1
|
Elkarif V, Hadanny A, Tuck Harpaz R, Sasson E, Efrati S. Effect of hyperbaric oxygen therapy on ataxia: A case report. SAGE Open Med Case Rep 2025; 13:2050313X251337996. [PMID: 40401217 PMCID: PMC12093015 DOI: 10.1177/2050313x251337996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/02/2025] [Indexed: 05/23/2025] Open
Abstract
Ataxias, a group of disorders characterized by impaired coordination, often lack effective treatments. Recent evidence suggests hyperbaric oxygen therapy (HBOT) may promote neuroplasticity and improve brain function. However, its impact on the core symptom of ataxia remains largely unknown. We present two cases of patients with chronic ataxia of different etiologies who received hyperbaric oxygen therapy. Our findings provide preliminary insights into the potential benefits of hyperbaric oxygen therapy for individuals with chronic ataxia. Two patients, aged 73 and 57, were presented with ataxia characterized by impaired static and dynamic balance, uncoordinated gait, and reliance on walking aids following stroke and brain injury, respectively. Pre and post-treatment evaluation included neuroimaging, gait analysis, and physical/functional assessment. Hyperbaric oxygen therapy treatment was administered for 5 days/week, consisting of 100% oxygen at two atmospheres of absolute pressure. Concurrently, twice-weekly physical therapy sessions were integrated into the treatment regimen. Post-treatment evaluation revealed significant improvements in gait, coordination, and balance, which correlated with perfusion changes in peri-lesional cerebellar tissue as measured by perfusion magnetic resonance imaging. This study presents a pioneering case series exploring the therapeutic potential of hyperbaric oxygen therapy in patients with cerebellar ataxia. Our findings suggest that hyperbaric oxygen therapy may enhance brain perfusion within the peri-lesional region, which correlates with neurophysical improvements. Given the novel nature of these findings, further randomized controlled trials with larger sample sizes and control groups are essential to validate and generalize these findings, ensuring a comprehensive understanding of hyperbaric oxygen therapy's effects on various brain injuries.
Collapse
Affiliation(s)
- Vicktoria Elkarif
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center Assaf Harofeh Medical Center, Zerifin, Israel
- Physical Therapy Department, Shamir Medical Center, Zerifin, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center Assaf Harofeh Medical Center, Zerifin, Israel
- Tel Aviv School of Medicine, Tel-Aviv University, Israel
| | - Ruth Tuck Harpaz
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center Assaf Harofeh Medical Center, Zerifin, Israel
- Physical Therapy Department, Shamir Medical Center, Zerifin, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center Assaf Harofeh Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center Assaf Harofeh Medical Center, Zerifin, Israel
- Tel Aviv School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
2
|
He W, Chen S, Chen R, Zhang J, Zhang X, Wu M, Zhang D, Zhu F, He F, Xv Y, Lei N, Zheng W, Shan X, Dai J. Integrated multi-biomarker panel of CXCL13, HS-CRP, and WBC counts predicts outcomes in stroke neurosyphilis patients treated with HBO and TUS-NMES. Front Neurol 2025; 16:1530447. [PMID: 40070668 PMCID: PMC11894733 DOI: 10.3389/fneur.2025.1530447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background Neurosyphilis results from Treponema pallidum invading the central nervous system, leading to severe neurological issues like stroke. Combining hyperbaric oxygen (HBO) therapy and transcranial ultrasound neuromuscular stimulation (TUS-NMES) shows promise in improving outcomes. Objective This study evaluates the predictive value and clinical significance of CXCL13, WBC, and Hs-CRP levels in neurosyphilis patients undergoing HBO and TUS-NMES therapy. Methods The study included 158 neurosyphilis stroke patients treated from June 2022 to January 2024. Assessments of limb motor, cognitive functions, daily living abilities, and cerebrospinal fluid biomarkers were conducted pre- and post-four weeks of combined therapy. Results After treatment, there was a significant improvement in FMA, MoCA, and MBI scores (p < 0.001). CXCL13 levels significantly decreased post-treatment, correlating with improved patient outcomes. The study found strong predictive values for CXCL13 levels in determining the efficacy of rehabilitation, with the combination of CXCL13, WBC, and Hs-CRP showing the highest predictive accuracy. Conclusion HBO and TUS-NMES significantly enhance recovery in neurosyphilis stroke patients. CXCL13, WBC, and Hs-CRP effectively predict rehabilitation outcomes, highlighting their value in clinical management.
