DOI: 10.1007/s12035-022-02969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Sporadic early-onset Alzheimer's disease (EOAD) and autosomal dominant Alzheimer's disease (ADAD) provide the opportunity to investigate the physiopathological mechanisms in the absence of aging, present in late-onset forms. Frontotemporal dementia (FTD) causes early-onset dementia associated to tau or TDP43 protein deposits. A 15% of FTD cases are caused by mutations in C9orf72, GRN, or MAPT genes. Lymphoblastoid cell lines (LCLs) have been proposed as an alternative to brain tissue for studying earlier phases of neurodegenerative diseases. The aim of this study is to investigate the expression profile in EOAD, ADAD, and sporadic and genetic FTD (sFTD and gFTD, respectively), using brain tissue and LCLs. Sixty subjects of the following groups were included: EOAD, ADAD, sFTD, gFTD, and controls. Gene expression was analyzed with Clariom D microarray (Affymetrix). Brain tissue pairwise comparisons revealed six common differentially expressed genes (DEG) for all the patients' groups compared with controls: RGS20, WIF1, HSPB1, EMP3, S100A11 and GFAP. Common up-regulated biological pathways were identified both in brain and LCLs (including inflammation and glial cell differentiation), while down-regulated pathways were detected mainly in brain tissue (including synaptic signaling, metabolism and mitochondrial dysfunction). CD163, ADAMTS9 and LIN7A gene expression disruption was validated by qPCR in brain tissue and NrCAM in LCLs in their respective group comparisons. In conclusion, our study highlights neuroinflammation, metabolism and synaptic signaling disturbances as common altered pathways in different AD and FTD forms. The use of LCLs might be appropriate for studying early immune system and inflammation, and some neural features in neurodegenerative dementias.
Collapse
Affiliation(s)
- Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Mireia Ferrer
- Statistics and Bioinformatics Unit, Vall d'Hebrón Institut de Recerca, Passeig Vall d'Hebrón, Barcelona, Spain
| | - Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institute of Neurosciences, Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel Vergara
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Neurological Tissue Bank, Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Laura Fort-Aznar
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit, Vall d'Hebrón Institut de Recerca, Passeig Vall d'Hebrón, Barcelona, Spain
| | - Fermín Moreno-Izco
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, 20014, Donostia-San Sebastián, Spain.,Biodonostia, Neurosciences Area, Group of Neurodegenerative Diseases, 20014, San Sebastián, Spain
| | - Guadalupe Fernandez-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
45
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
46
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
47
|
Motawi TK, Al-Kady RH, Abdelraouf SM, Senousy MA. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem Biol Interact 2022; 362:110002. [PMID: 35654124 DOI: 10.1016/j.cbi.2022.110002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
Abstract
Empagliflozin, a selective sodium-glucose co-transporter-2 inhibitor, has been demonstrated to provide additional non-glycemic benefits, including neuroprotection. Endoplasmic reticulum (ER) stress is a key player in neurodegeneration and occurs at the crossroads of other pathologic mechanisms; however, its role in the pathogenesis of Parkinson's disease (PD) is still elusive. miR-211-5p regulates neuronal differentiation and viability and was predicted to target CHOP, a downstream effector in the ER stress pathway. For the first time, this study investigated the possible neuroprotective effect of empagliflozin in a rotenone-induced rat model of PD from the perspective of ER stress. Rotenone (1.5 mg/kg) was administered subcutaneously every other day for 3 weeks. Meanwhile, the treated group received empagliflozin 10 mg/kg/day orally for 15 consecutive days post-PD induction. On the molecular level, the ER stress pathway components; GRP78, total and phosphorylated PERK, eIF2α and CHOP, along with miR-211-5p expression were upregulated in the striatum of rotenone-injected rats. Concurrently, the untreated rats showed elevated striatal α-synuclein levels along with diminished autophagy and the proteasome system as evidenced by reduced beclin-1 protein and ELF2/NERF mRNA expression levels. The rotenone-induced striatal oxidative stress and neuroinflammation were expressed by reduced catalase activity and elevated interleukin (IL)-1β levels. miR-211-5p was positively correlated with PERK/eIF2α/CHOP, IL-1β and α-synuclein, while negatively correlated with ELF2/NERF, beclin-1 and catalase activity. Empagliflozin treatment showed a restorative effect on all biochemical alterations and improved the motor function of rats tested by open field, grip strength and footprint gait analysis. In the histopathological examination, empagliflozin increased the intact neuron count and attenuated astrogliosis and microgliosis by reducing the glial fibrillary protein and ionized calcium-binding adaptor protein 1 immunostaining. Conclusively, these results emphasize the neurotherapeutic impact of empagliflozin in PD by moderating the GRP78/PERK/eIF2α/CHOP ER stress pathway, downregulating miR-211-5p, resolving oxidative stress, lessening astrocyte/microglial activation and neuroinflammation, along with augmenting autophagy.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
48
|
Traub J, Otto M, Sell R, Homola GA, Steinacker P, Oeckl P, Morbach C, Frantz S, Pham M, Störk S, Stoll G, Frey A. Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure. ESC Heart Fail 2022; 9:2626-2634. [PMID: 35611842 PMCID: PMC9288738 DOI: 10.1002/ehf2.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead‐based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters‐HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty‐six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = −4.7; P < 0.001), alanine aminotransferase (T = −2.1; P = 0.036), and the left atrial end‐systolic volume index (T = 3.4; P = 0.004). NT‐proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = −3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Würzburg, Würzburg, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,Department of Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Roxane Sell
