1
|
Tran VTA, Zhu X, Jamsranjav A, Lee LP, Cho H. Escherichia Coli K1-colibactin meningitis induces microglial NLRP3/IL-18 exacerbating H3K4me3-synucleinopathy in human inflammatory gut-brain axis. Commun Biol 2025; 8:382. [PMID: 40050667 PMCID: PMC11885818 DOI: 10.1038/s42003-025-07787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Escherichia coli K1 (E. coli K1) meningitis early occurs in the gastrointestinal and causes severe damage to the central nervous system, including lifelong neurological complications in survivors. However, the cellular mechanism by which E. coli K1 may cause neuropathies is not well understood due to the lack of relevant human multi-organ models for studying multifaceted systemic inflammation across the gut-brain axis. Here, we reconstruct a multicellular model of the human gut-brain axis to identify the neuropathogenic mechanism driven by E. coli K1-colibactin meningitis. We observed that E. coli K1-genotoxic colibactin induced intestinal and peripheral interleukin 6, causing the blood-brain barrier injury and endothelial inflammation via the p38/p65 pathways. Serpin-E1 from the damaged cerebral endothelia induces reactive astrocytes to release IFN-γ, which reduces microglial phagocytosis of E. coli K1 and exacerbates detrimental neuroinflammation via NLRP3/IL-18 axis. Microglial IL-18 elevates neuronal reactive oxidative stress that worsens DNA double-strand breaks in E. coli K1-infected neurons, leading to H3K4 trimethylation and phosphorylation of alpha-synuclein. Our findings suggest therapeutic strategies for post-bacterial meningitis treatment to potentially prevent the initiation of synucleinopathy.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Xiaohui Zhu
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Ariunzaya Jamsranjav
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P Lee
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, USA.
| | - Hansang Cho
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Healthcare Medicine, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
2
|
Chang JJ, Kulkarni S, Pasricha TS. Upper Gastrointestinal Mucosal Damage and Subsequent Risk of Parkinson Disease. JAMA Netw Open 2024; 7:e2431949. [PMID: 39235810 PMCID: PMC11378005 DOI: 10.1001/jamanetworkopen.2024.31949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Importance The gut-first hypothesis of Parkinson disease (PD) has gained traction, yet potential inciting events triggering Parkinson pathology from gut-related factors remain unclear. While Helicobacter pylori infection is linked to mucosal damage (MD) and PD, it is unknown how upper gastrointestinal MD from any source increases PD risk. Objective To evaluate any association between upper endoscopy findings of MD and subsequent clinical PD diagnosis. Design, Setting, and Participants This was a retrospective cohort study of patients with no PD history undergoing upper endoscopy with biopsy between January 2000 and December 2005, with final follow-up assessments completed July 31, 2023. The study was conducted within the Mass General Brigham system, a multicenter network in the greater Boston, Massachusetts, area. Patients with MD were matched 1:3 to patients without MD based on age, sex, and date of initial endoscopy. Exposure MD, defined as erosions, esophagitis, ulcers, or peptic injury, observed on upper endoscopy or pathology reports. Main Outcomes and Measures The relative risk of PD given a history of MD, estimated using incident rate ratio (IRR) and multivariate Cox proportional hazard ratios (HRs). Results Of 9350 patients, participants had a mean (SD) age of 52.3 (20.3) years; 5177 (55.4%) were male; and 269 (2.9%) were Asian, 737 (7.9%) Black, and 6888 (73.7%) White. Most participants underwent endoscopy between the ages of 50 and 64 years (2842 [30.4%]). At baseline, patients with MD were more likely to have a history of H pylori infection, proton-pump inhibitor use, chronic nonsteroidal anti-inflammatory drug use, gastroesophageal reflux disease, smoking, constipation, and dysphagia. The mean (SD) follow-up time was 14.9 (6.9) years for the whole cohort, during which patients with MD were more likely to develop PD (IRR, 4.15; 95% CI, 2.89-5.97; P < .001) than those without MD, even after covariate adjustment (HR, 1.76; 95% CI 1.11-2.51; P = .01). Constipation, dysphagia, older age, and higher Charlson-Deyo Comorbidity Index were also associated with higher PD risk. Conclusions and Relevance In this cohort study, a history of upper gastrointestinal MD was associated with elevated risk of developing a clinical PD diagnosis. Increased vigilance among patients with MD for future PD risk may be warranted.
Collapse
Affiliation(s)
| | - Subhash Kulkarni
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Trisha S. Pasricha
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA. The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 2023; 38:2547-2561. [PMID: 37436588 DOI: 10.1007/s11011-023-01248-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain's function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson's disease, depression, irritable bowel syndrome, and Alzheimer's disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Collapse
Affiliation(s)
- Kimia Basiji
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Fernández-Espejo E. Microorganisms associated with increased risk of Parkinson's disease. Neurologia 2023; 38:495-503. [PMID: 35644845 DOI: 10.1016/j.nrleng.2020.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects more than 7 million people worldwide. Its aetiology is unknown, although the hypothesis of a genetic susceptibility to environmental agents is accepted. These environmental agents include fungi, bacteria, and viruses. Three microorganisms are directly associated with a significantly increased risk of developing Parkinson's disease: the fungal genus Malassezia, the bacterium Helicobacter pylori, and the hepatitis C virus. If the host is vulnerable due to genetic susceptibility or immune weakness, these microorganisms can access and infect the nervous system, causing chronic neuroinflammation with neurodegeneration. Other microorganisms show an epidemiological association with the disease, including the influenza type A, Japanese encephalitis type B, St Louis, and West Nile viruses. These viruses can affect the nervous system, causing encephalitis, which can result in parkinsonism. This article reviews the role of all these microorganisms in Parkinson's disease.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurología Molecular, Universidad de Sevilla, Sevilla, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain.
| |
Collapse
|
9
|
Mukilan M. Impact of Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli Oral Infusions on Cognitive Memory Decline in Mild Cognitive Impairment. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2023; 11:581-592. [DOI: 10.18006/2023.11(3).581.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Synaptic plasticity is a result of changes in the neuronal circuits which may result in the formation of protein-dependent (long-term memory (LTM) formation) and protein-independent (short-term memory (STM) formation) memories. This STM formation is based on existing proteins, but LTM formation depends on RNA and protein synthesis within the neuronal cells. This RNA and protein synthesis may depend on stimulus exposure like odour, taste, and other environmental stimuli. The present study is aimed to show the impact of oral bacterial infusions on cognitive memory formation through pre and post-infusive behavioural analysis. The results of the study revealed that oral infusions of Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Escherichia coli result in impaired cognitive learning and memory formation. This impaired cognitive memory formation is shown with the help of two-step (pre and post-infusive) behavioural analysis. Pre-infusive behavioural study shows no decline in cognitive learning and memory formation before oral microbial infusions in a serene habituated environment. After oral microbial infusions, a post-infusive behavioural analysis may reveal a memory decline in the treated group. Comparative two-step behavioural analysis indicates that P. aeruginosa infusions strongly impact cognitive memory decline compared to the other three groups. This cognitive memory decline may happen due to the production of primary/secondary metabolites within the animal gut and their transportation to the CNS through the blood-brain barrier. The outcome of the present study states that poor oral hygiene plays a significant role in cognitive memory decline concerning mild cognitive impairment (MCI).