Collapse
Affiliation(s)
- Wenchao He
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shuangshuang Chen
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ruyang Chen
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Zhang
- Hospital Department, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xuehua Zhang
- Hospital Department, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Minzhi Wu
- Department of Dermatology, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan Zhang
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fengfeng Zhu
- Intensive Care Unit, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fanghua He
- Department of Dermatology, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yating Xv
- Department of Dermatology, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Na Lei
- Department of Dermatology, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenhui Zheng
- Clinical Laboratory, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyi Shan
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Dai
- Department of Rehabilitation, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ren H, Zhu YP, Su R, Li H, Pan YY. Hyperbaric intervention ameliorates the negative effects of long-term high-altitude exposure on cognitive control capacity. Front Physiol 2024; 15:1378987. [PMID: 39282090 PMCID: PMC11392845 DOI: 10.3389/fphys.2024.1378987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Hypoxia due to reduced partial pressure of oxygen from high-altitude exposure affects the cognitive function of high-altitude migrants. Executive function is an important component of human cognitive function, characterized by high oxygen consumption during activity, and its level can be measured using cognitive control capacity (CCC). In addition, there is evidence for the potential value of hyperbaric oxygen (HBO) interventions in improving cognitive decline on the plateau. Therefore, the objective of this study was to investigate the effect of long-term high-altitude exposure on CCC in high-altitude newcomers and whether hyperbaric oxygen intervention has an ameliorative effect. Methods This study measured the magnitude of participants' CCC using a Backward Masking Majority Function Task (MFT-M). Study 1 was a controlled study of different altitude conditions, with 64 participants in the high-altitude newcomer group and 64 participants in the low-altitude resident group, each completing the MFT-M task once. Study 2 was a controlled HBO intervention study in which newcomers who had lived at a high altitude for 2 years were randomly divided into the HBO group (n = 28) and control group (n = 28). 15 times hyperbaric oxygen interventions were performed in the HBO group. Subjects in both groups completed the MFT-M task once before and once after the intervention. Results Study 1 showed that CCC was significantly higher in the low-altitude resident group than in the high-altitude newcomer group (p = 0.031). Study 2 showed that the CCC in the HBO group was significantly higher after 15 hyperbaric interventions than before (p = 0.005), while there was no significant difference in the control group (p = 0.972). The HBO group had significantly higher correct task rates than the control group after the intervention (p = 0.001). Conclusion This study confirms that long-term high-altitude exposure leads to impairment of CCC in high-altitude newcomers and that hyperbaric oxygen intervention is effective in improving CCC.
Collapse
Affiliation(s)
- Hong Ren
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Yun-Peng Zhu
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Rui Su
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Plateau Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Yong-Yue Pan
- School of Medicine, Tibet University, Lhasa, China
| |
Collapse
|
4
|
Yu X, Zhao W, Liu Y, Lv J, Zhong X, Huang P. Hyperbaric oxygen therapy alleviates intestinal dysfunction following traumatic brain injury via m 6A regulation. Int J Med Sci 2024; 21:2272-2284. [PMID: 39310263 PMCID: PMC11413893 DOI: 10.7150/ijms.97682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy can attenuate neurological impairment after traumatic brain injury (TBI) and alleviate intestinal dysfunction. However, the role and mechanism of HBO therapy in intestinal dysfunction following TBI remain unclear. Herein, by establishing a mouse model of controlled cortical impact (CCI), we found that HBO therapy reduced histopathological lesions and decreased the levels of inflammatory and oedema proteins in the intestinal tissues of mice 10 days after TBI. We also showed that HBO therapy improved microbiome abundance and probiotic (particularly g_Bifidobacterium) colonisation in mice post-CCI. Then, we identified that the m6A level imcreased notably in injured cortical tissue of CCI+HBO group compared with the CCI group following CCI. Thus, our results suggested that HBO therapy could alleviate TBI-induced intestinal dysfunction and m6A might participate in this regulation process, which provides new insights for exploring the specific mechanism and targets of HBO in the treatment of intestinal dysfunction after TBI, thereby improving the therapeutic effect of HBO.
Collapse
Affiliation(s)
- Xuelai Yu
- Department of Hyperbaric Oxygen, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Wei Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Yunyun Liu
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Jingchuan Lv
- Department of Intensive Care Unit, Nanjing Tongren Hospital, School of Medicine, Southeast University, 211102 Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Peizan Huang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| |
Collapse
|
5
|
Hao X, Yang Y, Qin Y, Lv M, Zhao X, Wu S, Li K. The Effect of Respiratory Muscle Training on Swallowing Function in Patients With Stroke: A Systematic Review and Meta-Analysis. West J Nurs Res 2024; 46:389-399. [PMID: 38545931 DOI: 10.1177/01939459241242533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
BACKGROUND The improvement of swallowing function after stroke is a significant challenge faced by patients and health care professionals. However, the current evidence synthesis of the effects of respiratory muscle training (RMT) on swallowing function is limited. OBJECTIVE To assess the effectiveness of RMT on swallowing recovery in patients undergoing stroke. METHODS The CKNI, WanFang Data, PubMed, CINAHL, Web of Science, Embase, MEDLINE, and Cochrane Library databases were searched for studies evaluating RMT interventions' effect on swallowing outcomes. Risks of bias were evaluated using the approach recommended by the Cochrane Collaboration tool and a summary of findings table was generated using the GRADE approach. Outcomes were synthesized using a random-effects meta-analysis model. RESULTS RMT interventions reduced the risk of aspiration (SMD = 1.19; 95% CI, 0.53-1.84), the recovery process of water swallowing function (RR = 1.22; 95% CI, 1.05-1.42), and the activity of the swallowing muscles (SMD = 2.91; 95% CI, 2.22-3.61). However, there was no significant effect of RMT on the functional level of oral intake (SMD = 0.70; 95% CI, -0.03 to 1.42). CONCLUSIONS RMT can be regarded as an innovative, auxiliary means in the near future to better manage and improve swallowing function, given its improving effect on work outcomes in this review.
