1
|
Zhang X, Wang J, Zhang J, Jiang C, Liu X, Wang S, Zhang Z, Rastegar-Kashkooli Y, Dialameh F, Peng Q, Tao J, Ding R, Wang J, Cheng N, Wang M, Wang F, Li N, Xing N, Chen X, Fan X, Wang J, Wang J. Humanized rodent models of neurodegenerative diseases and other brain disorders. Neurosci Biobehav Rev 2025; 172:106112. [PMID: 40120962 DOI: 10.1016/j.neubiorev.2025.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Central Nervous System (CNS) diseases significantly affect human health. However, replicating the onset, progression, and pathology of these diseases in rodents is challenging. To address this issue, researchers have developed humanized animal models. These models introduce human genes or cells into rodents. As a result, rodents become more suitable for studying human CNS diseases and their therapies in vivo. This review explores the preparation protocols, pathological and behavioral characteristics, benefits, significance, and limitations of humanized rodent models in researching various CNS diseases, particularly Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, glial cells-related CNS diseases, N-methyl-D-aspartic acid receptor encephalitis, and others. Humanized rodent models have expanded the opportunities for in vivo exploration of human neurodegenerative diseases, other brain disorders, and their treatments. We can enhance translational research on CNS disorders by developing, investigating, and utilizing these models.
Collapse
Affiliation(s)
- Xinru Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianxiang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Xuezhong Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuaijiang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenhua Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fatemeh Dialameh
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan 610060, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Wu CYC, Zhang Y, Howard P, Huang F, Lee RHC. ACSL3 is a promising therapeutic target for alleviating anxiety and depression in Alzheimer's disease. GeroScience 2025; 47:2383-2397. [PMID: 39532829 PMCID: PMC11978576 DOI: 10.1007/s11357-024-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, affects over 55 million people worldwide and is often accompanied by depression and anxiety. Both significantly impact patients' quality of life and impose substantial societal and economic burdens on healthcare systems. Identifying the complex regulatory mechanisms that contribute to the psychological and emotional deficits in AD will provide promising therapeutic targets. Biosynthesis of omega-3 (ω3) and omega-6 fatty acids (ω6-FA) through long-chain acyl-CoA synthetases (ACSL) is crucial for cell function and survival. This is due to ω3/6-FA's imperative role in modulating the plasma membrane, energy production, and inflammation. While ACSL dysfunction is known to cause heart, liver, and kidney diseases, the role of ACSL in pathological conditions in the central nervous system (e.g., depression and anxiety) remains largely unexplored. The impact of ACSLs on AD-related depression and anxiety was investigated in a mouse model of Alzheimer's disease (3xTg-AD). ACSL3 levels were significantly reduced in the hippocampus of aged 3xTg-AD mice (via capillary-based immunoassay). This reduction in ACAL3 was closely associated with increased depression and anxiety-like behavior (via forced swim, tail suspension, elevated plus maze, and sucrose preference test). Upregulation of ACSL3 via adenovirus in aged 3xTg-AD mice led to increased protein levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor C (VEGF-C) (via brain histology, capillary-based immunoassay), resulting in alleviation of depression and anxiety symptoms. The present study highlights a novel neuroprotective role of ACSL3 in the brain. Targeting ACSL3 will offer an innovative approach for treating AD-related depression and anxiety.
Collapse
Affiliation(s)
- Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103-3932, USA.
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA.
| | - Yulan Zhang
- Department of Neurology, Louisiana State University Health, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103-3932, USA
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA
| | - Peyton Howard
- Department of Neurology, Louisiana State University Health, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103-3932, USA
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA
| | - Fang Huang
- Department of Neurology, Louisiana State University Health, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103-3932, USA
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health, LSU Health Sciences Center Shreveport, 1501 Kings Hwy, Shreveport, LA, 71103-3932, USA
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
3
|
Géraudie A, De Rossi P, Canney M, Carpentier A, Delatour B. Effects of blood-brain barrier opening using ultrasound on tauopathies: A systematic review. J Control Release 2025; 379:1029-1044. [PMID: 39875073 DOI: 10.1016/j.jconrel.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Blood-brain barrier opening with ultrasound can potentiate drug efficacy in the treatment of brain pathologies and also provides therapeutic effects on its own. It is an innovative tool to transiently, repeatedly and safely open the barrier, with studies showing beneficial effects in both preclinical models for Alzheimer's disease and recent clinical studies. The first preclinical and clinical work has mainly shown a decrease in amyloid burden in mice models and in patients. However, Alzheimer's disease pathology also encompasses tauopathy, which is closely related to cognitive decline, making it a crucial therapeutic target. The effects of blood-brain barrier opening with ultrasound have been rarely assessed on tau and are still unclear. METHODS This systematic review, conducted through searches using Pubmed, Embase, Web of Science and Cochrane Central databases, extracted results of 15 studies reporting effects of blood-brain barrier opening using ultrasound on tau proteins. RESULTS This review of the literature indicates that blood-brain barrier opening using ultrasound can decrease the extent of the tau pathology or potentialize the effect of a therapeutic drug. However, selected studies report paradoxically that blood-brain barrier opening can increase tau pathology burden and induce brain damage. DISCUSSION Apparent discrepancies between reports could originate from the variability in protocols or analytical methods that may impact the effects of blood-brain barrier opening with ultrasound on tauopathies, glial populations, tissue integrity and functional outcomes. CONCLUSION This calls for a better standardization effort combined with improved methodologies allowing between-studies comparisons, and for further understanding of the effects of blood-brain barrier opening on tau pathology as an essential prerequisite before translation to clinic.
Collapse
Affiliation(s)
- Amandine Géraudie
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France.
| | | | | | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Benoît Delatour
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France
| |
Collapse
|
4
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. J Cell Commun Signal 2025; 19:e70006. [PMID: 40026671 PMCID: PMC11870853 DOI: 10.1002/ccs3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. Although neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cell-cell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and transcription factor activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Davidowitz EJ, Lopez P, Patel D, Jimenez H, Wolin A, Eun J, Adrien L, Koppel J, Morgan D, Davies P, Moe JG. Therapeutic Treatment With OLX-07010 Inhibited Tau Aggregation and Ameliorated Motor Deficits in an Aged Mouse Model of Tauopathy. J Neurochem 2025; 169:e70025. [PMID: 40052227 PMCID: PMC11886763 DOI: 10.1111/jnc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Targeting tau protein is a strategy for the development of disease-modifying therapeutics for Alzheimer's disease (AD) and numerous rare tauopathies. A small molecule approach targeting tau aggregation was used to select and optimize compounds inhibiting tau self-association in vitro that have translated in vivo in preventive studies in htau and P301L tau JNPL3 mouse models of tauopathy. In this therapeutic treatment study, aged JNPL3 mice with pre-existing tau aggregates were used to evaluate the therapeutic effect of OLX-07010. The study had a Baseline group of mice aged 7 months, a vehicle, and two dose groups treated until 12 months by administration in feed. The primary endpoint of the study was the reduction of insoluble tau aggregates with statistical significance. The secondary endpoints were dose-dependent reduction of insoluble tau aggregates, reduction of soluble tau, and improvement of motor behavior. ELISAs and immunoblots were used to determine the levels of tau and its aggregated forms including self-associated tau and Sarkosyl insoluble tau. Effect on motor behavior, as measured by Rotarod assay, was also assessed between the treatment groups. At the end of treatment, reduced levels of self-associated tau, Sarkosyl insoluble tau aggregates, and overall levels of tau in the heat-stable fraction with statistical significance in the cortex were observed. Treatment prevented the accumulation of tau aggregates above baseline, and in parallel, treatment groups had improved motor behavior in a Rotarod assay compared to baseline and vehicle control groups, suggesting that treatment was rescuing motor impairment in aged mice. The functional and biochemical readouts suggest that this small molecule has potential for treating neurodegenerative diseases characterized by tau aggregation such as AD and progressive supranuclear palsy.
