1
|
Mohar NP, Langland CJ, Darr Z, Viles J, Moore SA, Darbro BW, Wallrath LL. A genetic variant in SMAD7 acts as a modifier of LMNA-associated muscular dystrophy, implicating SMAD signaling as a therapeutic target. SCIENCE ADVANCES 2025; 11:eads7903. [PMID: 40249815 PMCID: PMC12007578 DOI: 10.1126/sciadv.ads7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Mutations in LMNA cause multiple types of muscular dystrophy (LMNA-MD). The symptoms of LMNA-MD are highly variable and sensitive to genetic background. To identify genetic contributions to this phenotypic variability, we performed whole-genome sequencing on four siblings possessing the same LMNA mutation with differing degrees of skeletal muscle disease severity. We identified a variant in SMAD7 that segregated with severe muscle disease. To functionally test the SMAD7 variant, we generated a Drosophila model possessing the LMNA mutation and the SMAD7 variant in the orthologous fly genes. The SMAD7 variant increased SMAD signaling and enhanced muscle defects caused by the mutant lamin. Conversely, overexpression of wild-type SMAD7 rescued muscle function. These findings were extended to humans by showing that SMAD signaling is increased in muscle biopsy tissue from individuals with LMNA-MD compared to age-matched controls. Collectively, our findings support SMAD7 as the first functionally tested genetic modifier for LMNA-MD and suggest components of the SMAD pathway as therapeutic targets.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J. Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zachary Darr
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent researcher, Gowrie, Iowa, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Grandi FC, Astord S, Pezet S, Gidaja E, Mazzucchi S, Chapart M, Vasseur S, Mamchaoui K, Smeriglio P. Characterization of SMA type II skeletal muscle from treated patients shows OXPHOS deficiency and denervation. JCI Insight 2024; 9:e180992. [PMID: 39264856 PMCID: PMC11530132 DOI: 10.1172/jci.insight.180992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive developmental disorder caused by the genetic loss or mutation of the gene SMN1 (survival of motor neuron 1). SMA is characterized by neuromuscular symptoms and muscle weakness. Several years ago, SMA treatment underwent a radical transformation, with the approval of 3 different SMN-dependent disease-modifying therapies. This includes 2 SMN2 splicing therapies - risdiplam and nusinersen. One main challenge for type II SMA patients treated with these drugs is ongoing muscle fatigue, limited mobility, and other skeletal problems. To date, few molecular studies have been conducted on SMA patient-derived tissues after treatment, limiting our understanding of what targets remain unchanged after the spinal cord-targeted therapies are applied. Therefore, we collected paravertebral muscle from 8 type II patients undergoing spinal surgery for scoliosis and 7 controls. We used RNA-seq to characterize their transcriptional profiles and correlate these molecular changes with muscle histology. Despite the limited cohort size and heterogeneity, we observed a consistent loss of oxidative phosphorylation (OXPHOS) machinery of the mitochondria, a decrease in mitochondrial DNA copy number, and a correlation between signals of cellular stress, denervation, and increased fibrosis. This work provides new putative targets for combination therapies for type II SMA.
Collapse
Affiliation(s)
- Fiorella Carla Grandi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Stéphanie Astord
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sonia Pezet
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Elèna Gidaja
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sabrina Mazzucchi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Maud Chapart
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Stéphane Vasseur
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| |
Collapse
|
3
|
Xu IRL, Danzi MC, Ruiz A, Raposo J, De Jesus YA, Reilly MM, Cortese A, Shy ME, Scherer SS, Hermann D, Fridman V, Baets J, Saporta M, Seyedsadjadi R, Stojkovic T, Claeys KG, Patel P, Feely S, Rebelo A, Dohrn MF, Züchner S. A study concept of expeditious clinical enrollment for genetic modifier studies in Charcot-Marie-Tooth neuropathy 1A. J Peripher Nerv Syst 2024; 29:202-212. [PMID: 38581130 PMCID: PMC11209807 DOI: 10.1111/jns.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.