Collapse
Affiliation(s)
- Xiaonan Hao
- School of Nursing, Jilin University, Changchun, China
| | - Yuhang Yang
- School of Nursing, Jilin University, Changchun, China
| | - Yuan Qin
- School of Nursing, Jilin University, Changchun, China
| | - Miaohua Lv
- School of Nursing, Jilin University, Changchun, China
| | - Xuetong Zhao
- School of Nursing, Jilin University, Changchun, China
| | - Shuang Wu
- School of Nursing, Jilin University, Changchun, China
| | - Kun Li
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
6
|
Hadanny A, Zilberman-Itskovich S, Catalogna M, Elman-Shina K, Lang E, Finci S, Polak N, Shorer R, Parag Y, Efrati S. Long term outcomes of hyperbaric oxygen therapy in post covid condition: longitudinal follow-up of a randomized controlled trial. Sci Rep 2024; 14:3604. [PMID: 38360929 PMCID: PMC10869702 DOI: 10.1038/s41598-024-53091-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
In our previous randomized controlled trial, we documented significant improvements in cognitive, psychiatric, fatigue, sleep, and pain symptoms among long Coronavirus disease 2019 (COVID) patients who underwent hyperbaric oxygen therapy (HBOT). The primary objective of the present study was to evaluate the enduring 1 year long term effects of HBOT on long COVID syndrome. This longitudinal long-term follow-up included 31 patients with reported post COVID-19 cognitive symptoms, who underwent 40 daily sessions of HBOT. Participants were recruited more than one year (486 ± 73) after completion of the last HBOT session. Quality of life, assessed using the short form-36 (SF-36) questionnaire revealed, that the long-term results exhibited a similar magnitude of improvement as the short-term outcomes following HBOT across most domains. Regarding sleep quality, improvements were observed in global score and across five sleep domains with effect sizes of moderate magnitude during the short-term evaluation, and these improvements persisted in the long-term assessment (effect size (ES1) = 0.47-0.79). In the realm of neuropsychiatric symptoms, as evaluated by the brief symptom inventory-18 (BSI-18), the short-term assessment following HBOT demonstrated a large effect size, and this effect persisted at the long-term evaluation. Both pain severity (ES1 = 0.69) and pain interference (ES1 = 0.83), had significant improvements during the short-term assessment post HBOT, which persisted at long term. The results indicate HBOT can improve the quality of life, quality of sleep, psychiatric and pain symptoms of patients suffering from long COVID. The clinical improvements gained by HBOT are persistent even 1 year after the last HBOT session.
Collapse
Affiliation(s)
- Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Shani Zilberman-Itskovich
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Catalogna
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Karin Elman-Shina
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Erez Lang
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shachar Finci
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Polak
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ran Shorer
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Yoav Parag
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Kotelnikova AV, Kukshina AA, Turova EA. [Differentiated approach to cognitive rehabilitation of patients after stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:5-11. [PMID: 39718952 DOI: 10.17116/kurort20241010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Post-stroke cognitive impairments are widespread and significantly reduce the quality of life and rehabilitation prognosis of patients. Clinical observations show a serious variability of cognitive impairments in patients after acute cerebrovascular accident. Thus, the classification of above mentioned disorders, based on which it would be possible to determine the order of individualization of a cognitive rehabilitation program, is currently not available in literature. OBJECTIVE To scientifically establish the differentiated approach to cognitive rehabilitation by verification of patients groups, differing in the structure of post-stroke complications. MATERIAL AND METHODS Cognitive status of 45 patients in the early rehabilitation period after ischemic stroke (26 (57.8%) women, 19 (42.2%) men aged 63.0±8.0 years), who underwent inpatient treatment stage of medical rehabilitation was studied by means of «Short neuropsychological examination of cognitive sphere (SNECS)» methodology. Indicators of neurodynamics according to the domains of the International Classification of Functioning, Disability and Health were considered as well. RESULTS The conducted neuropsychological study revealed 4 groups of patients, 3 of which had a significant cognitive functions' deficiency, manifested in the 1st group by reduced indicators of psychomotor control level (neurodynamic impairments, asthenia, exhaustion), executive functions, ability to analytical-synthetic activity, attention and working memory; in the 2nd group - by reduced ability to perform graphical test tasks on constructional praxis and reproduction of sequences' set; in the 4th group - by reduced indicators of «unfinished images» test task performance, reflecting state of visual object gnosis. Cognitive functions' state in the persons of the 3rd group was assessed as satisfactory. CONCLUSION The present study provides an attempt to classify cognitive disorders in patients who underwent stroke aimed at the formation of differentiated cognitive rehabilitation programs. As a result, 4 groups of patients, differing in the structure of post-stroke complications, were verified, and the directions of rehabilitation work for each of them were indicated in the cognitive functions investigation using «SNECS» methodology.