Collapse
Affiliation(s)
- E. J. Davidowitz
- Oligomerix, Inc.White PlainsNew YorkUSA
- Oligomerix, Inc.BronxNew YorkUSA
| | - P. Lopez
- Oligomerix, Inc.BronxNew YorkUSA
| | - D. Patel
- Oligomerix, Inc.BronxNew YorkUSA
| | - H. Jimenez
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - A. Wolin
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. Eun
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - L. Adrien
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. Koppel
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - D. Morgan
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - P. Davies
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. G. Moe
- Oligomerix, Inc.White PlainsNew YorkUSA
- Oligomerix, Inc.BronxNew YorkUSA
| |
Collapse
|
6
|
Tournier BB, Ceyzériat K, Marteyn A, Amossé Q, Badina AM, Tsartsalis S, Herrmann FR, Zekry D, Millet P. Brain and plasmatic CLUSTERIN are translational markers of Alzheimer's disease. Brain Pathol 2025; 35:e13281. [PMID: 39965636 PMCID: PMC11835443 DOI: 10.1111/bpa.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 02/20/2025] Open
Abstract
Early diagnosis of late-onset Alzheimer's disease (AD) by peripheral biomarkers remains a challenge; many have been proposed, but none have been evaluated in a prospective manner. CLUSTERIN (CLU), a chaperone protein expressed in the brain and found in relatively high concentrations in plasma, is a promising candidate. CLU contributes to the elimination of β-amyloid (Aβ), which is associated to neurofibrillary tangles and to the genetic risk for AD. We performed a longitudinal measurement of CLU in the brain and the plasma in 3xTgAD mice. Assessment of CLU was also conducted in 12-month-old TgF344-AD rats. In humans, brain CLU was measured in non-demented and in AD subjects. The plasma CLU was longitudinally measured in four cohorts defined as healthy controls that remained stable, healthy controls that presented a cognitive decline between the two measures, mild cognitive impairment (MCI) that presented a cognitive decline between the two measures and AD. A validation cohort composed of 19 MCI was used and plasma CLU was measured before and after conversion in AD. Increases in CLU were measured in the hippocampus of 3xTgAD and TgF344-AD animals in the absence of plasmatic changes. CLU is heterogeneously expressed in the hippocampus in non-demented individuals and increased in AD. In the plasma, two CLU levels were measured: low in controls and MCI, and high in AD. To validate that the elevation in CLU is associated with conversion to AD, a replication study showed, in a second group MCI patients converting to AD in the follow-up that CLU levels increased in 16/19 individuals. The increase in brain CLU occurs in AD models as in humans, and seems to precede plasma variations, which could make it an AD therapeutic target. Plasma CLU seems to be a promising marker of cognitive decline, and its association with AD may be a useful complementary diagnostic tool.
Collapse
Affiliation(s)
- Benjamin B. Tournier
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Kelly Ceyzériat
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
- CIBM Center for BioMedical Imaging, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
- Laboratory of Child Growth and DevelopmentUniversity of GenevaGenevaSwitzerland
| | - Antoine Marteyn
- Division of Internal Medicine for the AgedUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Quentin Amossé
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Aurélien M. Badina
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Stergios Tsartsalis
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - François R. Herrmann
- Division of Geriatrics and rehabilitationUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Dina Zekry
- Division of Internal Medicine for the AgedUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Philippe Millet
- Department of PsychiatryUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| |
Collapse
|
7
|
Zhong M, Xu QQ, Huang MQ, Zhan RT, Huang XQ, Yang W, Lin ZX, Xian YF. Rhynchophylline alleviates cognitive deficits in multiple transgenic mouse models of Alzheimer's disease via modulating neuropathology and gut microbiota. Acta Pharmacol Sin 2025:10.1038/s41401-025-01475-0. [PMID: 40011632 DOI: 10.1038/s41401-025-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025]
Abstract
Amyloid-beta (Aβ) aggregation, phosphorylated tau accumulation and neuroinflammation are considered as three hallmarks of Alzheimer's disease (AD). Rhynchophylline (RN), the major alkaloid of a Chinese medicinal plant Uncaria rhynchophylla, has been shown to possess potent anti-AD effects. This study explored the effects of RN on Aβ pathology, tauopathy, and neuroinflammation using three AD mouse models, including TgCRND8, 3×Tg-AD, and 5×FAD, with RN treatment lasting for 4, 6, and 6 months, respectively, followed by behavioral tests and biological assays. In addition, BV2 cells were employed to further evaluate the biological effects of RN. RN treatment improved cognitive functions by reducing anxiety-like behaviors, enhancing recognition ability, and ameliorating learning impairments. It modulated Aβ processing through reducing the Aβ-producing enzyme activities and enhancing degradation enzyme activities, thereby diminishing Aβ accumulation. RN also decreased hyperphosphorylated tau proteins at Thr181, Thr205, Ser396, and Ser404 sites. Moreover, RN diminished neuroinflammation by reducing microglia and astrocyte activation and lowering the release of inflammatory cytokines. Furthermore, RN treatment could restore gut microbiota dysbiosis in 5×FAD mice. In BV2 cells, knockdown of p53, HDAC2, and Galectin-3 markedly enhanced the anti-inflammatory effects of RN. Overall, the anti-AD properties of RN were attributed to its regulation of multiple biological pathways, including regulation of the p53/PINK1 signaling pathway, inhibition of the HDAC2/AMPK signaling pathway, suppression of the Galectin-3/C/EBPβ/AEP signaling pathway, and modulation of gut microflora dysbiosis. This pioneering study unambiguously revealed the effects of RN on cognitive impairments, APP processing, tauopathy, and neuroinflammation in different transgenic mouse models with differing AD burdens, highlighting its potential as an anti-AD therapeutic agent and enhancing the scientific basis for its clinical use in treating AD.
Collapse
Affiliation(s)
- Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ming-Qing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ruo-Ting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
8
|
Cantone AF, Burgaletto C, Di Benedetto G, Gaudio G, Giallongo C, Caltabiano R, Broggi G, Bellanca CM, Cantarella G, Bernardini R. Rebalancing Immune Interactions within the Brain-Spleen Axis Mitigates Neuroinflammation in an Aging Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:15. [PMID: 39918606 PMCID: PMC11805801 DOI: 10.1007/s11481-025-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide, characterized by accumulation of amyloid-β protein and hyperphosphorylated tau protein in the brain. Neuroinflammation, resulting from chronic activation of brain-resident innate immune cells as well as enhanced peripheral leukocyte access across the blood-brain barrier, crucially affects AD progression. In this context, TNFSF10, a cytokine substantially expressed in the AD brain, has been shown to modulate both the innate and the adaptive branches of the immune response in AD-related neuroinflammation. In this study, we explored whether a TNFSF10-neutralizing treatment could represent a tool to re-balance the overall overshooting inflammatory response in a mouse model of AD. Specifically, 3xTg-AD mice were treated sub-chronically with an anti-TNFSF10 monoclonal antibody for three months, and were then sacrificed at 15 months. TNFSF10 neutralization reduced the expression of the inflammatory marker CD86, inversely related to levels of the anti-inflammatory marker CD206 in the brain of 3xTg-AD mice, suggesting a switch of microglia towards a neuroprotective phenotype. Similar results were observed in the splenic macrophage population. Moreover, flow cytometry revealed a significant decrease of CD4+CD25+FOXP3+ T regulatory cells as well as reduced number of CD11b+LY6Chigh proinflammatory monocytes in both the brain and the spleen of 3xTg-AD mice treated with anti-TNFSF10 monoclonal antibody. Finally, the treatment resulted in lower count of splenic CD4+ and CD8+ T cells expressing PD1. The data suggest that TNFSF10 system-targeted treatment effectively restrain overshooting central and peripheral inflammation by rebalancing the overall immune response, mitigating the progression of AD pathology.