Collapse
|
10
|
Heiden DL, Monogue B, Ali MDH, Beckham JD. A functional role for alpha-synuclein in neuroimmune responses. J Neuroimmunol 2023; 376:578047. [PMID: 36791583 PMCID: PMC10022478 DOI: 10.1016/j.jneuroim.2023.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Alpha-synuclein is a neuronal protein with unclear function but is associated with the pathogenesis of Parkinson's disease and other synucleinopathies. In this review, we discuss the emerging functional role of alpha-synuclein in support of the unique immune responses in the nervous system. Recent data now show that alpha-synuclein functions to support interferon signaling within neurons and is released from neurons to support chemoattraction and activation of local glial cells and infiltrating immune cells. Inflammatory activation and interferon signaling also induce post-translational modifications of alpha-synuclein that are commonly associated with Parkinson's disease pathogenesis. Taken together, emerging data implicate complex interactions between alpha-synuclein and host immune responses that may contribute to the pathogenesis of Parkinson's disease. Additional study of the function of alpha-synuclein in the brain's immune response may provide disease-modifying therapeutic targets for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Dustin L Heiden
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M D Haider Ali
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
11
|
Wang Q, Yao C, Li Y, Luo L, Xie F, Xiong Q, Feng P. Effect of polyphenol compounds on Helicobacter pylori eradication: a systematic review with meta-analysis. BMJ Open 2023; 13:e062932. [PMID: 36604137 PMCID: PMC9827256 DOI: 10.1136/bmjopen-2022-062932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Polyphenol compounds are classified as organic compounds with phenolic units exhibiting a variety of biological functions. This meta-analysis aims to assess the efficacy and safety of polyphenol compounds (curcumin, cranberry, garlic, liquorice and broccoli) in eradicating Helicobacter pylori. DESIGN Systematic review and meta-analysis. METHODS Literature searches were conducted on PubMed, Embase, The Cochrane Library, Web of Science, Medline, Chinese National Knowledge Infrastructure database, Chinese Scientific Journal Database and Wan Fang database from inception to January 2022. All randomised controlled trials comparing polyphenol compounds with the placebo or used as an adjunct treatment are included in this meta-analysis.The treatment effect for dichotomous outcomes was assessed using risk ratio (RR), while for continuous outcomes, mean differences both with 95% CIs, were used. Subgroup analyses were carried out for different treatment schemes and polyphenol compound species. RESULTS 12 trials were included in the meta-analysis. The total eradication rate of H.pylori in the polyphenol compounds group was higher than in the group without polyphenol compounds. Statistical significance was also observed (RR 1.19, 95% CI 1.03 to 1.38, p=0.02). The most frequent adverse effects of polyphenol compounds included diarrhoea, headache and vomiting. However, there were no differences regarding side effects between the two groups (RR 1.47, 95% CI 0.83 to 2.58, p=0.18). In subgroup analyses, the H.pylori eradication rate regimens with polyphenols therapy was superior to that of regimens without polyphenols therapy in the polyphenols versus placebo subgroup (RR 4.23, 95% CI 1.38 to 12.95, p=0.01), polyphenols plus triple therapy versus triple therapy subgroup (RR 1.11, 95% CI 1.01 to 1.22, p=0.03). CONCLUSION Polyphenol compounds can improve H.pylori eradication rates. Polyphenol compounds plus standard triple therapy can significantly improve the eradication. However, no evidence of a higher incidence of side effects could be found. PROSPERO REGISTRATION NUMBER CRD42022307477.
Collapse
Affiliation(s)
- Qiuxiang Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
- Department of traditional Chinese medicine, The Central Hospital of Guangyuan City, Guangyuan, Sichuan, China
| | - Chengjiao Yao
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Lihong Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Fengjiao Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Qin Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Abstract
This narrative review seeks to examine the relationships between bacterial microbiomes and infectious disease. This is achieved by detailing how different human host microbiomes develop and function, from the earliest infant acquisitions of maternal and environmental species through to the full development of microbiomes by adulthood. Communication between bacterial species or communities of species within and outside of the microbiome is a factor in both maintenance of homeostasis and management of threats from the external environment. Dysbiosis of this homeostasis is key to understanding the development of disease states. Several microbiomes and the microbiota within are used as prime examples of how changes in species composition, particularly at the phylum level, leads to such diverse conditions as inflammatory bowel disease (IBD), type 2 diabetes, psoriasis, Parkinson's disease, reflux oesophagitis and others. The review examines spatial relationships between microbiomes to understand how dysbiosis in the gut microbiome in particular can influence diseases in distant host sites via routes such as the gut-lung, gut-skin and gut-brain axes. Microbiome interaction with host processes such as adaptive immunity is increasingly identified as critical to developing the capacity of the immune system to react to pathogens. Dysbiosis of essential bacteria involved in modification of host substrates such as bile acid components can result in development of Crohn's disease, small intestine bacterial overgrowth, hepatic cancer and obesity. Interactions between microbiomes in distantly located sites are being increasingly being identified, resulting in a 'whole of body' effect by the combined host microbiome.
Collapse
Affiliation(s)
- Jim Manos
- Infection, Immunity and InflammationSchool of Medical SciencesFaculty of Medicine and HealthThe Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
13
|
Weitzel J, Wünsch A, Rose O, Langer K. Different dissolution conditions affect stability and dissolution profiles of bioequivalent levodopa-containing oral dosage forms. Int J Pharm 2022; 629:122401. [DOI: 10.1016/j.ijpharm.2022.122401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
14
|
Sung YF, Yin JH, Lee KH, Tsai CL, Lin YK, Chen SY, Chung CH, Chien WC, Lee JT, Chou CH. Increased risk of sleep-related movement disorder in patients with Helicobacter pylori infection: A nationwide population-based study. Front Neurol 2022; 13:953821. [PMID: 36299273 PMCID: PMC9589275 DOI: 10.3389/fneur.2022.953821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Evidence increasingly suggests that Helicobacter pylori infection (HPI) is associated with movement disorders such as Parkinson's disease (PD). However, the relationship between HPI and sleep-related movement disorders (SRMD) remains unknown. This nationwide population-based study tried to demonstrate whether patients with HPI have a higher risk of developing SRMD in a general adult population. Methods The study cohort enrolled 9,393 patients who were initially diagnosed with HPI between 2000 and 2013. Notably, 37,572 age- and sex-matched controls without prior HPI were selected as the reference. A Cox proportional hazard regression analysis was performed for multivariate adjustment. Results Patients with HPI had a higher risk of developing SRMD (adjusted hazard ratio [HR] = 2.18, 95% confidence interval [CI] = 1.26–3.82, p < 0.01). Patients with HPI aged ≥65 years exhibited the highest risk (HR = 3.01, 95% CI = 1.90–5.30, p < 0.001), followed by patients aged 45–64 years (HR = 1.69, 95% CI = 1.26–2.90, p <0.01) and <45 years (HR = 1.49, 95% CI = 1.12–2.49, p < 0.01). Patients were most likely to develop SRMD 5 years or more after diagnosis of HPI (HR = 3.33, 95% CI = 1.97–5.89, p < 0.001). The increased risk of SRMD in male patients with HPI (HR = 2.73, 95% CI = 1.53–4.79, p < 0.001) was greater than in female patients (HR = 1.14, 95% CI = 1.04–1.65, p < 0.05). Conclusion Patients with HPI were associated with an increased risk for SRMD, with a higher risk in men, aged ≥65 years, and diagnosed for more than 5 years.