Collapse
Affiliation(s)
- A V Kotelnikova
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - A A Kukshina
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - E A Turova
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| |
Collapse
|
8
|
Swann Z, Tesman N, Rogalsky C, Honeycutt CF. Word Repetition Paired With Startling Stimuli Decreases Aphasia and Apraxia Severity in Severe-to-Moderate Stroke: A Stratified, Single-Blind, Randomized, Phase 1 Clinical Trial. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:2630-2653. [PMID: 37699161 DOI: 10.1044/2023_ajslp-22-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PURPOSE This prospective, single-blinded, parallel, stratified, randomized clinical trial via telehealth aimed to investigate the impact of Startle Adjuvant Rehabilitation Therapy (START) on aphasia, apraxia of speech (AOS), and quality of life in individuals with chronic stroke. The study hypothesized that START would have a greater effect on AOS-related measures and more severe individuals. METHOD Forty-two participants with poststroke aphasia, AOS, or both were randomly assigned to the START or control group. Both groups received 77-dB GET READY and GO cues during a word repetition task for three 1-hr sessions on consecutive days. The START group additionally received 105-dB white noise GO cues during one third of trials. The Western Aphasia Battery-Revised, Apraxia Battery for Adults, Stroke Impact Scale, and Communication Outcomes After Stroke scale were administered at Day 1, Day 5, and 1-month follow-up. RESULTS START improved performance on some subtests of the Western Aphasia Battery (Comprehension, Repetition, Reading) and measures of AOS (Diadochokinetic Rate, Increasing Word Length) in individuals with moderate/severe aphasia, whereas moderate/severe controls saw no changes. Individuals with mild aphasia receiving START had improved Reading, whereas mild controls saw improved Comprehension. The START group had increased mood and perceived communication recovery by Day 5, whereas controls saw no changes in quality of life. CONCLUSIONS This study is the first to evaluate the impact of training with startling acoustic stimuli on clinical measures of aphasia and AOS. Our findings suggest START can enhance both nontrained speech production and receptive speech tasks in moderate/severe aphasia, possibly by reducing poststroke cortical inhibition. Our findings should be considered carefully, as our limitations include small effect sizes, within-group variability, and low completion rates for quality-of-life assessments and follow-up visits. Future studies should explore a mechanism of action, conduct larger and longer Phase 2 clinical trials, and evaluate long-term retention. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24093519.
Collapse
Affiliation(s)
- Zoe Swann
- School of Life Sciences, Arizona State University, Tempe
| | - Nathan Tesman
- School of Biological and Health Science Engineering, Arizona State University, Tempe
| | | | - Claire F Honeycutt
- School of Biological and Health Science Engineering, Arizona State University, Tempe
| |
Collapse
|
9
|
Catalogna M, Hadanny A, Parag Y, Adler M, Elkarif V, Efrati S. Functional MRI evaluation of hyperbaric oxygen therapy effect on hand motor recovery in a chronic post-stroke patient: a case report and physiological discussion. Front Neurol 2023; 14:1233841. [PMID: 37840920 PMCID: PMC10570419 DOI: 10.3389/fneur.2023.1233841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Impairments in activities of daily living (ADL) are a major concern in post-stroke rehabilitation. Upper-limb motor impairments, specifically, have been correlated with low quality of life. In the current case report, we used both task-based and resting state functional MRI (fMRI) tools to investigate the neural response mechanisms and functional reorganization underlying hyperbaric oxygen therapy (HBOT)-induced motor rehabilitation in a chronic post-stroke patient suffering from severe upper-limb motor impairment. Methods We studied motor task fMRI activation and resting-state functional connectivity (rsFC) in a 61-year-old right-handed male patient who suffered hemiparesis and physical weakness in the right upper limb, 2 years after his acute insult, pre- and post-treatment of 60 daily HBOT sessions. Motor functions were assessed at baseline and at the end of the treatment using the Fugl-Meyer assessment (FMA) and the handgrip maximum voluntary contraction (MVC). Results Following HBOT, the FMA score improved from 17 (severe impairment) to 31 (moderate impairment). Following the intervention during trials involving the affected hand, there was an observed increase in fMRI activation in both the supplementary motor cortex (SMA) and the premotor cortex (PMA) bilaterally. The lateralization index (LI) decreased from 1 to 0.63, demonstrating the recruitment of the contralesional hemisphere. The region of interest, ROI-to-ROI, analysis revealed increased post-intervention inter-hemispheric connectivity (P = 0.002) and a between-network connectivity increase (z-score: 0.35 ± 0.21 to 0.41 ± 0.21, P < 0.0001). Seed-to-voxel-based rsFC analysis using the right SMA as seed showed increased connectivity to the left posterior parietal cortex, the left primary somatosensory cortex, and the premotor cortex. Conclusion This study provides additional insights into HBOT-induced brain plasticity and functional improvement in chronic post-stroke patients.