Collapse
Affiliation(s)
- Isaac R. L. Xu
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ariel Ruiz
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yeisha Arcia De Jesus
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Steven S. Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David Hermann
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, New York, 14642, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA
| | - Jonathan Baets
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, United States
| | - Reza Seyedsadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya Stojkovic
- AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Hôpital Pitié-Salpêtrière, 47-83, boulevard de l’Hôpital, 75013 Paris, France
| | - Kristl G. Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, Leuven, Belgium
| | - Pooja Patel
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Maike F. Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Mitrani-Rosenbaum S, Attali R, Argov Z. GNE myopathy: can homozygous asymptomatic subjects give a clue for the identification of protective factors? Neuromuscul Disord 2023; 33:762-768. [PMID: 37666692 DOI: 10.1016/j.nmd.2023.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
GNE myopathy is caused by bi allelic recessive mutations in the GNE gene. The largest identified cohort of GNE myopathy patients carries a homozygous mutation- M743T (the "Middle Eastern" mutation). More than 160 such patients in 67 families have been identified by us. Mean onset in this cohort is 30 years (range 17-48) with variable disease severity. However, we have identified two asymptomatic females, homozygous for M743T in two different families, both with affected siblings. The first showed no myopathy when examined at age 76 years. The second has no sign of disease at age 60 years. Since both agreed only for testing of blood, we performed exome and RNA sequencing of their blood and that of their affected siblings. Various filtering layers resulted in 2723 variant loci between symptomatic and asymptomatic individuals, representing 1364 genes. Among those, 39 genes are known to be involved in neuromuscular diseases, and only in two of them the variant is located in the proper exon coding region, resulting in a missense change. Surprisingly, only 27 genes were significantly differentially expressed between the asymptomatic and the GNE myopathy affected individuals, with three overexpressed genes overlapping between exome and RNA sequencing. Although unable to unravel robust candidate genes, mostly because of the very low number of asymptomatic individuals analyzed, and because of the tissue analyzed (blood and not muscle), this study resulted in relatively restricted potential candidate protective genes, emphasizing the power of using polarized phenotypes (completely asymptomatic vs clearly affected individuals) with the same genotype to unmask those genes which could be used as targets for disease course modifiers.
Collapse
Affiliation(s)
- Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ruben Attali
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Mansouri V, Heidari M, Bemanalizadeh M, Azizimalamiri R, Nafissi S, Akbari MG, Barzegar M, Moayedi AR, Badv RS, Mohamadi M, Tavasoli AR, Amirsalari S, Khajeh A, Inaloo S, Fatehi F, Hosseinpour S, Babaei M, Hosseini SA, Mahdi Hosseiny SM, Fayyazi A, Hosseini F, Toosi MB, Khosroshahi N, Ghabeli H, Biglari HN, Kakhki SK, Mirlohi SH, Bidabadi E, Mohammadi B, Omrani A, Sedighi M, Vafaee-Shahi M, Rasulinezhad M, Hoseini SM, Movahedinia M, Rezaei Z, Karimi P, Farshadmoghadam H, Anvari S, Yaghini O, Nasiri J, Zamani G, Ashrafi MR. The First Report of Iranian Registry of Patients with Spinal Muscular Atrophy. J Neuromuscul Dis 2023; 10:211-225. [PMID: 36776076 DOI: 10.3233/jnd-221614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Insufficient amounts of survival motor neuron protein is leading to one of the most disabling neuromuscular diseases, spinal muscular atrophy (SMA). Before the current study, the detailed characteristics of Iranian patients with SMA had not been determined. OBJECTIVE To describe the key demographic, clinical, and genetic characteristics of patients with SMA registered in the Iranian Registry of SMA (IRSMA). METHODS IRSMA has been established since 2018, and the demographic, clinical, and genetic characteristics of patients with SMA were recorded according to the methods of treat neuromuscular disease (TREAT-NMD) project. RESULTS By October 1, 2022, 781 patients with 5q SMA were registered. Of them, 164 patients died, the majority of them had SMA type 1 and died during the first 20 months of life. The median survival of patients with type 1 SMA was 23 months. The consanguinity rate in 617 alive patients was 52.4%, while merely 24.8% of them had a positive family history. The most common type of SMA in live patients was type 3. Morbidities were defined as having scoliosis (44.1%), wheelchair dependency (36.8%), tube