Collapse
Affiliation(s)
- Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiu-Haw Yin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Hsinchu, Taiwan
| | - Kuang-Heng Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Yuan Chen
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Hyperbaric Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Hsiang Chung
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chung-Hsing Chou
| |
Collapse
|
15
|
Sheng S, Zhao S, Zhang F. Insights into the roles of bacterial infection and antibiotics in Parkinson’s disease. Front Cell Infect Microbiol 2022; 12:939085. [PMID: 35967873 PMCID: PMC9366083 DOI: 10.3389/fcimb.2022.939085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which is accompanied with the classical motor symptoms and a range of non-motor symptoms. Bacterial infection affects the neuroinflammation associated with the pathology of PD and various antibiotics have also been confirmed to play an important role not only in bacterial infection, but also in the PD progression. This mini-review summarized the role of common bacterial infection in PD and introduced several antibiotics that had anti-PD effects.
Collapse
Affiliation(s)
- Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shuo Zhao
- Electron Microscopy Room of School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Laboratory Animal Center, Zunyi Medical University, Zunyi, China
- *Correspondence: Feng Zhang,
| |
Collapse
|
16
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
18
|
Alemohammad SMA, Noori SMR, Samarbafzadeh E, Noori SMA. The role of the gut microbiota and nutrition on spatial learning and spatial memory: a mini review based on animal studies. Mol Biol Rep 2022; 49:1551-1563. [PMID: 35028854 DOI: 10.1007/s11033-021-07078-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
The gut-brain axis is believed to constitute a bidirectional communication mechanism that affects both mental and digestive processes. Recently, the role of the gut microbiota in cognitive performance has been the focus of much research. In this paper, we discuss the effects of gut microbiota and nutrition on spatial memory and learning. Studies have shown the influence of diet on cognitive capabilities such as spatial learning and memory. It has been reported that a high-fat diet can alter gut microbiota which subsequently leads to changes in spatial learning and memory. Some microorganisms in the gut that can significantly affect spatial learning and memory are Akkermansia muciniphila, Bifidobacterium, Lactobacillus, Firmicutes, Bacteroidetes, and Helicobacter pylori. For example, a reduction in the amount of A. muciniphila in the gut leads to increased intestinal permeability and induces immune response in the brain which then negatively affects cognitive performances. We suggest that more studies should be carried out regarding the indirect effects of nutrition on cognitive activities via alteration in gut microbiota.
Collapse
Affiliation(s)
| | - Seyed Mohammad Reza Noori
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Samarbafzadeh
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic, Roanoke, VA, USA
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Nutrition, School of Allied Medical Sciences, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Wang X, Jiang D, Li T, Zhang X, Wang R, Gao S, Yang F, Wang Y, Tian Q, Xie C, Liang J. Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Front Psychiatry 2022; 13:991085. [PMID: 36213914 PMCID: PMC9537612 DOI: 10.3389/fpsyt.2022.991085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The role of microbiological factors in the development of neurodegenerative diseases is attracting increasing attention, while the relationship remains debated. This study aimed to comprehensively summarize and evaluate the associations between microbiological factors and the risk of neurodegenerative disorders with an umbrella review. PubMed, Embase, and the Cochrane library were used to search for papers from the earliest to March 2021 for identifying meta-analyses and systematic reviews that examined associations between microbiological factors and neurodegenerative diseases. AMSTAR2 tool was employed to evaluate the methodical quality of systematic reviews and meta-analyses. The effect size and 95% confidence interval (95% CI) were recalculated with a random effect model after the overlap was recognized by the corrected covered area (CCA) method. The heterogeneity of each meta-analysis was measured by the I 2 statistic and 95% prediction interval (95% PI). Additionally, publication bias and the quality of evidence were evaluated for all 37 unique associations. Only 4 associations had above the medium level of evidence, and the rest associations presented a low level of evidence. Among them, helicobacter pylori (HP), infection, and bacteria are associated with Parkinson's disease (PD), and the other one verifies that periodontal disease is a risk factor for all types of dementia. Following the evidence of our study, eradication of HP and aggressive treatment of periodontitis are beneficial for the prevention of PD and dementia, respectively. This umbrella review provides comprehensive quality-grade evidence on the relationship between microbial factors and neurodegenerative disease. Regardless of much evidence linking microbial factors to neurodegenerative diseases, these associations are not necessarily causal, and the evidence level is generally low. Thus, more effective studies are required. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/#searchadvanced, PROSPERO, identifier: CRD42021239512.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxiong Li
- Surgery Centre of Diabetes Mellitus, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Song Gao
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Qi Tian
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
- Chunrong Xie
| | - Jinghong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jinghong Liang
| |
Collapse
|
20
|
Sian-Hülsmann J. Wilful pathogens provoke a gut feeling in Parkinson’s disease. J Neural Transm (Vienna) 2021; 129:557-562. [PMID: 34923593 PMCID: PMC8684782 DOI: 10.1007/s00702-021-02448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease is the second most common neurological disorder marked by characteristic poverty and dysfunction in movement. There are many mechanisms and factors which have been postulated to be associated with the neurodegenerative pathway(s) resulting in distinctive loss of neurons in the substantia nigra. Subsequently, the neuropathology is more widespread and exhibited in other areas of the brain, and enteric nervous system. Aggregates of misfolded α-synuclein or Lewy bodies are the hallmark of the illness and appear to be central in the whole cascade of cell destruction. There are many processes implicated in neuronal destruction including: oxidative stress, excitotoxicity, mitochondrial dysfunction, an imbalance in protein homeostasis and neuroinflammation. Interesting, inflammation induced by pathogens (including, bacteria and viruses) has been associated in the pathogenesis of the disease. Bacteria such as Helicobacter pylori and Helicobacter suis appear to colonise the gut, and elicit systemic immune responses, which is them transmitted via the gut-axis to the brain, where cytotoxic cytokines induce neuroinflammation and cell death. This conforms to the bottom–top hypothesis proposed by Braak. The gut is also implicated in two other theories postulated in the development and progression of the disorder, namely, the top–down and the threshold. There is a possibility that these theories may be inter-linked and operate together to certain degree. Ultimately specific trigger factors or conditions may govern the occurrences of these processes in genetically predisposed individuals. Nevertheless, the importance of pathogen-related gut infections cannot be overlooked, since it can result in dysbiosis of gut microbes, which may orchestrate α-synuclein pathology and eventually cell destruction.