Collapse
Affiliation(s)
- Merav Catalogna
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Parag
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Moran Adler
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Vicktoria Elkarif
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
Wang Z, Spielmann G, Johannsen N, Greenway F, Irving BA, Dalecki M. Boost your brain: a simple 100% normobaric oxygen treatment improves human motor learning processes. Front Neurosci 2023; 17:1175649. [PMID: 37496738 PMCID: PMC10366362 DOI: 10.3389/fnins.2023.1175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Human motor learning processes are a fundamental part of our daily lives and can be adversely affected by neurologic conditions. Motor learning largely depends on successfully integrating cognitive and motor-related sensory information, and a simple, easily accessible treatment that could enhance such processes would be exciting and clinically impactful. Normobaric 100% oxygen treatment (NbOxTr) is often used as a first-line intervention to improve survival rates of brain cells in neurological trauma, and recent work indicates that improvements in elements crucial for cognitive-motor-related functions can occur during NbOxTr. However, whether NbOxTr can enhance the motor learning processes of healthy human brains is unknown. Here, we investigated whether a brief NbOxTr administered via nasal cannula improves motor learning processes during a visuomotor adaptation task where participants adapt to a visual distortion between visual feedback and hand movements. Methods 40 healthy young adults (M = 21 years) were randomly assigned to a NbOxTr (N = 20; 100% oxygen) or air (N = 20; regular air) group and went through four typical visuomotor adaptation phases (Baseline, Adaptation, After-Effect, Refresher). Gas treatment (flow rate 5 L/min) was only administered during the Adaptation phase of the visuomotor experiment, in both groups. Results The NbOxTr provided during the Adaptation phase led to significantly faster and about 30% improved learning (p < 0.05). Notably, these motor learning improvements consolidated into the subsequent experiment phases, i.e., after the gas treatment was terminated (p < 0.05). Discussion We conclude that this simple and brief NbOxTr dramatically improved fundamental human motor learning processes and may provide promising potential for neurorehabilitation and skill-learning approaches. Further studies should investigate whether similar improvements exist in elderly and neurologically impaired individuals, other motor learning tasks, and also long-lasting effects.
Collapse
Affiliation(s)
- Zheng Wang
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Neil Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Brian A. Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
MacLaughlin KJ, Barton GP, Braun RK, MacLaughlin JE, Lamers JJ, Marcou MD, Eldridge MW. Hyperbaric air mobilizes stem cells in humans; a new perspective on the hormetic dose curve. Front Neurol 2023; 14:1192793. [PMID: 37409020 PMCID: PMC10318163 DOI: 10.3389/fneur.2023.1192793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Hyperbaric air (HBA) was first used pharmaceutically in 1662 to treat lung disease. Extensive use in Europe and North America followed throughout the 19th century to treat pulmonary and neurological disorders. HBA reached its zenith in the early 20th century when cyanotic, moribund "Spanish flu pandemic" patients turned normal color and regained consciousness within minutes after HBA treatment. Since that time the 78% Nitrogen fraction in HBA has been completely displaced by 100% oxygen to create the modern pharmaceutical hyperbaric oxygen therapy (HBOT), a powerful treatment that is FDA approved for multiple indications. Current belief purports oxygen as the active element mobilizing stem progenitor cells (SPCs) in HBOT, but hyperbaric air, which increases tensions of both oxygen and nitrogen, has been untested until now. In this study we test HBA for SPC mobilization, cytokine and chemokine expression, and complete blood count. Methods Ten 34-35-year-old healthy volunteers were exposed to 1.27ATA (4 psig/965 mmHg) room air for 90 min, M-F, for 10 exposures over 2-weeks. Venous blood samples were taken: (1) prior to the first exposure (served as the control for each subject), (2) directly after the first exposure (to measure the acute effect), (3) immediately prior to the ninth exposure (to measure the chronic effect), and (4) 3 days after the completion of tenth/final exposure (to assess durability). SPCs were gated by blinded scientists using Flow Cytometry. Results SPCs (CD45dim/CD34+/CD133-) were mobilized by nearly two-fold following 9 exposures (p = 0.02) increasing to three-fold 72-h post completion of the final (10th) exposure (p = 0.008) confirming durability. Discussion This research demonstrates that SPCs are mobilized, and cytokines are modulated by hyperbaric air. HBA likely is a therapeutic treatment. Previously published research using HBA placebos should be re-evaluated to reflect a dose treatment finding rather than finding a placebo effect. Our findings of SPC mobilization by HBA support further investigation into hyperbaric air as a pharmaceutical/therapy.