feeding (8.1%), and requiring mechanical ventilation (9.9%). Most of the registered patients had a homozygous deletion of SMN1, while the frequency of patients with higher copy numbers of SMN2, was less in more severe types of the disease. Earlier onset of the disease was significantly seen in patients with lower copy numbers of SMN2. The neuronal apoptosis inhibitory protein (NAIP) gene deletion was associated with a higher incidence of more severe types of SMA, higher dependency on ventilators, tube feeding, and earlier onset of the disease. CONCLUSIONS The IRSMA is the first established Iranian nationwide registry of patients with SMA. Using this registry, decision-makers, researchers, and practitioners can precisely understand the epidemiology, characteristics, and genetics of patients with SMA in Iran.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bemanalizadeh
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan, Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Iranian Neuromuscular Research Center (INMRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Moayedi
- Department of Pediatric Neurology, Children's Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Shervin Badv
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Mohamadi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan Amirsalari
- New Hearing Technologies Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| | - Ali Khajeh
- Department of Pediatrics, Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soroor Inaloo
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Iranian Neuromuscular Research Center (INMRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Department of Pediatrics, Division of Pediatric Neurology, Vali-e-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Ahmad Hosseini
- Department of Pediatrics, Taleghani Children's Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Afshin Fayyazi
- Department of Pediatric Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firoozeh Hosseini
- Department of Pediatric Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatric Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Khosroshahi
- Department of Pediatrics, Division of Pediatric Neurology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibeh Nejad Biglari
- Department of Pediatrics, School of Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Simin Khayatzadeh Kakhki
- Department of Pediatrics, Division of Pediatric Neurology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Mirlohi
- Pediatric respiratory and sleep medicine research center, children's medical center, Tehran University of Medical sciences, Tehran, Iran
| | | | - Bahram Mohammadi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abdolmajid Omrani
- Department of Pediatrics, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mostafa Sedighi
- Department of Neurology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Maryam Rasulinezhad
- Pediatric Neurology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohamad Hoseini
- Department of Pediatrics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mojtaba Movahedinia
- Department of Pediatrics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Rezaei
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Karimi
- Department of Pediatric Diseases, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Farshadmoghadam
- Department of Pediatrics, Children Growth Research Centre, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin, Iran
| | - Saeed Anvari
- Department of Pediatrics, Division of Pediatric Neurology, Milad Hospital, Social Security Organisation, Tehran, Iran
| | - Omid Yaghini
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Nasiri
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Zamani
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center (PCGTRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
9
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
10
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
11
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
12
|
Carter MT, McMillan HJ, Tomin A, Weiss N. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin) 2020; 13:153-161. [PMID: 31070086 PMCID: PMC6527065 DOI: 10.1080/19336950.2019.1614415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuromuscular disorders encompass a wide range of conditions often associated with a genetic component. In the present study, we report a patient with severe infantile-onset amyotrophy in whom two compound heterozygous variants in the gene CACNA1H encoding for Cav3.2 T-type calcium channels were identified. Functional analysis of Cav3.2 variants revealed several alterations of the gating properties of the channel that were in general consistent with a loss-of-channel function. Taken together, these findings suggest that severe congenital amyoplasia may be related to CACNA1H and would represent a new phenotype associated with mutations in this gene.