Collapse
Affiliation(s)
- Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy.
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| |
Collapse
|
9
|
Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14438. [PMID: 39698895 PMCID: PMC11848394 DOI: 10.1002/alz.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca2+-activated K+ channels (BKCa) regulate cerebrovascular reactivity and are impaired in AD. BKCa activity depends on intracellular Ca2+ (Ca2+ sparks) and nitro-oxidative post-translational modifications. However, whether these mechanisms underlie BKCa impairment in AD remains unknown. METHODS Cerebral arteries from 5x-FAD and wild-type (WT) littermates were used for molecular biology, electrophysiology, ex vivo, and in vivo experiments. RESULTS Arterial BKCa activity is reduced in 5x-FAD via sex-dependent mechanisms: in males, there is lower BKα subunit expression and less Ca2+ sparks. In females, we observed reversible nitro-oxidative modification of BKCa. Further, BKCa is involved in hemodynamic regulation in WT mice, and its dysfunction is associated with vascular deficits in 5x-FAD. DISCUSSION Our data highlight the central role played by BKCa in cerebral hemodynamic regulation and that molecular mechanisms of its impairment diverge based on sex in 5x-FAD. HIGHLIGHTS Cerebral microvascular BKCa dysfunction occurs in both female and male 5x-FAD. Reduction in BKα subunit protein and Ca2+ sparks drive the dysfunction in males. Nitro-oxidative stress is present in females, but not males, 5x-FAD. Reversible nitro-oxidation of BKα underlies BKCa dysfunction in female 5x-FAD.
Collapse
Affiliation(s)
- Josiane F. Silva
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Felipe D. Polk
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paige E. Martin
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Stephenie H. Thai
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Andrea Savu
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Matthew Gonzales
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Allison M. Kath
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Michael T. Gee
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paulo W. Pires
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Sarver Heart CenterUniversity of Arizona College of MedicineTucsonArizonaUSA
- Bio5 InstituteUniversity of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|
10
|
Moreno-Rodríguez M, Martínez-Gardeazabal J, Bengoetxea de Tena I, Llorente-Ovejero A, Lombardero L, González de San Román E, Giménez-Llort L, Manuel I, Rodríguez-Puertas R. Cognitive improvement via cortical cannabinoid receptors and choline-containing lipids. Br J Pharmacol 2025; 182:1038-1058. [PMID: 39489624 DOI: 10.1111/bph.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Recent research linking choline-containing lipids to degeneration of basal forebrain cholinergic neurons in neuropathological states illustrates the challenge of balancing lipid integrity with optimal acetylcholine levels, essential for memory preservation. The endocannabinoid system influences learning and memory processes regulated by cholinergic neurotransmission. Therefore, we hypothesised that activation of the endocannabinoid system may confer neuroprotection against cholinergic degeneration. EXPERIMENTAL APPROACH We examined the neuroprotective potential of sub-chronic treatments with the cannabinoid agonist WIN55,212-2, using ex vivo organotypic tissue cultures including nucleus basalis magnocellularis and cortex and in vivo rat models of specific cholinergic damage induced by 192IgG-saporin. Levels of lipids, choline and acetylcholine were measured with histochemical and immunofluorescence assays, along with [35S]GTPγS autoradiography of cannabinoid and muscarinic GPCRs and MALDI-mass spectrometry imaging analysis. Learning and memory were assessed by the Barnes maze and the novel object recognition test in rats and in the 3xTg-AD mouse model. KEY RESULTS Degeneration, induced by 192IgG-saporin, of baso-cortical cholinergic pathways resulted in memory deficits and decreased cortical levels of lysophosphatidylcholines (LPC). WIN55,212-2 restored cortical cholinergic transmission and LPC levels via activation of cannabinoid receptors. This activation altered cortical lipid homeostasis mainly by reducing sphingomyelins in lesioned animals. These modifications were crucial for memory recovery. CONCLUSION AND IMPLICATIONS We hypothesise that WIN55,212-2 facilitates an alternative choline source by breaking down sphingomyelins, leading to elevated cortical acetylcholine levels and LPCs. These results imply that altering choline-containing lipids via activation of cannabinoid receptors presents a promising therapeutic approach for dementia linked to cholinergic dysfunction.
Collapse
Affiliation(s)
- Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Bengoetxea de Tena
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
11
|
Perera C, Cruz R, Shemesh N, Carvalho T, Thomas DL, Wells J, Ianuș A. Non-invasive MRI of blood-cerebrospinal fluid-barrier function in a mouse model of Alzheimer's disease: a potential biomarker of early pathology. Fluids Barriers CNS 2024; 21:97. [PMID: 39633378 PMCID: PMC11616325 DOI: 10.1186/s12987-024-00597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Choroid plexus (CP) or blood-cerebrospinal fluid-barrier (BCSFB) is a unique functional tissue which lines the brain's fluid-filled ventricles, with a crucial role in CSF production and clearance. BCSFB dysfunction is thought to contribute to toxic protein build-up in neurodegenerative disorders, including Alzheimer's disease (AD). However, the dynamics of this process remain unknown, mainly due to the paucity of in-vivo methods for assessing CP function. METHODS We harness recent developments in Arterial Spin Labelling MRI to measure water delivery across the BCSFB as a proxy for CP function, as well as cerebral blood flow (CBF), at different stages of AD in the widely used triple transgenic mouse model (3xTg), with ages between 8 and 32 weeks. We further compared the MRI results with Y-maze behaviour testing, and histologically validated the expected pathological changes, which recapitulate both amyloid and tau deposition. RESULTS Total BCSFB-mediated water delivery is significantly higher in 3xTg mice (> 50%) from 8 weeks (preclinical stage), an increase which is not explained by differences in ventricular volumes, while tissue parameters such as CBF and T1 are not different between groups at all ages. Behaviour differences between the groups were observed starting at 20 weeks, especially in terms of locomotion, with 3xTg animals showing a significantly smaller number of arm entries in the Y-maze. CONCLUSIONS Our work strongly suggests the involvement of CP in the early stages of AD, before the onset of symptoms and behavioural changes, providing a potential biomarker of pathology.
Collapse
Affiliation(s)
- Charith Perera
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Tânia Carvalho
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Andrada Ianuș
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal.