Collapse
Affiliation(s)
- Kent J. MacLaughlin
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Gregory P. Barton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rudolf K. Braun
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Julia E. MacLaughlin
- Medical Oxygen Outpatient Clinic, The American Center, Madison, WI, United States
| | - Jacob J. Lamers
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew D. Marcou
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Marlowe W. Eldridge
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
12
|
Ora J, Calzetta L, Frugoni C, Puxeddu E, Rogliani P. Expert guidance on the management and challenges of long-COVID syndrome: a systematic review. Expert Opin Pharmacother 2023; 24:315-330. [PMID: 36542805 DOI: 10.1080/14656566.2022.2161365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Long-COVID is a condition characterized by the permanence of symptoms beyond 4 weeks after an initial infection. It affects 1 out of 5 people and is loosely related to the severity of acute infection and pathological mechanisms, which are yet to be understood. AREAS COVERED This article looks at currently available and under-studied therapies for long-COVID syndrome. It particularly gives focus to ongoing trials and reviews the underlying mechanisms. A comprehensive literature search was performed on PubMed and clincaltrial.gov of clinical trials concerning the management of long-COVID syndrome. EXPERT OPINION 'Long-COVID' syndrome is a new emergency characterized by several symptoms such as fatigue, dyspnea, cognitive and attention disorders, sleep disorders, post-traumatic stress disorder, muscle pain, and concentration problems. Despite the many guidelines available to date, there are no established treatments of long-COVID. Pharmacological research is studying known drugs that act on the reduction or modulation of systemic inflammation, or innovative drugs used in similar pathologies. Rehabilitation now seems to be the safest treatment to offer, whereas we will have to wait for the pharmacological research trials in progress as well as plan new trials based on a better understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Josuel Ora
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Chiara Frugoni
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ermanno Puxeddu
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Division of Emergency Medicine, University Hospital Tor Vergata, 00133, Rome, Italy.,Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
13
|
Ablin JN, Lang E, Catalogna M, Aloush V, Hadanny A, Doenyas-Barak K, Finci S, Polak N, Fishlev G, Korin C, Tzidky RY, Meir Genuth O, Efrati S. Hyperbaric oxygen therapy compared to pharmacological intervention in fibromyalgia patients following traumatic brain injury: A randomized, controlled trial. PLoS One 2023; 18:e0282406. [PMID: 36897850 PMCID: PMC10004612 DOI: 10.1371/journal.pone.0282406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Fibromyalgia is a chronic pain syndrome with unsatisfactory response to current treatments. Physical trauma, including traumatic brain Injury (TBI) is among the etiological triggers. Hyperbaric Oxygen therapy (HBOT) is an intervention that combines 100% oxygen with elevated atmospheric pressure. HBOT has been applied as a neuro-modulatory treatment in central nervous system-related conditions. The current study investigated the utility of HBOT for TBI-related fibromyalgia. Fibromyalgia patients with a history of TBI were randomized to either HBOT or pharmacological intervention. HBOT protocol comprised 60 daily sessions, breathing 100% oxygen by mask at 2 absolute atmospheres (ATA) for 90 minutes. Pharmacological treatment included Pregabalin or Duloxetine. The primary outcome was subjective pain intensity on visual analogue scale (VAS); Secondary endpoints included questionnaires assessing fibromyalgia symptoms as well as Tc-99m-ECD SPECT brain imaging. Pain threshold and conditioned pain modulation (CPM) were also assessed. Results demonstrated a significant group-by-time interaction in pain intensity post-HBOT compared to the medication group (p = 0.001), with a large net effect size (d = -0.95) in pain intensity reduction following HBOT compared to medications. Fibromyalgia related symptoms and pain questionnaires demonstrated significant improvements induced by HBOT as well as improvements in quality of life and increase in pain thresholds and CPM. SPECT demonstrated significant group-by-time interactions between HBOT and medication groups in the left frontal and the right temporal cortex. In conclusion, HBOT can improve pain symptoms, quality of life, emotional and social function of patients suffering from FMS triggered by TBI. The beneficial clinical effect is correlated with increased brain activity in frontal and parietal regions, associated with executive function and emotional processing.