Collapse
Affiliation(s)
- Jeswinder Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.
| |
Collapse
|
21
|
Menozzi E, Macnaughtan J, Schapira AHV. The gut-brain axis and Parkinson disease: clinical and pathogenetic relevance. Ann Med 2021; 53:611-625. [PMID: 33860738 PMCID: PMC8078923 DOI: 10.1080/07853890.2021.1890330] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal disorders are one of the most significant non-motor problems affecting people with Parkinson disease (PD). Pathogenetically, the gastrointestinal tract has been proposed to be the initial site of pathological changes in PD. Intestinal inflammation and alterations in the gut microbiota may contribute to initiation and progression of pathology in PD. However, the mechanisms underlying this "gut-brain" axis in PD remain unclear. PD patients can display a large variety of gastrointestinal symptoms, leading to reduced quality of life and psychological distress. Gastrointestinal disorders can also limit patients' response to medications, and consequently negatively impact on neurological outcomes. Despite an increasing research focus, gastrointestinal disorders in PD remain poorly understood and their clinical management often suboptimal. This review summarises our understanding of the relevance of the "gut-brain" axis to the pathogenesis of PD, discusses the impact of gastrointestinal disorders in patients with PD, and provides clinicians with practical guidance to their management.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
22
|
Li Y, Chen Y, Jiang L, Zhang J, Tong X, Chen D, Le W. Intestinal Inflammation and Parkinson's Disease. Aging Dis 2021; 12:2052-2068. [PMID: 34881085 PMCID: PMC8612622 DOI: 10.14336/ad.2021.0418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease which significantly influences the life quality of patients. The protein α-synuclein plays an important driving role in PD occurrence and development. Braak's hypothesis suggests that α-synuclein is produced in intestine, and then spreads into the central nervous system through the vagus nerve. The abnormal expression of α-synuclein has been found in inflammatory bowel disease (IBD). Intestinal inflammation and intestinal dysbiosis have been involved in the occurrence and development of PD. The present review aimed to summarize recent advancements in studies focusing on intestinal inflammation and PD, especially the mechanisms through which link intestinal inflammation and PD. The intestinal dysfunctions such as constipation have been introduced as non-motor manifestations of PD. The possible linkages between IBD and PD, including genetic overlaps, inflammatory responses, intestinal permeability, and intestinal dysbiosis, are mainly discussed. Although it is not confirmed whether PD starts from intestine, intestinal dysfunction may affect intestinal microenvironment to influence central nervous system, including the α-synuclein pathologies and systematic inflammation. It is expected to develop some new strategies in the diagnosis and treatment of PD from the aspect of intestine. It may also become an exciting direction to find better ways to regulate the composition of gut microorganism to treat PD.
Collapse
Affiliation(s)
- Yu Li
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Yuanyuan Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Lili Jiang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Jingyu Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Xuhui Tong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, Gao R, Wang J, Zhang N, Jiang L. Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation. Inflammation 2021; 44:2448-2462. [PMID: 34657991 DOI: 10.1007/s10753-021-01514-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.
Collapse
Affiliation(s)
- Hai-Long Yang
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meng-Meng Li
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215008, China
| | - Man-Fei Zhou
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huai-Sha Xu
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fei Huan
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China
| | - Rong Gao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China.
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
24
|
Shen S, Zhang C, Xu YM, Shi CH. The Role of Pathogens and Anti-Infective Agents in Parkinson's Disease, from Etiology to Therapeutic Implications. JOURNAL OF PARKINSONS DISEASE 2021; 12:27-44. [PMID: 34719435 PMCID: PMC8842782 DOI: 10.3233/jpd-212929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative disorder whose etiology is still unclear, hampering the development of effective treatments. There is an urgent need to identify the etiology and provide further effective treatments. Recently, accumulating evidence has indicated that infection may play a role in the etiology of Parkinson's disease. The infective pathogens may act as a trigger for Parkinson's disease, the most common of which are hepatitis C virus, influenza virus, and Helicobacter pylori. In addition, gut microbiota is increasingly recognized to influence brain function through the gut-brain axis, showing an important role in the pathogenesis of Parkinson's disease. Furthermore, a series of anti-infective agents exhibit surprising neuroprotective effects via various mechanisms, such as interfering with α-synuclein aggregation, inhibiting neuroinflammation, attenuating oxidative stress, and preventing from cell death, independent of their antimicrobial effects. The pleiotropic agents affect important events in the pathogenesis of Parkinson's disease. Moreover, most of them are less toxic, clinically safe and have good blood-brain penetrability, making them hopeful candidates for the treatment of Parkinson's disease. However, the use of antibiotics and subsequent gut dysbiosis may also play a role in Parkinson's disease, making the long-term effects of anti-infective drugs worthy of further consideration and exploration. This review summarizes the current evidence for the association between infective pathogens and Parkinson's disease and subsequently explores the application prospects of anti-infective drugs in Parkinson's disease treatment, providing novel insights into the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Berlamont H, Bruggeman A, Bauwens E, Vandendriessche C, Clarebout E, Xie J, De Bruyckere S, Van Imschoot G, Van Wonterghem E, Ducatelle R, Santens P, Smet A, Haesebrouck F, Vandenbroucke RE. Gastric Helicobacter suis Infection Partially Protects against Neurotoxicity in A 6-OHDA Parkinson's Disease Mouse Model. Int J Mol Sci 2021; 22:ijms222111328. [PMID: 34768765 PMCID: PMC8582972 DOI: 10.3390/ijms222111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
The exact etiology of Parkinson’s disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Eva Bauwens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Clarebout
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sofie De Bruyckere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Richard Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium;
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
26
|
Moustafa SA, Mohamed S, Dawood A, Azar J, Elmorsy E, Rizk NAM, Salama M. Gut brain axis: an insight into microbiota role in Parkinson's disease. Metab Brain Dis 2021; 36:1545-1557. [PMID: 34370175 DOI: 10.1007/s11011-021-00808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases. It is characterized neuropathologically by the presence of alpha-synuclein containing Lewy Bodies in the substantia nigra of the brain with loss of dopaminergic neurons in the pars compacta of the substantia nigra. The presence of alpha-synuclein aggregates in the substantia nigra and the enteric nervous system (ENS) drew attention to the possibility of a correlation between the gut microbiota and Parkinson's disease. The gut-brain axis is a two-way communication system, which explains how through the vagus nerve, the gut microbiota can affect the central nervous system (CNS), including brain functions related to the ENS, as well as how CNS can alter various gut secretions and immune responses. As a result, this dysbiosis or alteration in gut microbiota can be an early sign of PD with reported changes in short chain fatty acids, bile acids, and lipids. This gave rise to the use of probiotics and faecal microbiota transplantation as alternative approaches to improve the symptoms of patients with PD. The aim of this review is to discuss investigations that have been done to explore the gastrointestinal involvement in Parkinson's disease, the effect of dysbiosis, and potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Sara Ayman Moustafa
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Shrouk Mohamed
- Nanotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Abdelhameed Dawood
- Biotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jihan Azar
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ekramy Elmorsy
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University-ARAR, North Region, Arar, Saudi Arabia
| | - Noura A M Rizk
- Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt.
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Lipp MM, Hickey AJ, Langer R, LeWitt PA. A technology evaluation of CVT-301 (Inbrija): an inhalable therapy for treatment of Parkinson's disease. Expert Opin Drug Deliv 2021; 18:1559-1569. [PMID: 34311641 DOI: 10.1080/17425247.2021.1960820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The most widely used pharmacological treatment for Parkinson's disease is levodopa, the precursor for dopamine formation in the brain. Over time, the effectiveness of levodopa declines, and patients experience motor fluctuations, or OFF periods. A levodopa formulation administered via a capsule-based oral inhaler provides a new delivery mechanism for levodopa that provides rapid relief of OFF periods.Areas covered: CVT-301 is a dry powder formulation designed to supply levodopa to the systemic circulation via pulmonary absorption. The technology, pharmacokinetics, efficacy, and safety data of this formulation are presented.Expert opinion: Oral inhalation is a novel method of administration for levodopa that bypasses the gastrointestinal tract, allowing levodopa to enter the systemic circulation rapidly and more reliably than oral medications. Gastrointestinal dysfunction, a common feature of Parkinson's disease, can lead to impaired absorption of oral medications. Pulmonary delivery rapidly elevates levodopa plasma concentrations to provide relief of OFF periods for patients receiving oral levodopa.