- King's College London, School of Biomedical Engineering and Imaging Sciences, Imaging Physics and Engineering Research Department; Cancer Imaging Research Department, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
12
|
Del Rosario Hernandez T, Joshi NR, Gore SV, Kreiling JA, Creton R. Combining supervised and unsupervised analyses to quantify behavioral phenotypes and validate therapeutic efficacy in a triple transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2024; 181:117718. [PMID: 39637754 PMCID: PMC11755788 DOI: 10.1016/j.biopha.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Behavioral testing is an essential tool for evaluating cognitive function and dysfunction in preclinical research models. This is of special importance in the study of neurological disorders such as Alzheimer's disease. However, the reproducibility of classic behavioral assays is frequently compromised by interstudy variation, leading to ambiguous conclusions about the behavioral markers characterizing the disease. Here, we identify age- and genotype-driven differences between 3xTg-AD and non-transgenic control mice using a low-cost, highly customizable behavioral assay that requires little human intervention. Through behavioral phenotyping combining both supervised and unsupervised behavioral classification methods, we are able to validate the preventative effects of the immunosuppressant cyclosporine A in a rodent model of Alzheimer's disease, as well as the partially ameliorating effects of candidate drugs nebivolol and cabozantinib.
Collapse
Affiliation(s)
- Thais Del Rosario Hernandez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI United States.
| | - Narendra R Joshi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI United States
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI United States
| |
Collapse
|
13
|
Jiménez-Herrera R, Contreras A, Navarro-López JD, Jiménez-Díaz L. Sex differences in Alzheimer's disease: an urgent research venue to follow. Neural Regen Res 2024; 19:2569-2570. [PMID: 38808985 PMCID: PMC11168504 DOI: 10.4103/nrr.nrr-d-23-01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Raquel Jiménez-Herrera
- Neurophysiology & Behavior Lab, University of Castilla-La Mancha, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Ana Contreras
- Neurophysiology & Behavior Lab, University of Castilla-La Mancha, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Juan D. Navarro-López
- Neurophysiology & Behavior Lab, University of Castilla-La Mancha, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behavior Lab, University of Castilla-La Mancha, School of Medicine of Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
14
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Navigating Alzheimer's Disease Mouse Models: Age-Related Pathology and Cognitive Deficits. Biomolecules 2024; 14:1405. [PMID: 39595581 PMCID: PMC11592094 DOI: 10.3390/biom14111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Since the mid-1990s, scientists have been generating mouse models of Alzheimer's disease to elucidate key mechanisms underlying the onset and progression of the disease and aid in developing potential therapeutic approaches. The first successful mouse model of Alzheimer's disease was reported in 1995 with the generation of the PDAPP mice, which were obtained by the overexpression of gene coding for the amyloid precursor protein (APP). Since then, scientists have used different approaches to develop other APP overexpression mice, mice overexpressing tau, or a combination of them. More recently, Saito and colleagues generated a mouse model by knocking in mutations associated with familial Alzheimer's disease into the APP gene. In this review, we will describe the most used animal models and provide a practical guide for the disease's age of onset and progression. We believe that this guide will be valuable for the planning and experimental design of studies utilizing these mouse models.
Collapse
Affiliation(s)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (A.S.); (S.O.)
| |
Collapse
|
15
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
16
|
Bostick JW, Connerly TJ, Thron T, Needham BD, de Castro Fonseca M, Kaddurah-Daouk R, Knight R, Mazmanian SK. The microbiome shapes immunity in a sex-specific manner in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593011. [PMID: 38766238 PMCID: PMC11100721 DOI: 10.1101/2024.05.07.593011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
INTRODUCTION : Preclinical studies reveal that the microbiome broadly affects immune responses and deposition and/or clearance of amyloid-beta (Aβ) in mouse models of Alzheimer's disease (AD). Whether the microbiome shapes central and peripheral immune profiles in AD models remains unknown. METHODS : We examined adaptive immune responses in two mouse models containing AD- related genetic predispositions (3xTg and 5xFAD) in the presence or absence of the microbiome. RESULTS : T and B cells were altered in brain-associated and systemic immune tissues between genetic models and wildtype mice, with earlier signs of immune activity in females. Systemic immune responses were modulated by the microbiome and differed by sex. Further, the absence of a microbiome in germ-free mice resulted in reduced cognitive deficits, primarily in females. DISCUSSION : These data reveal sexual dimorphism in early signs of immune activity and microbiome effects, and highlight an interesting interaction between sex and the microbiome in mouse models of AD.
Collapse
|
17
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
18
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595199. [PMID: 38826305 PMCID: PMC11142088 DOI: 10.1101/2024.05.21.595199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cellcell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
19
|
Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev 2024; 162:105724. [PMID: 38762130 DOI: 10.1016/j.neubiorev.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Collapse
Affiliation(s)
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1111, Hungary
| | - Frédéric Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec-Laval University, Quebec G1V0A6, Canada; International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg D-35032, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany
| | - Jean-Christophe Delpech
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Jorine Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Emmy E Hoeksema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Sophie Layé
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, 1018, the Netherlands
| | - Christoph Rummel
- Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Luba Sominsky
- Barwon Health, Geelong, Victoria 3220, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3217, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
20
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Del Rosario Hernandez T, Joshi NR, Gore SV, Kreiling JA, Creton R. Combining supervised and unsupervised analyses to quantify behavioral phenotypes and validate therapeutic efficacy in a triple transgenic mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597924. [PMID: 38895269 PMCID: PMC11185760 DOI: 10.1101/2024.06.07.597924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Behavioral testing is an essential tool for evaluating cognitive function and dysfunction in preclinical research models. This is of special importance in the study of neurological disorders such as Alzheimer's disease. However, the reproducibility of classic behavioral assays is frequently compromised by interstudy variation, leading to ambiguous conclusions about the behavioral markers characterizing the disease. Here, we identify age- and genotype-driven differences between 3xTg-AD and non-transgenic control mice using a low-cost, highly customizable behavioral assay that requires little human intervention. Through behavioral phenotyping combining both supervised and unsupervised behavioral classification methods, we are able to validate the preventative effects of the immunosuppressant cyclosporine A in a rodent model of Alzheimer's disease, as well as the partially ameliorating effects of candidate drugs nebivolol and cabozantinib.