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - György A Homola
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Petra Steinacker
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,Department of Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Patrick Oeckl
- Department of Neurology, University Hospital Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Caroline Morbach
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Mirko Pham
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| | - Guido Stoll
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
49
|
Thijssen EH, Verberk IMW, Kindermans J, Abramian A, Vanbrabant J, Ball AJ, Pijnenburg Y, Lemstra AW, van der Flier WM, Stoops E, Hirtz C, Teunissen CE. Differential diagnostic performance of a panel of plasma biomarkers for different types of dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12285. [PMID: 35603139 PMCID: PMC9107685 DOI: 10.1002/dad2.12285] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Introduction We explored what combination of blood‐based biomarkers (amyloid beta [Aβ]1‐42/1‐40, phosphorylated tau [p‐tau]181, neurofilament light [NfL], glial fibrillary acidic protein [GFAP]) differentiates Alzheimer's disease (AD) dementia, frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods We measured the biomarkers with Simoa in two separate cohorts (n = 160 and n = 152). In one cohort, Aβ1‐42/1‐40 was also measured with mass spectrometry (MS). We assessed the differential diagnostic value of the markers, by logistic regression with Wald's backward selection. Results MS and Simoa Aβ1‐42/1‐40 similarly differentiated AD from controls. The Simoa panel that optimally differentiated AD from FTD consisted of NfL and p‐tau181 (area under the curve [AUC] = 0.94; cohort 1) or NfL, GFAP, and p‐tau181 (AUC = 0.90; cohort 2). For AD from DLB, the panel consisted of NfL, p‐tau181, and GFAP (AUC = 0.88; cohort 1), and only p‐tau181 (AUC = 0.81; cohort 2). Discussion A combination of plasma p‐tau181, NfL, and GFAP, but not Aβ1‐42/1‐40, might be useful to discriminate AD, FTD, and DLB.
Collapse
Affiliation(s)
- Elisabeth H Thijssen
- Neurochemistry Laboratory Department of Clinical Chemistry Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory Department of Clinical Chemistry Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | - Jana Kindermans
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS Montpellier France
| | - Adlin Abramian
- Neurochemistry Laboratory Department of Clinical Chemistry Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | | | | | - Yolande Pijnenburg
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| | | | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS Montpellier France
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Clinical Chemistry Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC Amsterdam the Netherlands
| |
Collapse
|
50
|
Oeckl P, Anderl-Straub S, Von Arnim CAF, Baldeiras I, Diehl-Schmid J, Grimmer T, Halbgebauer S, Kort AM, Lima M, Marques TM, Ortner M, Santana I, Steinacker P, Verbeek MM, Volk AE, Ludolph AC, Otto M. Serum GFAP differentiates Alzheimer's disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328547. [PMID: 35477892 DOI: 10.1136/jnnp-2021-328547] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Reactive astrogliosis is a hallmark of Alzheimer's disease (AD) and frontotemporal dementia (FTD) but differences between the diseases and time course are unclear. Here, we used serum levels of the astroglial marker glial fibrillary acidic protein (GFAP) to investigate differences in patients with AD dementia, mild cognitive impairment (MCI)-AD and behavioural variant FTD (bvFTD). METHODS This multicentre study included serum samples from patients diagnosed with AD dementia (n=230), MCI-AD (n=111), bvFTD (n=140) and controls (n=129). A subgroup of patients with MCI-AD (n=32) was longitudinally followed-up for 3.9±2.6 years after sample collection. Serum levels of GFAP, neurofilament light chain (NfL) and pTau181 were measured by Simoa (Quanterix) and Ella (ProteinSimple). RESULTS In total, samples from 610 individuals from four clinical centres were investigated in this study. Serum GFAP levels in AD dementia were increased (median 375 pg/mL, IQR 276-505 pg/mL) compared with controls (167 pg/mL, IQR 108-234 pg/mL) and bvFTD (190 pg/mL, IQR 134-298 pg/mL, p<0.001). GFAP was already increased in the early disease phase (MCI-AD, 300 pg/mL, IQR 232-433 pg/mL, p<0.001) and was higher in patients with MCI-AD who developed dementia during follow-up (360 pg/mL, IQR 253-414 pg/mL vs 215 pg/mL, IQR 111-266 pg/mL, p<0.01, area under the curve (AUC)=0.77). Diagnostic performance of serum GFAP for AD (AUC=0.84, sensitivity 98%, specificity 60%, likelihood ratio 2.5) was comparable to serum pTau181 (AUC=0.89, sensitivity 80%, specificity 87%, likelihood ratio 6.0) but superior to serum NfL (AUC=0.71, sensitivity 92%, specificity 49%, likelihood ratio 1.8). CONCLUSIONS Our data indicate a different type of reactive astrogliosis in AD and bvFTD and support serum GFAP as biomarker for differential diagnosis and prediction of MCI-to-dementia conversion.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | | | - Christine A F Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Niedersachsen, Germany
| | - Inês Baldeiras
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Anna M Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marisa Lima
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tainá M Marques
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel Santana
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | | | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|