Collapse
Affiliation(s)
| | | | - Robert Langer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter A LeWitt
- Department of Neurology, Henry Ford Hospital and Wayne State University School of Medicine, West Bloomfield, MI, USA
| |
Collapse
|
28
|
Munoz-Pinto MF, Empadinhas N, Cardoso SM. The neuromicrobiology of Parkinson's disease: A unifying theory. Ageing Res Rev 2021; 70:101396. [PMID: 34171417 DOI: 10.1016/j.arr.2021.101396] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Recent evidence confirms that PD is indeed a multifactorial disease with different aetiologies and prodromal symptomatology that likely depend on the initial trigger. New players with important roles as triggers, facilitators and aggravators of the PD neurodegenerative process have re-emerged in the last few years, the microbes. Having evolved in association with humans for ages, microbes and their products are now seen as fundamental regulators of human physiology with disturbances in their balance being increasingly accepted to have a relevant impact on the progression of disease in general and on PD in particular. In this review, we comprehensively address early studies that have directly or indirectly linked bacteria or other infectious agents to the onset and progression of PD, from the earliest suspects to the most recent culprits, the gut microbiota. The quest for effective treatments to arrest PD progression must inevitably address the different interactions between microbiota and human cells, and naturally consider the gut-brain axis. The comprehensive characterization of such mechanisms will help design innovative bacteriotherapeutic approaches to selectively shape the gut microbiota profile ultimately to halt PD progression. The present review describes our current understanding of the role of microorganisms and their endosymbiotic relatives, the mitochondria, in inducing, facilitating, or aggravating PD pathogenesis.
Collapse
|
29
|
Park J, Kim TJ, Song JH, Jang H, Kim JS, Kang SH, Kim HR, Hwangbo S, Shin HY, Na DL, Seo SW, Kim HJ, Kim JJ. Helicobacter Pylori Infection Is Associated with Neurodegeneration in Cognitively Normal Men. J Alzheimers Dis 2021; 82:1591-1599. [PMID: 34180413 DOI: 10.3233/jad-210119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An association between Helicobacter pylori (H. pylori) infection and dementia was reported in previous studies; however, the evidence is inconsistent. OBJECTIVE In the present study, the association between H. pylori infection and brain cortical thickness as a biomarker of neurodegeneration was investigated. METHODS A cross-sectional study of 822 men who underwent a medical health check-up, including an esophagogastroduodenoscopy and 3.0 T magnetic resonance imaging, was performed. H. pylori infection status was assessed based on histology. Multiple linear regression analyses were conducted to evaluate the relationship between H. pylori infection and brain cortical thickness. RESULTS Men with H. pylori infection exhibited overall brain cortical thinning (p = 0.022), especially in the parietal (p = 0.008) and occipital lobes (p = 0.050) compared with non-infected men after adjusting for age, educational level, alcohol intake, smoking status, and intracranial volume. 3-dimentional topographical analysis showed that H. pylori infected men had cortical thinning in the bilateral lateral temporal, lateral frontal, and right occipital areas compared with non-infected men with the same adjustments (false discovery rate corrected, Q < 0.050). The association remained significant after further adjusting for inflammatory marker (C-reactive protein) and metabolic factors (obesity, dyslipidemia, fasting glucose, and blood pressure). CONCLUSION Our results indicate H. pylori infection is associated with neurodegenerative changes in cognitive normal men. H. pylori infection may play a pathophysiologic role in the neurodegeneration and further studies are needed to validate this association.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hang-Rai Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Hee Young Shin
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jae J Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
31
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
32
|
Murros KE, Huynh VA, Takala TM, Saris PEJ. Desulfovibrio Bacteria Are Associated With Parkinson's Disease. Front Cell Infect Microbiol 2021; 11:652617. [PMID: 34012926 PMCID: PMC8126658 DOI: 10.3389/fcimb.2021.652617] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is the most prevalent movement disorder known and predominantly affects the elderly. It is a progressive neurodegenerative disease wherein α-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The cause of Parkinson's disease (PD) remains unknown. Intestinal dysfunction and changes in the gut microbiota, common symptoms of PD, are evidently linked to the pathogenesis of PD. Although a multitude of studies have investigated microbial etiologies of PD, the microbial role in disease progression remains unclear. Here, we show that Gram-negative sulfate-reducing bacteria of the genus Desulfovibrio may play a potential role in the development of PD. Conventional and quantitative real-time PCR analysis of feces from twenty PD patients and twenty healthy controls revealed that all PD patients harbored Desulfovibrio bacteria in their gut microbiota and these bacteria were present at higher levels in PD patients than in healthy controls. Additionally, the concentration of Desulfovibrio species correlated with the severity of PD. Desulfovibrio bacteria produce hydrogen sulfide and lipopolysaccharide, and several strains synthesize magnetite, all of which likely induce the oligomerization and aggregation of α-synuclein protein. The substances originating from Desulfovibrio bacteria likely take part in pathogenesis of PD. These findings may open new avenues for the treatment of PD and the identification of people at risk for developing PD.
Collapse
Affiliation(s)
- Kari E. Murros
- Neurological Outpatient Clinic of Terveystalo Healthcare, Helsinki, Finland
| | - Vy A. Huynh
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Duncan D. Role of the community nurse in Parkinson's disease and lower urinary disorders. Br J Community Nurs 2021; 26:251-254. [PMID: 33939461 DOI: 10.12968/bjcn.2021.26.5.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is an incurable and progressive neurodegenerative disorder. People with PD also have increased muscle weakness and the typical symptoms of tremor, stiffness, slowness, balance problems and/or gait disorders. Other symptoms may include an overactive bladder, urgency and nocturia which can often lead to incontinence. Treatment options vary are dependent on the cause of the incontinence and should focus on improving Quality of life with a multi-pronged diagnosis-specific approach that takes into consideration a patient's ability to comply with treatment. The article looks at the role of the community nurse in caring for patients with PD and lower urinary disorders. They have a key role in assessment of patients and supporting families with tailor made bladder training such as establish a regular toilet routine, education about pelvic floor exercises or supply of incontinence products.