Collapse
Affiliation(s)
- Thais Del Rosario Hernandez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Narendra R Joshi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
23
|
Ono M, Ito T, Yamaki S, Hori Y, Zhou Q, Zhao X, Muramoto S, Yamamoto R, Furuyama T, Sakata-Haga H, Hatta T, Hamaguchi T, Kato N. Spatiotemporal development of the neuronal accumulation of amyloid precursor protein and the amyloid plaque formation in the brain of 3xTg-AD mice. Heliyon 2024; 10:e28821. [PMID: 38596059 PMCID: PMC11002285 DOI: 10.1016/j.heliyon.2024.e28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
The amyloid plaque is a hallmark of Alzheimer's disease. The accumulation of the amyloid precursor protein (APP) in the neuronal structure is assumed to lead to amyloid plaque formation through the excessive production of β-amyloid protein. To study the relationship between the neuronal accumulation of APP and amyloid plaque formation, we histologically analyzed their development in the different brain regions in 3xTg-AD mice, which express Swedish mutated APP (APPSWE) in the neurons. Observation throughout the brain revealed APPSWE-positive somata in the broad regions. Quantitative model analysis showed that the somatic accumulation of APPSWE developed firstly in the hippocampus from a very early age (<1 month) and proceeded slower in the isocortex. In line with this, the hippocampus was the first region to form amyloid plaques at the age of 9-12 months, while amyloid plaques were rarely observed in the isocortex. Females had more APPSWE-positive somata and plaques than males. Furthermore, amyloid plaques were observed in the lateral septum and pontine grey, which did not contain APPSWE-positive somata but only the APPSWE-positive fibers. These results suggested that neuronal accumulation of APPSWE, both in somatodendritic and axonal domains, is closely related to the formation of amyloid plaques.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama, 930-0194, Japan
| | - Sachiko Yamaki
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Qing Zhou
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Xirun Zhao
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Shinji Muramoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
24
|
Jagadeesan N, Roules GC, Chandrashekar DV, Yang J, Kolluru S, Sumbria RK. Modulation of hippocampal protein expression by a brain penetrant biologic TNF-α inhibitor in the 3xTg Alzheimer's disease mice. J Transl Med 2024; 22:291. [PMID: 38500108 PMCID: PMC10946165 DOI: 10.1186/s12967-024-05008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Biologic TNF-α inhibitors (bTNFIs) can block cerebral TNF-α in Alzheimer's disease (AD) if these macromolecules can cross the blood-brain barrier (BBB). Thus, a model bTNFI, the extracellular domain of type II TNF-α receptor (TNFR), which can bind to and sequester TNF-α, was fused with a mouse transferrin receptor antibody (TfRMAb) to enable brain delivery via BBB TfR-mediated transcytosis. Previously, we found TfRMAb-TNFR to be protective in a mouse model of amyloidosis (APP/PS1) and tauopathy (PS19), and herein we investigated its effects in mice that combine both amyloidosis and tauopathy (3xTg-AD). METHODS Eight-month-old female 3xTg-AD mice were injected intraperitoneally with saline (n = 11) or TfRMAb-TNFR (3 mg/kg; n = 11) three days per week for 12 weeks. Age-matched wild-type (WT) mice (n = 9) were treated similarly with saline. Brains were processed for immunostaining and high-resolution multiplex NanoString GeoMx spatial proteomics. RESULTS We observed regional differences in proteins relevant to Aβ, tau, and neuroinflammation in the hippocampus of 3xTg-AD mice compared with WT mice. From 64 target proteins studied using spatial proteomics, a comparison of the Aβ-plaque bearing vs. plaque-free regions in the 3xTg-AD mice yielded 39 differentially expressed proteins (DEP) largely related to neuroinflammation (39% of DEP) and Aβ and tau pathology combined (31% of DEP). Hippocampal spatial proteomics revealed that the majority of the proteins modulated by TfRMAb-TNFR in the 3xTg-AD mice were relevant to microglial function (⁓ 33%). TfRMAb-TNFR significantly reduced mature Aβ plaques and increased Aβ-associated microglia around larger Aβ deposits in the 3xTg-AD mice. Further, TfRMAb-TNFR increased mature Aβ plaque-associated microglial TREM2 in 3xTg-AD mice. CONCLUSION Overall, despite the low visual Aβ load in the 11-month-old female 3xTg-AD mice, our results highlight region-specific AD-relevant DEP in the hippocampus of these mice. Chronic TfRMAb-TNFR dosing modulated several DEP involved in AD pathology and showed a largely microglia-centric mechanism of action in the 3xTg-AD mice.
Collapse
Affiliation(s)
- Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - G Chuli Roules
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Devaraj V Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Joshua Yang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Sanjana Kolluru
- Rancho Cucamonga High School, 11801 Lark Dr, Rancho Cucamonga, CA, 91701, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
25
|
Kommaddi RP, Gowaikar R, P A H, Diwakar L, Singh K, Mondal A. Akt activation ameliorates deficits in hippocampal-dependent memory and activity-dependent synaptic protein synthesis in an Alzheimer's disease mouse model. J Biol Chem 2024; 300:105619. [PMID: 38182004 PMCID: PMC10839450 DOI: 10.1016/j.jbc.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Protein kinase-B (Akt) and the mechanistic target of rapamycin (mTOR) signaling pathways are implicated in Alzheimer's disease (AD) pathology. Akt/mTOR signaling pathways, activated by external inputs, enable new protein synthesis at the synapse and synaptic plasticity. The molecular mechanisms impeding new protein synthesis at the synapse in AD pathogenesis remain elusive. Here, we aimed to understand the molecular mechanisms prior to the manifestation of histopathological hallmarks by characterizing Akt1/mTOR signaling cascades and new protein synthesis in the hippocampus of WT and amyloid precursor protein/presenilin-1 (APP/PS1) male mice. Intriguingly, compared to those in WT mice, we found significant decreases in pAkt1, pGSK3β, pmTOR, pS6 ribosomal protein, and p4E-BP1 levels in both post nuclear supernatant and synaptosomes isolated from the hippocampus of one-month-old (presymptomatic) APP/PS1 mice. In synaptoneurosomes prepared from the hippocampus of presymptomatic APP/PS1 mice, activity-dependent protein synthesis at the synapse was impaired and this deficit was sustained in young adults. In hippocampal neurons from C57BL/6 mice, downregulation of Akt1 precluded synaptic activity-dependent protein synthesis at the dendrites but not in the soma. In three-month-old APP/PS1 mice, Akt activator (SC79) administration restored deficits in memory recall and activity-dependent synaptic protein synthesis. C57BL/6 mice administered with an Akt inhibitor (MK2206) resulted in memory recall deficits compared to those treated with vehicle. We conclude that dysregulation of Akt1/mTOR and its downstream signaling molecules in the hippocampus contribute to memory recall deficits and loss of activity-dependent synaptic protein synthesis. In AD mice, however, Akt activation ameliorates deficits in memory recall and activity-dependent synaptic protein synthesis.