Collapse
Affiliation(s)
- Jacob N. Ablin
- Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Erez Lang
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Merav Catalogna
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Valerie Aloush
- Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
| | - Amir Hadanny
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Keren Doenyas-Barak
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Shachar Finci
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Nir Polak
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Gregory Fishlev
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Calanit Korin
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Rachel Yehudit Tzidky
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Oshra Meir Genuth
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Effect of Hyperbaric Oxygen Therapy on Sleep Quality, Drug Dosage, and Nerve Function in Patients with Sleep Disorders after Ischemic Cerebral Stroke. Emerg Med Int 2022. [DOI: 10.1155/2022/8307865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective. To explore the effects of hyperbaric oxygen therapy (HOT) on sleep quality, drug dosage, and nerve function in patients with sleep disorders after ischemic cerebral stroke (ICS). Methods. A total of 120 patients with acute ICS and sleep disorders who came to our hospital for treatment from January 2019 to October 2021 were selected and divided into control and observation groups according to the random numbering method, with 60 cases in each group. Both groups were treated with sertraline and eszopiclone for treating insomnia. The control group was given routine treatment for ICS, and the observation group was additionally treated with HOT in addition to the control group. The sleep quality, the use of sleep medication, the neurological function score, and the levels of serum tumor necrosis factor-α (TNF-α), endothelin (ET), and neuropeptide Y (NPY) before and after treatment were compared between the two groups. Results. The levels of TNF-α, ET and NPY were not significantly different between the two groups of patients before treatment (
), and all of the above indicators decreased significantly in both groups after treatment, with the observation group being lower than the control group (
). There was no significant difference in the sleep quality scores of PSQI, ESS, and SBQ between the two groups before treatment (
), and the above indicators decreased significantly in both groups after treatment, with the observation group being lower than the control group (
). There was no significant difference in the dose of sleep medication used in the first day of treatment between the two groups (
), and the amount of sleep medication used in the observation group was significantly less than that in the control group after 14 d of treatment (
). There was no significant difference in the NIHSS scores between the two groups before treatment (
), and the scores of both groups decreased after treatment, and the scores of the observation group were significantly lower than those of the control group (
). Conclusion. Compared with routine treatment, the addition of HOT to treat patients with sleep disorders after ICS can significantly improve their sleep quality, reduce dosage of sleep drugs, reduce inflammatory level of brain tissue and nerve function damage, and improve their prognosis. Trial Registration. This study was registered in the EA2019056
Collapse
|
15
|
Marcinkowska AB, Mankowska ND, Kot J, Winklewski PJ. Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: a Systematic Review. Neuropsychol Rev 2022; 32:99-126. [PMID: 33847854 PMCID: PMC8888529 DOI: 10.1007/s11065-021-09500-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) is a modality of treatment in which patients inhale 100% oxygen inside a hyperbaric chamber pressurised to greater than 1 atmosphere. The aim of this review is to discuss neuropsychological findings in various neurological disorders treated with HBOT and to open new perspectives for therapeutic improvement. A literature search was conducted in the MEDLINE (via PubMed) database from the inception up 10 May 2020. Eligibility criteria included original articles published in English. Case studies were excluded. Full-text articles were obtained from the selected studies and were reviewed on the following inclusion criteria (1) performed cognitive processes assessment (2) performed HBOT with described protocol. Two neuropsychologists independently reviewed titles, abstracts, full texts and extracted data. The initial search retrieved 1024 articles, and a total of 42 studies were finally included after applying inclusion and exclusion criteria. The search yielded controversial results with regard to the efficiency of HBOT in various neurological conditions with cognitive disturbance outcome. To the best of our knowledge this is the first state-of-the art, systematic review in the field. More objective and precise neuropsychological assessment methods are needed to exact evaluation of the efficacy of HBOT for neuropsychological deficits. Future studies should widen the assessment of HBOT effects on different cognitive domains because most of the existing studies have focussed on a single process. Finally, there is a need for further longitudinal studies.
Collapse
Affiliation(s)
- Anna B Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland.
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Natalia D Mankowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Gdańsk, Poland
| | - Pawel J Winklewski
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Tuwima Str. 15 80-210, Gdańsk, Poland
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Alashram AR, Padua E, Romagnoli C, Annino G. Hyperbaric oxygen therapy for cognitive impairments in patients with traumatic brain injury: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2022:1-12. [PMID: 35213282 DOI: 10.1080/23279095.2022.2041418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cognitive deficits are the most common impairments after traumatic brain injury (TBI). It can be linked with poor physical function. Hyperbaric oxygen therapy (HBOT) increases blood flow and oxygen supply to the brain. This review aimed to summarize and evaluate the available literature on the influences of HBOT on cognitive deficits in patients with TBI. PubMed, SCOPUS, PEDro, REHABDATA, MIDLINE, CHINAL, EMBASE, and Web of Science were searched from inception until June 2021. The methodological quality was measured using the physiotherapy evidence database (PEDro) scale. Ten studies met the eligibility criteria. Six studies were randomized controlled trials, and four were pilot studies. The scores on the PEDro scale ranged from two to nine, with a median score of seven. The included studies showed heterogeneity results for the beneficial effects of HBOT on improving cognitive functions in patients with TBI. The evidence for the beneficial effects of HBOT on cognitive functions post-TBI was limited. Further randomized controlled trials with large sample sizes are strongly needed to understand the effects of HBOT on cognitive functions in patients with TBI.