Collapse
Affiliation(s)
- Debbie Duncan
- Lecturer (Education), School of Nursing and Midwifery, Queen's University, Belfast
| |
Collapse
|
34
|
Huang Y, Liao J, Liu X, Zhong Y, Cai X, Long L. Review: The Role of Intestinal Dysbiosis in Parkinson's Disease. Front Cell Infect Microbiol 2021; 11:615075. [PMID: 33968794 PMCID: PMC8100321 DOI: 10.3389/fcimb.2021.615075] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Several studies have highlighted the roles played by the gut microbiome in central nervous system diseases. Clinical symptoms and neuropathology have suggested that Parkinson’s disease may originate in the gut, which is home to approximately 100 trillion microbes. Alterations in the gastrointestinal microbiota populations may promote the development and progression of Parkinson’s disease. Here, we reviewed existing studies that have explored the role of intestinal dysbiosis in Parkinson’s disease, focusing on the roles of microbiota, their metabolites, and components in inflammation, barrier failure, microglial activation, and α-synuclein pathology. We conclude that there are intestinal dysbiosis in Parkinson’s disease. Intestinal dysbiosis is likely involved in the pathogenesis of Parkinson’s disease through mechanisms that include barrier destruction, inflammation and oxidative stress, decreased dopamine production, and molecular mimicry. Additional studies remain necessary to explore and verify the mechanisms through which dysbiosis may cause or promote Parkinson’s disease. Preclinical studies have shown that gastrointestinal microbial therapy may represent an effective and novel treatment for Parkinson’s disease; however, more studies, especially clinical studies, are necessary to explore the curative effects of microbial therapy in Parkinson’s disease.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinchi Liao
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xu Liu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunxiao Zhong
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Cai
- Department of Neurology, Sixth Affiliated Hospital, Sun Yat-Sen University (Guangdong Gastrointestinal and Anal Hospital), Guangzhou, China
| | - Ling Long
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Helicobacter pylori infection is associated with a poor response to levodopa in patients with Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021; 269:703-711. [PMID: 33616741 DOI: 10.1007/s00415-021-10473-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Helicobacter pylori (HP) infection has been reported to be associated with increased severity of Parkinson's disease (PD) and have negative effects on drug response in patients. We aimed to investigate the influence of HP infection on patients with PD using a systematic review and meta-analysis approach. METHODS PubMed and EMBASE databases for relevant articles published before October 2020 were searched. Two authors independently screened records, extracted data, and evaluated the quality of the included studies. The odds ratios (ORs) or standardized mean differences (SMDs) with their corresponding 95% confidence intervals (CIs) were used to calculate the pooled results by employing a random or fixed-effects model. Sensitivity analyses were conducted, and potential publication bias was assessed. RESULTS A total of 13 studies were included in our meta-analysis. Overall, PD patients with HP infection had significantly higher levodopa equivalent daily dose (UPDRS) motor scores (SMD = 0.266; 95% CI 0.065-0.467; P = 0.009) and more units of levodopa equivalent daily dose (LEDD) (SMD = 0.178; 95% CI 0.004-0.353; P = 0.046) than those of patients without HP infection. Additionally, the time to achieve 'ON' state was significantly longer (SMD = 0.778; 95% CI 0.337-1.220; P = 0.001) and the duration of 'ON' state was significantly shorter (SMD = -0.539; 95% CI = -0.801 to -0.227; P = 0.001) in patients with HP infection than in those without HP infection. CONCLUSION Our pooled results of this meta-analysis demonstrated that HP infection was associated with worse motor symptoms, higher LEDD, and worse response to drugs in patients with PD. This evidence emphasizes the importance of considering subsequent eradication of HP infection in patients with PD.
Collapse
|
36
|
Smeyne RJ, Noyce AJ, Byrne M, Savica R, Marras C. Infection and Risk of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:31-43. [PMID: 33361610 PMCID: PMC7990414 DOI: 10.3233/jpd-202279] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires attention and may be most relevant once preventive treatments for at-risk populations are developed.
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Matthew Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's disease, Toronto Western Hospital and the University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Boziki M, Grigoriadis N, Papaefthymiou A, Doulberis M, Polyzos SA, Gavalas E, Deretzi G, Karafoulidou E, Kesidou E, Taloumtzis C, Theotokis P, Sofou E, Katsinelos P, Vardaka E, Fludaras I, Touloumtzi M, Koukoufiki A, Simeonidou C, Liatsos C, Kountouras J. The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochem Int 2021; 144:104938. [PMID: 33535070 DOI: 10.1016/j.neuint.2020.104938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The localization of bacterial components and/or metabolites in the central nervous system may elicit neuroinflammation and/or neurodegeneration. Helicobacter pylori (a non-commensal symbiotic gastrointestinal pathogen) infection and its related metabolic syndrome have been implicated in the pathogenesis of gastrointestinal tract and central nervous system disorders, thus medications affecting the nervous system - gastrointestinal tract may shape the potential of Helicobacter pylori infection to trigger these pathologies. Helicobacter pylori associated metabolic syndrome, by impairing gut motility and promoting bacterial overgrowth and translocation, might lead to brain pathologies. Trimebutine maleate is a prokinetic drug that hastens gastric emptying, by inducing the release of gastrointestinal agents such as motilin and gastrin. Likewise, it appears to protect against inflammatory signal pathways, involved in inflammatory disorders including brain pathologies. Trimebutine maleate also acts as an antimicrobial agent and exerts opioid agonist effect. This study aimed to investigate a hypothesis regarding the recent advances in exploring the potential role of gastrointestinal tract microbiota dysbiosis-related metabolic syndrome and Helicobacter pylori in the pathogenesis of gastrointestinal tract and brain diseases. We hereby proposed a possible neuroprotective role for trimebutine maleate by altering the dynamics of the gut-brain axis interaction, thus suggesting an additional effect of trimebutine maleate on Helicobacter pylori eradication regimens against these pathologies.
Collapse
Affiliation(s)
- Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Greece; Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, 5001, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Emmanuel Gavalas
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, 56429, Macedonia, Greece
| | - Eleni Karafoulidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Evangelia Kesidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Charilaos Taloumtzis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece; 424 General Military Hospital of Thessaloniki, Department of Gastroenterology, Thessaloniki, 56429, Macedonia, Greece
| | - Paschalis Theotokis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Electra Sofou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Elisabeth Vardaka
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 574 00, Thessaloniki, Macedonia, Greece
| | - Ioannis Fludaras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Maria Touloumtzi
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Argiro Koukoufiki
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Macedonia, Greece
| | - Christos Liatsos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Gastroenterology, 401 Army General Hospital of Athens, Athens, 115 25, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece.
| |
Collapse
|
38
|
Nyholm D, Hellström PM. Effects of Helicobacter pylori on Levodopa Pharmacokinetics. JOURNAL OF PARKINSON'S DISEASE 2021; 11:61-69. [PMID: 33164946 PMCID: PMC7990449 DOI: 10.3233/jpd-202298] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Infection with Helicobacter pylori seems overrepresented in Parkinson's disease. Clinical observations suggest a suboptimal treatment effect of levodopa in Helicobacter positive patients. OBJECTIVE Describe and explain the connection between a Helicobacter pylori infection of the upper gut and changes in pharmacokinetics of oral levodopa treatment in Parkinson's disease. METHODS PubMed, Google Scholar, and Cross Reference search was done using the key words and combined searches: Bioavailability, drug metabolism, dyskinesia, Helicobacter, L-dopa, levodopa, motor control, pharmacodynamics, pharmacokinetics, prevalence, unified Parkinson's disease rating scale. RESULTS The prevalence of Helicobacter pylori in Parkinson's disease patients is reported to be about 1.6-fold higher than in a control population in some studies. Helicobacter has therefore been assumed to be linked to Parkinson's disease, but the mechanism is unclear. As regards symptoms and treatment, patients with Parkinson's disease on levodopa therapy and with Helicobacter pylori infection display worse motor control than those without Helicobacter infection. Eradication of the infection improves levodopa response in Parkinson's disease, likely as a consequence of an increased oral pre-systemic bioavailability of levodopa, likely to be explained by reduced Helicobacter-dependent levodopa consumption in the stomach. In addition, small intestinal bacterial overgrowth may also have an impact on the therapeutic setting for levodopa treatment but is less well established. CONCLUSION Eradication of Helicobacter pylori improves levodopa bioavailability resulting in improved motor control. Eradication of Helicobacter should be considered in patients with poor symptomatic control and considerable motor fluctuations.