Collapse
Affiliation(s)
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India; Manipal Academy of Higher Education, Manipal, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Kunal Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
27
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
28
|
Ceyzériat K, Jaques E, Gloria Y, Badina A, Millet P, Koutsouvelis N, Dipasquale G, Frisoni GB, Zilli T, Garibotto V, Tournier BB. Low-Dose Radiation Therapy Impacts Microglial Inflammatory Response without Modulating Amyloid Load in Female TgF344-AD Rats. J Alzheimers Dis 2024; 98:1001-1016. [PMID: 38489181 DOI: 10.3233/jad-231153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Low-dose radiation therapy (LD-RT) has demonstrated in preclinical and clinical studies interesting properties in the perspective of targeting Alzheimer's disease (AD), including anti-amyloid and anti-inflammatory effects. Nevertheless, studies were highly heterogenous with respect to total doses, fractionation protocols, sex, age at the time of treatment and delay post treatment. Recently, we demonstrated that LD-RT reduced amyloid peptides and inflammatory markers in 9-month-old TgF344-AD (TgAD) males. Objective As multiple studies demonstrated a sex effect in AD, we wanted to validate that LD-RT benefits are also observed in TgAD females analyzed at the same age. Methods Females were bilaterally treated with 2 Gy×5 daily fractions, 2 Gy×5 weekly fractions, or 10 fractions of 1 Gy delivered twice a week. The effect of each treatment on amyloid load and inflammation was evaluated using immunohistology and biochemistry. Results A daily treatment did not affect amyloid and reduced only microglial-mediated inflammation markers, the opposite of the results obtained in our previous male study. Moreover, altered fractionations (2 Gy×5 weekly fractions or 10 fractions of 1 Gy delivered twice a week) did not influence the amyloid load or neuroinflammatory response in females. Conclusions A daily treatment consequently appears to be the most efficient for AD. This study also shows that the anti-amyloid and anti-inflammatory response to LD-RT are, at least partly, two distinct mechanisms. It also emphasizes the necessity to assess the sex impact when evaluating responses in ongoing pilot clinical trials testing LD-RT against AD.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emma Jaques
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Yesica Gloria
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Bertarelli Foundation Gene Therapy Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aurélien Badina
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanna Dipasquale
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Department of Oncology, Division of Radiation Oncology, Geneva University Hospitals, Geneva, Switzerland
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, Geneva University, Geneva, Switzerland
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- CIBM Center for BioMedical Imaging, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
29
|
Ng PY, Zhang C, Li H, Baker DJ. Senescence Targeting Methods Impact Alzheimer's Disease Features in 3xTg Mice. J Alzheimers Dis 2024; 97:1751-1763. [PMID: 38306030 PMCID: PMC10939718 DOI: 10.3233/jad-230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Cellular senescence has been associated with neurodegenerative disease and clearance of senescent cells using genetic or pharmaceutical strategies (senolytics) has demonstrated beneficial effects in mouse models investigating individual disease etiologies of Alzheimer's disease (AD). However, it has remained unclear if senescent cell clearance in a mouse model exhibiting both plaque and tau pathologies modifies the disease state (3xTg). Objective To investigate the effects of senescent cell clearance in the 3xTg mouse model. Methods 3xTg mice were treated with senolytics (ABT263 (navitoclax; NAVI), a combination of dasatinib and quercetin (D+Q)), or subjected to transgene-mediated removal of p16-expressing cells (via INK-ATTAC). Results Senolytic treatments consistently reduced microgliosis and ameliorated both amyloid and tau pathology in 3xTg mice. Using RNA sequencing, we found evidence that synaptic dysfunction and neuroinflammation were attenuated with treatment. These beneficial effects were not observed with short-term senolytic treatment in mice with more advanced disease. Conclusions Overall, our results further corroborate the beneficial effects senescent cell clearance could have on AD and highlight the importance of early intervention for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Pei Y. Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Park H, Kwon HS, Lee KY, Kim YE, Son JW, Choi NY, Lee EJ, Han MH, Park DW, Kim S, Koh SH. GV1001 modulates neuroinflammation and improves memory and behavior through the activation of gonadotropin-releasing hormone receptors in a triple transgenic Alzheimer's disease mouse model. Brain Behav Immun 2024; 115:295-307. [PMID: 37884161 DOI: 10.1016/j.bbi.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
GV1001 protects neural cells from amyloid-β (Aβ) toxicity and other stressors in in vitro studies and demonstrates clinically beneficial effects in patients with moderate to severe Alzheimer's disease (AD). Here, we investigated the protective effects and mechanism of action of GV1001 in triple transgenic AD (3xTg-AD) mice. We found that GV1001 improved memory and cognition in middle- and old-aged 3xTg-AD mice. Additionally, it reduced Aβ oligomer and phospho-tau (Ser202 and Thr205) levels in the brain, and mitigated neuroinflammation by promoting a neuroprotective microglial and astrocyte phenotype while diminishing the neurotoxic ones. In vitro, GV1001 bound to gonadotropin releasing hormone receptors (GnRHRs) with high affinity. Levels of cyclic adenosine monophosphate, a direct downstream effector of activated GnRHRs, increased after GV1001 treatment. Furthermore, inhibition of GnRHRs blocked GV1001-induced effects. Thus, GV1001 might improve cognitive and memory functions of 3xTg-AD mice by suppressing neuroinflammation and reducing Aβ oligomers levels and phospho-tau by activating GnRHRs and their downstream signaling pathways.
Collapse
Affiliation(s)
- Hyunhee Park
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Ye Eun Kim
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Jeong-Woo Son
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Na-Young Choi
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Eun Ji Lee
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Dong Woo Park
- Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Sangjae Kim
- Teloid Inc., 3580 Wilshire Boulevard, Suite 900-31, Los Angeles, CA 90010, USA.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, South Korea.
| |
Collapse
|
31
|
Balu D, Valencia-Olvera AC, Islam Z, Mielczarek C, Hansen A, Perez Ramos TM, York J, LaDu MJ, Tai LM. APOE genotype and sex modulate Alzheimer's disease pathology in aged EFAD transgenic mice. Front Aging Neurosci 2023; 15:1279343. [PMID: 38020764 PMCID: PMC10644540 DOI: 10.3389/fnagi.2023.1279343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aβ) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aβ pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aβ42 overproduction. We assessed Aβ levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aβ deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zarak Islam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Clare Mielczarek
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Allison Hansen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Peoria, IL, United States
| | - Tamara M. Perez Ramos
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- School of Medicine, St. George’s University, St. George’s, Grenada
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Israel LL, Braubach O, Shatalova ES, Chepurna O, Sharma S, Klymyshyn D, Galstyan A, Chiechi A, Cox A, Herman D, Bliss B, Hasen I, Ting A, Arechavala R, Kleinman MT, Patil R, Holler E, Ljubimova JY, Koronyo-Hamaoui M, Sun T, Black KL. Exposure to environmental airborne particulate matter caused wide-ranged transcriptional changes and accelerated Alzheimer's-related pathology: A mouse study. Neurobiol Dis 2023; 187:106307. [PMID: 37739136 DOI: 10.1016/j.nbd.2023.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aβ plaques, immunostaining revealed that both intracellular Aβ1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Ekaterina S Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Dmytro Klymyshyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - David Herman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Bishop Bliss
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Irene Hasen
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Amanda Ting
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rebecca Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Eggehard Holler
- Terasaki Institute, Los Angeles, CA 90024, United States of America
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| |
Collapse
|
33
|
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 2023; 453:114605. [PMID: 37517574 DOI: 10.1016/j.bbr.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Menopause is the period in which women cease to produce the hormone estrogen, which can trigger physiological, cognitive, and behavioral changes. In this context, alternatives are needed that can reduce the effects provided by menopause, specifically in terms of cognitive and behavioral aspects. High-intensity interval training (HIIT) is an exercise protocol that has shown the potential to improve cognition by promoting an increase in antioxidant defenses and BDNF levels. Therefore, the aim of this study was to evaluate the effects of HIIT on behavior and hippocampal neurochemistry in ovariectomized adult rats. Four groups of rats were divided into: females without ovariectomy surgery and sedentary (SHAM-SED); females with ovariectomy surgery and sedentary (OVX-SED); females without ovariectomy surgery and trained (SHAM-HIIT); females with ovariectomy surgery and trained (OVX-HIIT). After the surgical procedure and the HIIT protocol, the animals underwent anxiety (elevated plus maze and open field) and memory (novel object recognition) tests. Corticosterone was measured in blood and BDNF levels and redox status were evaluated in the hippocampus. The OVX-SED group showed low BDNF levels and antioxidant enzymes, which may be linked to the observed memory impairments. The HIIT protocol (SHAM-HIIT and OVX-HIIT groups) increased the BDNF levels and antioxidant enzymes in the hippocampus, improving the animals' memory. However, HIIT also led to increased plasma corticosterone and anxiety-like behaviors. The ovariectomy procedure induced memory impairment probably due to reductions in hippocampal BDNF levels and redox imbalance. The HIIT protocol demonstrates promising results as an alternative to improve memory in ovariectomized rats.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | - Pedro Rodrigues Almeida
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Paula Silveira Balsamão Paes Leme
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Tania Regina Riul
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Cristiane Perácio Bastos
- Departamento de Enfermagem, Faculdade de Ciências Humanas de Curvelo (FACIC), Curvelo, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Dennison J, Mendez A, Szeto A, Lohse I, Wahlestedt C, Volmar CH. Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse. Biomolecules 2023; 13:1324. [PMID: 37759724 PMCID: PMC10526199 DOI: 10.3390/biom13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic compounds have become attractive small molecules for targeting the multifaceted aspects of Alzheimer's disease (AD). Although AD disproportionately affects women, most of the current literature investigating epigenetic compounds for the treatment of AD do not report sex-specific results. This is remarkable because there is rising evidence that epigenetic compounds intrinsically affect males and females differently. This manuscript explores the sexual dimorphism observed after chronic, low-dose administration of a clinically relevant histone deacetylase inhibitor, chidamide (Tucidinostat), in the 3xTg-AD mouse model. We found that chidamide treatment significantly improves glucose tolerance and increases expression of glucose transporters in the brain of males. We also report a decrease in total tau in chidamide-treated mice. Differentially expressed genes in chidamide-treated mice were much greater in males than females. Genes involved in the neuroinflammatory pathway and amyloid processing pathway were mostly upregulated in chidamide-treated males while downregulated in chidamide-treated females. This work highlights the need for drug discovery projects to consider sex as a biological variable to facilitate translation.