Collapse
Affiliation(s)
- Melissa T Carter
- a Children's Hospital of Eastern Ontario Research Institute , University of Ottawa , Ottawa , Ontario , Canada
| | - Hugh J McMillan
- a Children's Hospital of Eastern Ontario Research Institute , University of Ottawa , Ottawa , Ontario , Canada
| | - Andriy Tomin
- b Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Prague , Czech Republic
| | - Norbert Weiss
- b Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
13
|
Spitali P, Zaharieva I, Bohringer S, Hiller M, Chaouch A, Roos A, Scotton C, Claustres M, Bello L, McDonald CM, Hoffman EP, Koeks Z, Eka Suchiman H, Cirak S, Scoto M, Reza M, 't Hoen PAC, Niks EH, Tuffery-Giraud S, Lochmüller H, Ferlini A, Muntoni F, Aartsma-Rus A. TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. Eur J Hum Genet 2020; 28:815-825. [PMID: 31896777 PMCID: PMC7253478 DOI: 10.1038/s41431-019-0563-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene leading to the lack of dystrophin. Variability in the disease course suggests that other factors influence disease progression. With this study we aimed to identify genetic factors that may account for some of the variability in the clinical presentation. We compared whole-exome sequencing (WES) data in 27 DMD patients with extreme phenotypes to identify candidate variants that could affect disease progression. Validation of the candidate SNPs was performed in two independent cohorts including 301 (BIO-NMD cohort) and 109 (CINRG cohort of European ancestry) DMD patients, respectively. Variants in the Tctex1 domain containing 1 (TCTEX1D1) gene on chromosome 1 were associated with age of ambulation loss. The minor alleles of two independent variants, known to affect TCTEX1D1 coding sequence and induce skipping of its exon 4, were associated with earlier loss of ambulation. Our data show that disease progression of DMD is affected by a new locus on chromosome 1 and demonstrate the possibility to identify genetic modifiers in rare diseases by studying WES data in patients with extreme phenotypes followed by multiple layers of validation.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Stefan Bohringer
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monika Hiller
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Chaouch
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK.,Greater Manchester Neuroscience Centre, Salford Royal Foundation Trust, Salford, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Chiara Scotton
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Mireille Claustres
- Laboratory of Genetics of Rare Diseases (LGMR - EA7402), University of Montpellier, Montpellier, France
| | - Luca Bello
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA.,Department of Neuroscience, University of Padova, Padova, Italy
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | | | - Zaida Koeks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Eka Suchiman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Mojgan Reza
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sylvie Tuffery-Giraud
- Laboratory of Genetics of Rare Diseases (LGMR - EA7402), University of Montpellier, Montpellier, France
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Alessandra Ferlini
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Vo AH, Swaggart KA, Woo A, Gao QQ, Demonbreun AR, Fallon KS, Quattrocelli M, Hadhazy M, Page PGT, Chen Z, Eskin A, Squire K, Nelson SF, McNally EM. Dusp6 is a genetic modifier of growth through enhanced ERK activity. Hum Mol Genet 2019; 28:279-289. [PMID: 30289454 DOI: 10.1093/hmg/ddy349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Like other single-gene disorders, muscular dystrophy displays a range of phenotypic heterogeneity even with the same primary mutation. Identifying genetic modifiers capable of altering the course of muscular dystrophy is one approach to deciphering gene-gene interactions that can be exploited for therapy development. To this end, we used an intercross strategy in mice to map modifiers of muscular dystrophy. We interrogated genes of interest in an interval on mouse chromosome 10 associated with body mass in muscular dystrophy as skeletal muscle contributes significantly to total body mass. Using whole-genome sequencing of the two parental mouse strains combined with deep RNA sequencing, we identified the Met62Ile substitution in the dual-specificity phosphatase 6 (Dusp6) gene from the DBA/2 J (D2) mouse strain. DUSP6 is a broadly expressed dual-specificity phosphatase protein, which binds and dephosphorylates extracellular-signal-regulated kinase (ERK), leading to decreased ERK activity. We found that the Met62Ile substitution reduced the interaction between DUSP6 and ERK resulting in increased ERK phosphorylation and ERK activity. In dystrophic muscle, DUSP6 Met62Ile is strongly upregulated to counteract its reduced activity. We found that myoblasts from the D2 background were insensitive to a specific small molecule inhibitor of DUSP6, while myoblasts expressing the canonical DUSP6 displayed enhanced proliferation after exposure to DUSP6 inhibition. These data identify DUSP6 as an important regulator of ERK activity in the setting of muscle growth and muscular dystrophy.