Collapse
Affiliation(s)
- Dag Nyholm
- Department of Neuroscience, Neurology; and Department of Medical Sciences, Gastroenterology, Uppsala University, Sweden
| | - Per M. Hellström
- Department of Neuroscience, Neurology; and Department of Medical Sciences, Gastroenterology, Uppsala University, Sweden
| |
Collapse
|
39
|
Fernández-Espejo E. Microorganisms that are related with increased risk for Parkinson's disease. Neurologia 2020; 38:S0213-4853(20)30301-7. [PMID: 33160724 DOI: 10.1016/j.nrl.2020.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder that affects more than 7 million people worldwide. Its aetiology is unknown, although the hypothesis of a genetic susceptibility to environmental agents is accepted. These environmental agents include fungi, bacteria, and viruses. Three microorganisms are directly associated with a significantly increased risk of developing Parkinson's disease: the fungal genus Malassezia, the bacterium Helicobacter pylori, and the hepatitis C virus. If the host is vulnerable due to genetic susceptibility or immune weakness, these microorganisms can access and infect the nervous system, causing chronic neuroinflammation with neurodegeneration. Other microorganisms show an epidemiological association with the disease, including the influenza type A, Japanese encephalitis type B, St Louis, and West Nile viruses. These viruses can affect the nervous system, causing encephalitis, which can result in parkinsonism. This article reviews the role of all these microorganisms in Parkinson's disease.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurología Molecular, Universidad de Sevilla, Sevilla, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, España.
| |
Collapse
|
40
|
Affiliation(s)
- Yogesh Bhattarai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
[The role of the gut microbiome in idiopathic Parkinson's disease]. DER NERVENARZT 2020; 91:1085-1095. [PMID: 33025073 DOI: 10.1007/s00115-020-01011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND In recent years studies have provided increasing evidence suggesting an association between the (gut) microbiome and idiopathic Parkinson's disease (IPD). OBJECTIVE The aim of this article is to summarize and evaluate existing evidence with respect to the relevance of the (gut) microbiome for IPD. MATERIAL AND METHODS An analysis and critical review of studies in the field of IPD and (gut) microbiome were carried out. The resulting potential perspectives and therapeutic strategies are discussed. RESULTS Despite partially divergent results between different studies (potentially due to the applied methods and variance in the composition of the investigated cohorts), there is an overlap between studies indicating an association between IPD, the microbiome and microbial metabolites. Nevertheless, the cause-effect relationship between IPD and the microbiome has still not been clarified. Taken together, existing evidence supports a potentially relevant role for the microbiome with respect to typical disease symptoms and pathogenesis of the disease. CONCLUSION Over the past 5 years there has been an enormous increase in the evidence with respect to the relevance of the microbiome for IPD. While early work in this field was mainly descriptive, new diagnostic methods provide evidence for the underlying mechanisms and the complex interactions between man as the host, the human immune system, the enteric nervous system, gut microbiota and microbial metabolites. A relatively novel and clinically relevant field of research is how the gut microbiome can influence the success of oral pharmacotherapy and whether substitution of specific microbiome components might be used either for future therapeutic or prophylactic strategies.
Collapse
|
42
|
Abo El Gheit RE, Atef MM, El Deeb OS, Badawi GA, Alshenawy HA, Elwan WM, Arakeep HM, Emam MN. Unique Novel Role of Adropin in a Gastric Ulcer in a Rotenone-Induced Rat Model of Parkinson's Disease. ACS Chem Neurosci 2020; 11:3077-3088. [PMID: 32833426 DOI: 10.1021/acschemneuro.0c00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, frequently associated with a gastric ulcer. We aimed to investigate the adropin neuroprotective/gastroprotective potential in the indomethacin (IND)-induced gastric ulcer in a rotenone-induced PD model. Rats were randomly divided into four groups: normal control group, rotenone/IND treated (PD /Ulcer) group, adropin treated PD/Ulcer group, and l-dopa/omeprazole (Om) treated PD/Ulcer group. There were ten rats selected for the normal control group. Striatal dopamine (DA), apoptosis/redox status, and motor/behavioral impairments were evaluated. Gastric oxidative stress, H+/K+-ATPase activity, prostaglandin E2, mucin content, and von Willebrand factor were measured. Gastric/striatal phosphatidylinositol 3-kinase (PI3K)/phosphorylated Akt and gastric vascular endothelial growth factor (VEGF)/striatal P53 immunoreactivities were checked. Striatal P53 upregulated modulator of apoptosis (Puma)/gastric vascular endothelial growth factor receptor-2 (Vegfr-2) expressions were evaluated. Adropin successfully restored striatal DA and attenuated rotenone-induced motor/behavior deficits along with strong gastroprotective potential, possibly through antioxidant activity via reduction in malondialdehyde level and upregulated superoxide dismutase, catalase activities, and serum ferric reducing antioxidant power. Adropin restored the delicate balance between the defective pro-survival PI3K/Akt/murine double minute 2 signals and apoptotic P53/Puma pathways. Adropin can be considered as a uniquely attractive therapeutic target in PD and its associated gastric ulcer.
Collapse
Affiliation(s)
| | - Marwa M. Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Omnia S. El Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Ghada A. Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish 45511, Egypt
| | - Hanan A. Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Walaa M. Elwan
- Histology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Heba M. Arakeep
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Marwa N. Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
43
|
Chao YX, Gulam MY, Chia NSJ, Feng L, Rotzschke O, Tan EK. Gut-Brain Axis: Potential Factors Involved in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:849. [PMID: 32982910 PMCID: PMC7477379 DOI: 10.3389/fneur.2020.00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests an association between gastrointestinal (GI) disorders and susceptibility and progress of Parkinson's disease (PD). Gut-brain axis has been proposed to play important roles in the pathogenesis of PD, though the exact pathophysiologic mechanism has yet to be elucidated. Here, we discuss the common factors involved in both PD and GI disorders, including genes, altered gut microbiota, diet, environmental toxins, and altered mucosal immunity. Large-scale prospective clinical studies are needed to define the exact relationship between dietary factors, microbiome, and genetic factors in PD. Identification of early diagnostic markers and demonstration of the efficacy of diet modulation and regulation of gut microbiome through specific therapeutics can potentially change the treatment paradigm for PD.
Collapse
Affiliation(s)
- Yin-Xia Chao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | | | | | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| |
Collapse
|
44
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Pfeiffer RF, Isaacson SH, Pahwa R. Clinical implications of gastric complications on levodopa treatment in Parkinson's disease. Parkinsonism Relat Disord 2020; 76:63-71. [PMID: 32461054 DOI: 10.1016/j.parkreldis.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Disorders of the gastrointestinal (GI) tract are common and distressing nonmotor symptoms of Parkinson's disease (PD) that can adversely affect levodopa absorption and lead to OFF periods, also known as motor fluctuations. Gastroparesis, which is primarily defined as delayed gastric emptying (DGE), and Helicobacter pylori infection, which is present with increased frequency in PD, are among the most common and important GI disorders reported in PD that may impair oral levodopa absorption and increase OFF time. Symptoms of gastroparesis include nausea, vomiting, postprandial bloating, fullness, early satiety, abdominal pain, and weight loss. DGE has been reported in a substantial fraction of individuals with PD. Symptoms of H. pylori infection include gastritis and peptic ulcers. Studies have found that DGE and H. pylori infection are correlated with delayed peak levodopa plasma levels and increased incidence of motor fluctuations. Therapeutic strategies devised to minimize the potential that gastric complications will impair oral levodopa absorption and efficacy in PD patients include treatments that circumvent the GI tract, such as apomorphine injection, levodopa intestinal gel delivery, levodopa inhalation powder, and deep brain stimulation. Other strategies aim at improving gastric emptying in PD patients, primarily including prokinetic agents.