Collapse
Affiliation(s)
- Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Armando Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
35
|
Andrade-Guerrero J, Orta-Salazar E, Salinas-Lara C, Sánchez-Garibay C, Rodríguez-Hernández LD, Vargas-Rodríguez I, Barron-Leon N, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Effects of Voluntary Physical Exercise on the Neurovascular Unit in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:11134. [PMID: 37446312 DOI: 10.3390/ijms241311134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Luis O Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
36
|
Weigel TK, Guo CL, Güler AD, Ferris HA. Altered circadian behavior and light sensing in mouse models of Alzheimer's disease. Front Aging Neurosci 2023; 15:1218193. [PMID: 37409006 PMCID: PMC10318184 DOI: 10.3389/fnagi.2023.1218193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a 6 h advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, a circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.
Collapse
Affiliation(s)
- Thaddeus K. Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Cherry L. Guo
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ali D. Güler
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Heather A. Ferris
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
37
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
38
|
Weigel TK, Guo CL, Güler AD, Ferris HA. Altered circadian behavior and light sensing in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539086. [PMID: 37205532 PMCID: PMC10187209 DOI: 10.1101/2023.05.02.539086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a six hour advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, an SCN-independent circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.
Collapse
|
39
|
Sha S, Chaigneau T, Krantic S. Pre-symptomatic synaptic dysfunction and longitudinal decay of hippocampal synaptic function in APPPS1 mouse model of Alzheimer's disease is sex-independent. Brain Res Bull 2023; 198:36-49. [PMID: 37080395 DOI: 10.1016/j.brainresbull.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Alzheimer's disease (AD) is an incurable, age-related and progressive neurodegenerative disease characterized by cognitive impairments. Deficits in synaptic plasticity were reported in various models of AD-like pathology and are considered as an early contributing factor of cognitive impairment. However, the majority of previous studies were focused on overt, symptomatic stages of pathology and assessed long-term potentiation (LTP), whereas long-term depression (LTD) was much less investigated and the precise nature of its involvement remains poorly defined. To better understand the earliest synaptic dysfunctions along the pre-symptomatic stage of AD-like pathology, we performed a detailed analysis of underlying mechanisms and quantified basal synaptic activity, presynaptic release probability, and synaptic plasticity such as post-tetanic potentiation (PTP), as well as LTP and LTD. These parameters were studied in APPPS1 mouse model at two time points (early- and mid-) along the pre-symptomatic stage, which were compared with alterations monitored at two later time-points, i.e. the onset of cognitive deficits and the overt stage of full-blown pathology. Because sex is known to be an instrumental biological parameter in AD pathophysiology, all alterations were assessed in both males and females. Our data show that, as compared to wild-type (WT) littermates, initial neuronal hyperexcitability, seen at early pre-symptomatic stage shifts subsequently towards hypoexcitability at mid-pre-symptomatic stage and remains impaired at advanced stages. The pre-symptomatic changes also involve increased synaptic plasticity as assessed by paired-pulse facilitation (PPF), which returns to basal level at the onset of pathology and remains stable afterwards. Synaptic plasticity is impaired by mid-pre-symptomatic stage and manifests as lowered LTP and absence of LTD induction, the latter being reported here for the first time. Observed LTP and LTD impairments both persist in older APPPS1 mice. Remarkably, none of the observed differences was gender-dependent. Altogether, our data evidence that major impairments in basal synaptic efficacy and plasticity are detectable already during mid-pre-symptomatic stage of AD-like pathogenesis and likely involve hyperexcitability as the underlying mechanism. Our study also uncovers synaptic alterations that may become critical read-outs for testing the efficiency of novel, pre-symptomatic stage-targeted therapies for AD.
Collapse
Affiliation(s)
- Sha Sha
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France; Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Thomas Chaigneau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Slavica Krantic
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France.
| |
Collapse
|
40
|
Borsom EM, Conn K, Keefe CR, Herman C, Orsini GM, Hirsch AH, Palma Avila M, Testo G, Jaramillo SA, Bolyen E, Lee K, Caporaso JG, Cope EK. Predicting Neurodegenerative Disease Using Prepathology Gut Microbiota Composition: a Longitudinal Study in Mice Modeling Alzheimer's Disease Pathologies. Microbiol Spectr 2023; 11:e0345822. [PMID: 36877047 PMCID: PMC10101110 DOI: 10.1128/spectrum.03458-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023] Open
Abstract
The gut microbiota-brain axis is suspected to contribute to the development of Alzheimer's disease (AD), a neurodegenerative disease characterized by amyloid-β plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female 3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls. Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted from the colon and hippocampus, converted to cDNA, and used to measure immune gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics were calculated using QIIME2, and a random forest classifier was applied to predict bacterial features that are important in predicting mouse genotype. Gene expression of glial fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at 24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks, P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were correctly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we show that the relative abundance of Bacteroides species increased over time in 3xTg-AD mice. Taken together, we demonstrate that changes in bacterial gut microbiota composition at prepathology time points are predictive of the development of AD pathologies. IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer's disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. In this study, we observed temporal changes in the relative abundances of specific microbial taxa, including the genus Bacteroides, that may play a central role in disease progression and the severity of pathologies. The ability to use features of the microbiota to discriminate between mice modeling AD and wild-type mice at prepathology time points indicates a potential role of the gut microbiota as a risk or protective factor in AD.