Collapse
Affiliation(s)
- Andy H Vo
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL
| | | | - Anna Woo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Quan Q Gao
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Zugen Chen
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ascia Eskin
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin Squire
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
15
|
Ingenbleek Y. Plasma Transthyretin as A Biomarker of Sarcopenia in Elderly Subjects. Nutrients 2019; 11:E895. [PMID: 31010086 PMCID: PMC6521094 DOI: 10.3390/nu11040895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle (SM) mass, the chief component of the structural compartment belonging to lean body mass (LBM), undergoes sarcopenia with increasing age. Decreased SM in elderly persons is a naturally occurring process that may be accelerated by acute or chronic nutritional deficiencies and/or inflammatory disorders, declining processes associated with harmful complications. A recently published position paper by European experts has provided an overall survey on the definition and diagnosis of sarcopenia in elderly persons. The present review describes the additional contributory role played by the noninvasive transthyretin (TTR) micromethod. The body mass index (BMI) formula is currently used in clinical studies as a criterion of good health to detect, prevent, and follow up on the downward trend of muscle mass. The recent upsurge of sarcopenic obesity with its multiple subclasses has led to a confused stratification of SM and fat stores, prompting workers to eliminate BMI from screening programs. As a result, investigators are now focusing on indices of protein status that participate in SM growth, maturation, and catabolism that might serve to identify sarcopenia trajectories. Plasma TTR is clearly superior to all other hepatic biomarkers, showing the same evolutionary patterns as those displayed in health and disease by both visceral and structural LBM compartments. As a result, this TTR parameter maintains positive correlations with muscle mass downsizing in elderly persons. The liver synthesis of TTR is downregulated in protein-depleted states and suppressed in cytokine-induced inflammatory disorders. TTR integrates the centrally-mediated regulatory mechanisms governing the balance between protein accretion and protein breakdown, emerging as the ultimate indicator of LBM resources. This review proposes the adoption of a gray zone defined by cut-off values ranging from 200 mg/L to 100 mg/L between which TTR plasma values may fluctuate and predict either the best or the worst outcome. The best outcome occurs when appropriate dietary, medicinal and surgical decisions are undertaken, resuming TTR synthesis which manifests rising trends towards pre-stress levels. The worst occurs when all therapeutic means fail to succeed, leading inevitably to complete exhaustion of LBM and SM metabolic resources with an ensuing fatal outcome. Some patients may remain unresponsive in the middle of the gray area, combining steady clinical states with persistent stagnant TTR values. Using the serial measurement of plasma TTR values, these last patients should be treated with the most aggressive and appropriate therapeutic strategies to ensure the best outcome.
Collapse
Affiliation(s)
- Yves Ingenbleek
- Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur, F-67401 Strasbourg, France.
| |
Collapse
|
16
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
17
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
18
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 2017; 18:207-218. [DOI: 10.1007/s10048-017-0523-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
|
19
|
Tsuda T, Fitzgerald KK. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype. J Cardiovasc Dev Dis 2017; 4:jcdd4030014. [PMID: 29367543 PMCID: PMC5715712 DOI: 10.3390/jcdd4030014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| | - Kristi K Fitzgerald
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| |
Collapse
|
20
|
García-Sobrino T, Blanco-Arias P, Palau F, Espinós C, Ramirez L, Estela A, San Millán B, Arias M, Sobrido MJ, Pardo J. Phenotypical features of a new dominant GDAP1 pathogenic variant (p.R226del) in axonal Charcot-Marie-Tooth disease. Neuromuscul Disord 2017; 27:667-672. [PMID: 28236508 DOI: 10.1016/j.nmd.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 01/27/2023]
Abstract
There are few reports on axonal CMT due to dominant GDAP1 mutations. We describe two unrelated Spanish families with a dominant axonal CMT. A novel in frame GAA deletion in exon 5 of the GDAP1 gene (c.677_679del; p.R226del) was identified in both families. Disease onset varied from early childhood to adulthood. Affected family members complained of distal lower limb weakness, cramps and foot deformities with variable CMTNS score in both families. Several individuals were asymptomatic or had paraesthesia only, however neurological examination and nerve conduction studies demonstrated neuropathic signs. Transfection of HeLa cells with the p.R226del mutation led to an increased mitochondrial aggregation. We report an AD-CMT2K with large phenotypic variability due to a novel dominant GDAP1 variant. This is the second founder GDAP1 pathogenic variant reported in Spain.