Collapse
Affiliation(s)
- Ronald F Pfeiffer
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Rajesh Pahwa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
46
|
Zendehdel A, Roham M. Role of Helicobacter pylori infection in the manifestation of old age-related diseases. Mol Genet Genomic Med 2020; 8:e1157. [PMID: 32067423 PMCID: PMC7196471 DOI: 10.1002/mgg3.1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/10/2019] [Accepted: 01/11/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is one of the most prevalent infection worldwide. It affects individuals of different age groups. Elderly people tend to resist eradication treatment and worsening of infection can lead to several gastric and non-gastric pathologies. Aging-associated cellular and molecular alteration can increase the risk of other pathologies such as osteoporosis, Alzheimer's disease, Parkinson's disease, respiratory and renal dysfunction, and cancer in geriatric patients, more than other age groups. This review article highlights some of the most common old age diseases and the role of H. pylori infection as a risk factor to worsen the conditions, presented by the molecular evidences of these associations. These studies can help clinicians to understand the underlying pathogenesis of the disease and identify high-risk patients, aiding clearer diagnosis and treatment.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric MedicineZiaeian HospitalTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
47
|
Fu P, Gao M, Yung KKL. Association of Intestinal Disorders with Parkinson's Disease and Alzheimer's Disease: A Systematic Review and Meta-Analysis. ACS Chem Neurosci 2020; 11:395-405. [PMID: 31876406 DOI: 10.1021/acschemneuro.9b00607] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common neurodegenerative disorders, with an overall global incidence of 40 million. Many studies have revealed the association of intestinal disorders and bacterial infections with PD, but few studies have found such a relationship with AD. In this meta-analysis, related articles published up to September 2018 were searched in PubMed. Of the 2121 related articles screened initially, 56 were found to be eligible. Data on the risks of PD and AD due to five intestinal disorders and infection with Helicobacter pylori, as a representative intestinal microbe, were obtained, and a fixed- or random-effects model was used to pool the odds ratios (ORs) with 95% confidence interval (CIs) from individual studies. The combined OR for all types of intestinal disorders with an increased risk of PD was 3.36 (95% CI: 2.70-4.17). The ORs for each category were as follows: constipation, 4.05 (95% CI, 3.24-5.06); inflammatory bowel disease (IBD), 1.16 (95% CI, 0.89-1.52); irritable bowel syndrome (IBS), 1.75 (95% CI, 0.55-5.56); small intestinal bacterial overgrowth, 5.15 (95% CI, 3.33-7.96); and diarrhea, 1.27 (95% CI, 0.28-5.75). The combined OR of all types of intestinal disorders with an increased risk of AD was 1.52 (95% CI, 1.09-2.13). The ORs for IBS and IBD were 1.42 (95% CI, 1.02-1.99) and 2.40 (95% CI, 1.00-5.76), respectively. The risk estimates of H. pylori infection in PD and AD patients were as follows: OR, 1.65 (95% CI, 1.43-1.91) and OR, 1.40 (95% CI, 1.12-1.76), respectively. These findings suggest that PD and AD are significantly associated with intestinal disorders. The negative roles of H. pylori in the development of PD or AD should be evaluated to shed new light on the diagnosis and treatment of PD and AD. National governments should periodically inspect the intestinal condition of residents and extend health plans to improve intestinal health to prevent potential neurological disorders.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| |
Collapse
|
48
|
Ribaldone DG, Pellicano R, Actis GC. Inflammation in gastrointestinal disorders: prevalent socioeconomic factors. Clin Exp Gastroenterol 2019; 12:321-329. [PMID: 31410046 PMCID: PMC6650093 DOI: 10.2147/ceg.s210844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Western populations harbor a chronic inflammation pattern that lacks organ cardinal signs (edema, increased temperature, pain, and impaired function), releases increased levels of C-reactive protein, and often runs a creeping clinical course with generalized debilitating disease superimposed on system-specific involvement, mostly including nervous tissue (multiple sclerosis, Parkinson's syndromes), joints (arthritis), and skin (psoriasis). A finalistic interpretation may apply to the consideration of the gut as the source of inflammation. In fact, these kind of local events as well as the remote manifestations named above, could be conditioned by the microbiome, the huge cell population indwelling the gut which is under growing scrutiny. The role of the gut as a barrier organ justifies lingering submucosal inflammation as a patrolling activity to maintain bodily integrity; the microbiome, launching inflammogenic signals in response to abrupt diet changes, confers to gut inflammation a socioeconomic vector calling for hitherto unrecognized multi-disciplinary interventions.
Collapse
Affiliation(s)
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette-San Giovanni Antica Sede (SGAS) Hospital, Turin, Italy
| | | |
Collapse
|
49
|
Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W. Infectious Etiologies of Parkinsonism: Pathomechanisms and Clinical Implications. Front Neurol 2019; 10:652. [PMID: 31275235 PMCID: PMC6593078 DOI: 10.3389/fneur.2019.00652] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Extensive research in recent decades has expanded our insights into the pathogenesis of Parkinson's disease (PD), though the underlying cause remains incompletely understood. Neuroinflammation have become a point of interest in the interconnecting areas of neurodegeneration and infectious diseases. The hypothesis concerning an infectious origin in PD stems from the observation of Parkinson-like symptoms in individuals infected with the influenza virus who then developed encephalitis lethargica. The implications of infectious pathogens have later been studied in neuronal pathways leading to the development of Parkinsonism and PD, through both a direct association and through synergistic effects of infectious pathogens in inducing neuroinflammation. This review explores the relationship between important infectious pathogens and Parkinsonism, including symptoms of Parkinsonism following infectious etiologies, infectious contributions to neuroinflammation and neurodegenerative processes associated with Parkinsonism, and the epidemiologic correlations between infectious pathogens and idiopathic PD.
Collapse
Affiliation(s)
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
50
|
Chiang HL, Lin CH. Altered Gut Microbiome and Intestinal Pathology in Parkinson's Disease. J Mov Disord 2019; 12:67-83. [PMID: 31158941 PMCID: PMC6547039 DOI: 10.14802/jmd.18067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder arising from an interplay between genetic and environmental risk factors. Studies have suggested that the pathological hallmarks of intraneuronal α-synuclein aggregations may start from the olfactory bulb and the enteric nervous system of the gut and later propagate to the brain via the olfactory tract and the vagus nerve. This hypothesis correlates well with clinical symptoms, such as constipation, that may develop up to 20 years before the onset of PD motor symptoms. Recent interest in the gut-brain axis has led to vigorous research into the gastrointestinal pathology and gut microbiota changes in patients with PD. In this review, we provide current clinical and pathological evidence of gut involvement in PD by summarizing the changes in gut microbiota composition and gut inflammation associated with its pathogenesis.
Collapse
Affiliation(s)
- Han-Lin Chiang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|