Collapse
Affiliation(s)
- Emily M. Borsom
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kathryn Conn
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Christopher R. Keefe
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Chloe Herman
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gabrielle M. Orsini
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Allyson H. Hirsch
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Melanie Palma Avila
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - George Testo
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Sierra A. Jaramillo
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Evan Bolyen
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Keehoon Lee
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - J. Gregory Caporaso
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
41
|
Tousley AR, Yeh PWL, Yeh HH. Precocious emergence of cognitive and synaptic dysfunction in 3xTg-AD mice exposed prenatally to ethanol. Alcohol 2023; 107:56-72. [PMID: 36038084 PMCID: PMC10183974 DOI: 10.1016/j.alcohol.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 50 million people worldwide. Early life risk factors for AD, including prenatal exposures, remain underexplored. Exposure of the fetus to alcohol (ethanol) is not uncommon during pregnancy, and may result in physical, behavioral, and cognitive changes that are first detected during childhood but result in lifelong challenges. Whether or not prenatal ethanol exposure may contribute to Alzheimer's disease risk is not yet known. Here we exposed a mouse model of Alzheimer's disease (3xTg-AD), bearing three dementia-associated transgenes, presenilin1 (PS1M146V), human amyloid precursor protein (APPSwe), and human tau (TauP301S), to ethanol on gestational days 13.5-16.5 using an established binge-type maternal ethanol exposure paradigm. We sought to investigate whether prenatal ethanol exposure resulted in a precocious onset or increased severity of AD progression, or both. We found that a brief binge-type gestational exposure to ethanol during a period of peak neuronal migration to the developing cortex resulted in an earlier onset of spatial memory deficits and behavioral inflexibility in the progeny, as assessed by performance on the modified Barnes maze task. The observed cognitive changes coincided with alterations to both GABAergic and glutamatergic synaptic transmission in layer V/VI neurons, diminished GABAergic interneurons, and increased β-amyloid accumulation in the medial prefrontal cortex. These findings provide the first preclinical evidence for prenatal ethanol exposure as a potential factor for modifying the onset of AD-like behavioral dysfunction and set the groundwork for more comprehensive investigations into the underpinnings of AD-like cognitive changes in individuals with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Adelaide R Tousley
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; MD-PhD Program, Geisel School of Medicine at Dartmouth; Integrative Neuroscience at Dartmouth Graduate Program, Hanover, NH, United States
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| |
Collapse
|
42
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
43
|
Ballesteros-Álvarez J, Nguyen W, Sivapatham R, Rane A, Andersen JK. Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer's disease. GeroScience 2022; 45:1095-1113. [PMID: 36576642 PMCID: PMC9886708 DOI: 10.1007/s11357-022-00708-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
In the present study, we investigated the effects of urolithin A (UA), a metabolite generated from ellagic acid via its metabolism by gut bacteria, as an autophagy activator with potential neuroprotective activity. WT and 3xTg-AD mice were administered long-term intermittent dietary supplementation with UA. UA was found to prevent deficits in spatial memory, cued fear response, and exploratory behavior in this model. It also decreased the Aβ plaque burden in areas of the hippocampus where these protein deposits are prominent in the model. Interestingly, correlation analyses demonstrate that Aβ plaque burden positively correlates with enhanced spatial memory in 3xTg-AD mice on a control diet but not in those supplemented with UA. In contrast, Aβ42 abundance in cortical and hippocampal homogenates negatively correlate with spatial memory in UA-fed mice. Our data suggest that plaque formation may be a protective mechanism against neurodegeneration and cognitive decline and that targeting the generation of proteotoxic Aβ species might be a more successful approach in halting disease progression. UA was also found to extend lifespan in normal aging mice. Mechanistically, we demonstrate that UA is able to induce autophagy and to increase Aβ clearance in neuronal cell lines. In summary, our studies reveal UA, likely via its actions as a autophagy inducer, is capable of removing Aβ from neurons and its dietary administration prevents the onset of cognitive deficits associated with pathological Aβ deposition in the 3xTg-AD mouse model as well as extending lifespan in normal aging mice.
Collapse
Affiliation(s)
| | - Wynnie Nguyen
- Buck Institute for Research on Aging, Novato, CA USA
| | | | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA USA
| | | |
Collapse
|
44
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
45
|
Pontrello CG, McWhirt JM, Glabe CG, Brewer GJ. Age-Related Oxidative Redox and Metabolic Changes Precede Intraneuronal Amyloid-β Accumulation and Plaque Deposition in a Transgenic Alzheimer's Disease Mouse Model. J Alzheimers Dis 2022; 90:1501-1521. [PMID: 36278355 PMCID: PMC9789488 DOI: 10.3233/jad-220824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many identified mechanisms could be upstream of the prominent amyloid-β (Aβ) plaques in Alzheimer's disease (AD). OBJECTIVE To profile the progression of pathology in AD. METHODS We monitored metabolic signaling, redox stress, intraneuronal amyloid-β (iAβ) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS Intracellular accumulation of aggregated Aβ in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAβ. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAβ and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAβ accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAβ accumulation in CA1, and extracellular Aβ deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joshua M. McWhirt
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA,Correspondence to: Gregory J. Brewer, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA. Tel.: +1 217 502 4511; E-mail:
| |
Collapse
|
46
|
Lin YH, Shih YH, Yap YV, Chen YW, Kuo HL, Liu TY, Hsu LJ, Kuo YM, Chang NS. Zfra Inhibits the TRAPPC6AΔ-Initiated Pathway of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314510. [PMID: 36498839 PMCID: PMC9739312 DOI: 10.3390/ijms232314510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aβ) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aβ, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid β, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.
Collapse
Affiliation(s)
- Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiang-Lin Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Yun Liu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5268)
| |
Collapse
|
47
|
Inhibition of PLK2 activity affects APP and tau pathology and improves synaptic content in a sex-dependent manner in a 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2022; 172:105833. [PMID: 35905928 DOI: 10.1016/j.nbd.2022.105833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid β (Aβ) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.
Collapse
|
48
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
49
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
50
|
Curdt N, Schmitt FW, Bouter C, Iseni T, Weile HC, Altunok B, Beindorff N, Bayer TA, Cooke MB, Bouter Y. Search strategy analysis of Tg4-42 Alzheimer Mice in the Morris Water Maze reveals early spatial navigation deficits. Sci Rep 2022; 12:5451. [PMID: 35361814 PMCID: PMC8971530 DOI: 10.1038/s41598-022-09270-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Spatial disorientation is one of the earliest symptoms in Alzheimer’s disease and allocentric deficits can already be detected in the asymptomatic preclinical stages of the disease. The Morris Water Maze (MWM) is used to study spatial learning in rodent models. Here we investigated the spatial memory of female 3, 7 and 12 month-old Alzheimer Tg4-42 mice in comparison to wild-type control animals. Conventional behavior analysis of escape latencies and quadrant preference revealed spatial memory and reference memory deficits in female 7 and 12 month-old Tg4-42 mice. In contrast, conventional analysis of the MWM indicated an intact spatial memory in 3 month-old Tg4-42 mice. However, a detailed analysis of the swimming strategies demonstrated allocentric-specific memory deficits in 3 month-old Tg4-42 mice before the onset of severe memory deficits. Furthermore, we could show that the spatial reference memory deficits in aged Tg4-42 animals are caused by the lack of allocentric and spatial strategies. Analyzing search strategies in the MWM allows to differentiate between hippocampus-dependent allocentric and hippocampus-independent egocentric search strategies. The spatial navigation impairments in young Tg4-42 mice are well in line with the hypometabolism and synaptic deficits in the hippocampus. Therefore, analyzing search strategies in the Tg4-42 model can be a powerful tool for preclinical drug testing and identifying early therapeutic successes.
Collapse
Affiliation(s)
- Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Franziska W Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Trendelina Iseni
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Hanna C Weile
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Berfin Altunok
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-University Medicine Berlin, Berlin, Germany
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Matthew B Cooke
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|