Collapse
Affiliation(s)
- Tania García-Sobrino
- Department of Neurology, Hospital Clínico, Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain.
| | - Patricia Blanco-Arias
- Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Francesc Palau
- Institut de Recerca Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Carmen Espinós
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unit for Genetics and Genomics of Neuromuscular and Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Ramirez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Anna Estela
- Instituto de Biomedicina de Valencia (CSIC), CIBERER, Valencia, Spain
| | | | - Manuel Arias
- Department of Neurology, Hospital Clínico, Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Julio Pardo
- Department of Neurology, Hospital Clínico, Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
21
|
Díaz-Manera J, Alejaldre A, González L, Olivé M, Gómez-Andrés D, Muelas N, Vílchez JJ, Llauger J, Carbonell P, Márquez-Infante C, Fernández-Torrón R, Poza JJ, López de Munáin A, González-Quereda L, Mirabet S, Clarimon J, Gallano P, Rojas-García R, Gallardo E, Illa I. Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes. Neuromuscul Disord 2015; 26:33-40. [PMID: 26573435 DOI: 10.1016/j.nmd.2015.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Identifying the mutated gene that produces a particular muscle dystrophy is difficult because different genotypes may share a phenotype and vice versa. Muscle MRI is a useful tool to recognize patterns of muscle involvement in patients with muscle dystrophies and to guide the diagnosis process. The radiologic pattern of muscle involvement in patients with mutations in the EMD and LMNA genes has not been completely established. Our objective is to describe the pattern of muscle fatty infiltration in patients with mutations in the EMD and in the LMNA genes and to search for differences between the two genotypes that could be helpful to guide the genetic tests. We conducted a national multicenter study in 42 patients, 10 with mutations in the EMD gene and 32 with mutations in the LMNA gene. MRI or CT was used to study the muscles from trunk to legs. Patients had a similar pattern of fatty infiltration regardless of whether they had the mutation in the EMD or LMNA gene. The main muscles involved were the paravertebral, glutei, quadriceps, biceps, semitendinosus, semimembranosus, adductor major, soleus, and gastrocnemius. Involvement of peroneus muscle, which was more frequently affected in patients with mutations in the EMD gene, was useful to differentiate between the two genotypes. Muscle MRI/CT identifies a similar pattern of muscle fatty infiltration in patients with mutations in the EMD or the LMNA genes. The involvement of peroneus muscles could be useful to conduct genetic analysis in patients with an EDMD phenotype.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.
| | - Aida Alejaldre
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Laura González
- Institute of Neuropathology, Department of Pathology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Department of Neurology, Hospital de Viladecans, Barcelona, Spain
| | - Montse Olivé
- Institute of Neuropathology, Department of Pathology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - David Gómez-Andrés
- Pediatric Department, Hospital Universitario Infanta Sofía, TRADESMA IdiPaz-UAM, Madrid, Spain
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Juan José Vílchez
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Jaume Llauger
- Radiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pilar Carbonell
- Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Celedonio Márquez-Infante
- Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Roberto Fernández-Torrón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Neurology, Hospital Universitario Donostia, Donostia-San Sebastián, Spain; Neurosciences Area, Biodonostia Institute, Donostia-San Sebastián, Spain
| | - Juan José Poza
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain; Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Adolfo López de Munáin
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Neurology, Hospital Universitario Donostia, Donostia-San Sebastián, Spain; Neurosciences Area, Biodonostia Institute, Donostia-San Sebastián, Spain
| | - Lidia González-Quereda
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Department of Neurology, Hospital Universitario Donostia, Donostia-San Sebastián, Spain; Neurosciences Area, Biodonostia Institute, Donostia-San Sebastián, Spain
| | - Sonia Mirabet
- Cardiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Clarimon
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Pía Gallano
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Genetic Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ricard Rojas-García
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Universitat Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
22
|
Brkušanin M, Kosać A, Jovanović V, Pešović J, Brajušković G, Dimitrijević N, Todorović S, Romac S, Milić Rašić V, Savić-Pavićević D. Joint effect of the SMN2 and SERF1A genes on childhood-onset types of spinal muscular atrophy in Serbian patients. J Hum Genet 2015; 60:723-8. [PMID: 26311540 DOI: 10.1038/jhg.2015.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by functional loss of the survival of motor neuron 1 (SMN1) gene. Despite genetic homogeneity, phenotypic variability indicates the involvement of disease modifiers. SMN1 is located in 5q13.2 segmental duplication, enriched in genes and prone to unequal rearrangements, which results in copy number polymorphism (CNP). We examined the influence of CNP of 5q13.2 genes and their joint effect on childhood-onset SMA phenotype. Multiplex ligation-dependent probe amplification (MLPA) was used to construct 5q13.2 alleles and assess copy number of the SMN2, small EDRK-rich factor 1A (SERF1A) and NLR family apoptosis inhibitory protein (NAIP) genes in 99 Serbian patients with SMN1 homozygous absence (23-type I, 37-type II and 39-mild type III) and 122 patients' parents. Spearman rank test was performed to test correlation of individual genes and SMA type. Generalized linear models and backward selection were performed to obtain a model explaining phenotypic variation with the smallest set of variables. 5q13.2 alleles most commonly associated with type I harbored large-scale deletions, while those detected in types II and III originated from conversion of SMN1 to SMN2. Inverse correlation was observed between SMN2, SERF1A and NAIP CNP and SMA type (P=2.2e-16, P=4.264e-10, P=2.722e-8, respectively). The best minimal model describing phenotypic variability included SMN2 (P<2e-16), SERF1A (P<2e-16) and their interaction (P=0.02628). SMN2 and SERF1A have a joint modifying effect on childhood-onset SMA phenotype.
Collapse
Affiliation(s)
- Miloš Brkušanin
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ana Kosać
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Vladimir Jovanović
- Department of Genetic Research, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Jovan Pešović
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nikola Dimitrijević
- Department of Neurology, University Children's Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodanka Todorović
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Stanka Romac
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vedrana Milić Rašić
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Pla-Martín D, Calpena E, Lupo V, Márquez C, Rivas E, Sivera R, Sevilla T, Palau F, Espinós C. Junctophilin-1 is a modifier gene of GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 2014; 24:213-29. [PMID: 25168384 DOI: 10.1093/hmg/ddu440] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the GDAP1 gene cause different forms of Charcot-Marie-Tooth (CMT) disease, and the primary clinical expression of this disease is markedly variable in the dominant inheritance form (CMT type 2K; CMT2K), in which carriers of the GDAP1 p.R120W mutation can display a wide range of clinical severity. We investigated the JPH1 gene as a genetic modifier of clinical expression variability because junctophilin-1 (JPH1) is a good positional and functional candidate. We demonstrated that the JPH1-GDAP1 cluster forms a paralogon and is conserved in vertebrates. Moreover, both proteins play a role in Ca(2+) homeostasis, and we demonstrated that JPH1 is able to restore the store-operated Ca(2+) entry (SOCE) activity in GDAP1-silenced cells. After the mutational screening of JPH1 in a series of 24 CMT2K subjects who harbour the GDAP1 p.R120W mutation, we characterized the JPH1 p.R213P mutation in one patient with a more severe clinical picture. JPH1(p.R213P) cannot rescue the SOCE response in GDAP1-silenced cells. We observed that JPH1 colocalizes with STIM1, which is the activator of SOCE, in endoplasmic reticulum-plasma membrane puncta structures during Ca(2+) release in a GDAP1-dependent manner. However, when GDAP1(p.R120W) is expressed, JPH1 seems to be retained in mitochondria. We also established that the combination of GDAP1(p.R120W) and JPH1(p.R213P) dramatically reduces SOCE activity, mimicking the effect observed in GDAP1 knock-down cells. In summary, we conclude that JPH1 and GDAP1 share a common pathway and depend on each other; therefore, JPH1 can contribute to the phenotypical consequences of GDAP1 mutations.
Collapse
Affiliation(s)
- David Pla-Martín
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | - Eduardo Calpena
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | - Vincenzo Lupo
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain
| | | | - Eloy Rivas
- Department of Pathology, Hospital Universitario Virgen del Rocío, Seville 41013, Spain
| | - Rafael Sivera
- Department of Neurology, Hospital Universitari i Politècnic La Fe and Instituto de Investigación Sanitario (IIS)-La Fe, Valencia 46026, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia 46026, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politècnic La Fe and Instituto de Investigación Sanitario (IIS)-La Fe, Valencia 46026, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia 46026, Spain Department of Medicine and
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain University of Castilla-La Mancha School of Medicine, Ciudad Real 13071, Spain
| | - Carmen Espinós
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia 46012, Spain Department of Genetics, Universitat de València, Valencia 46010, Spain and
| |
Collapse
|