Collapse
Affiliation(s)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Cristian Romagnoli
- PhD School in Science and Culture of Well-being and Lifestyle, Alma Mater University, Bologna, Italy
| | - Giuseppe Annino
- Department of Medicine Systems, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
17
|
Zhu Y, Zhu X, Chen Z, Cao X, Wang L, Zang L, Cao W, Sun T, Bai X. The Efficacy of Needle-Warming Moxibustion Combined with Hyperbaric Oxygen Therapy for Ischemic Stroke and Its Effect on Neurological Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2204981. [PMID: 35237338 PMCID: PMC8885239 DOI: 10.1155/2022/2204981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To elucidate the therapeutic efficacy of needle-warming moxibustion (NWM) combined with hyperbaric oxygen therapy (HBOT) in the treatment of patients with ischemic stroke and its effect on neurological function. METHODS One hundred patients with ischemic stroke admitted to the Xuzhou Medical University Affiliated Hospital of Lianyungang from January 2019 to July 2021 were enrolled. Among them, 45 patients treated with NWM were set as the control group, and the rest 55 patients treated by NWM combined with HBOT were included in the research group. The curative effect, neurological deficit score, activity of daily living (ADL), balance ability, and the levels of serum proinflammatory factors in both groups were observed and recorded. Of them, the neurological deficit of patients was evaluated by the National Institutes of Health Stroke Scale (NHISS), the ADL ability was determined by the Barthel index score, and the balance ability was assessed by the Berg balance scale. RESULTS The total effective rate of the research group was higher than that of the control group. Better ADL and balance ability and milder neurologic impairment were determined in the research group compared with the control group. After treatment, the secretion levels of proinflammatory factors such as C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) in the serum of patients in the research group were statistically lower than those before treatment and the control group. CONCLUSIONS NWM combined with HBOT is effective in the treatment of patients with ischemic stroke, which can not only improve patients' neurological function, ADL, and balance ability but also inhibit serum inflammatory reactions.
Collapse
Affiliation(s)
- Yonggang Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xiuhua Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Zhitian Chen
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xueli Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lu Wang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lin Zang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Weiwei Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Tian Sun
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xinyu Bai
- Acupuncture and Massage Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| |
Collapse
|
18
|
Bhaiyat AM, Sasson E, Wang Z, Khairy S, Ginzarly M, Qureshi U, Fikree M, Efrati S. Hyperbaric oxygen treatment for long coronavirus disease-19: a case report. J Med Case Rep 2022; 16:80. [PMID: 35168680 PMCID: PMC8848789 DOI: 10.1186/s13256-022-03287-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 pandemic has resulted in a growing population of individuals who experience a wide range of persistent symptoms referred to as "long COVID." Symptoms include neurocognitive impairment and fatigue. Two potential mechanisms could be responsible for these long-term unremitting symptoms: hypercoagulability, which increases the risk of blood vessel occlusion, and an uncontrolled continuous inflammatory response. Currently, no known treatment is available for long COVID. One of the options to reverse hypoxia, reduce neuroinflammation, and induce neuroplasticity is hyperbaric oxygen therapy. In this article, we present the first case report of a previously healthy athletic individual who suffered from long COVID syndrome treated successfully with hyperbaric oxygen therapy. CASE PRESENTATION A previously healthy 55-year-old Caucasian man presented 3 months after severe coronavirus disease 2019 infection with long COVID syndrome. His symptoms included a decline in memory, multitasking abilities, energy, breathing, and physical fitness. After evaluation that included brain perfusion magnetic resonance imaging, diffusion tensor imaging, computerized cognitive tests, and cardiopulmonary test, he was treated with hyperbaric oxygen therapy. Each session included exposure to 90 minutes of 100% oxygen at 2 atmosphere absolute pressure with 5-minute air breaks every 20 minutes for 60 sessions, 5 days per week. Evaluation after completing the treatment showed significant improvements in brain perfusion and microstructure by magnetic resonance imaging and significant improvement in memory with the most dominant effect being on nonverbal memory, executive functions, attention, information procession speed, cognitive flexibility, and multitasking. The improved cognitive functions correlated with the increased cerebral blood flow in brain regions as measured by perfusion magnetic resonance imaging. With regard to physical capacity, there was a 34% increase in the maximum rate of oxygen consumed during exercise and a 44% improvement in forced vital capacity. The improved physical measurements correlated with the regain of his pre-COVID physical capacity. CONCLUSIONS We report the first case of successfully treated long COVID symptoms with hyperbaric oxygen therapy with improvements in cognition and cardiopulmonary function. The beneficial effects of hyperbaric oxygen shed additional light on the pathophysiology of long COVID. As this is a single case report, further prospective randomized control studies are needed.
Collapse
Affiliation(s)
- Aisha M Bhaiyat
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates.
| | - Efrat Sasson
- Aviv Scientific Ltd, 7 Mezada Street, Bnei Brak, Israel
| | - Zemer Wang
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | - Sherif Khairy
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | | | - Umair Qureshi
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | - Moin Fikree
- Rashid Hospital Trauma Center, Dubai, United Arab Emirates
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Israel Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Wang RY, Yang YR, Chang HC. The SDF1-CXCR4 Axis Is Involved in the Hyperbaric Oxygen Therapy-Mediated Neuronal Cells Migration in Transient Brain Ischemic Rats. Int J Mol Sci 2022; 23:ijms23031780. [PMID: 35163700 PMCID: PMC8836673 DOI: 10.3390/ijms23031780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague–Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20μm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function.
Collapse
Affiliation(s)
- Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.W.); (Y.-R.Y.)
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.W.); (Y.-R.Y.)
| | - Heng-Chih Chang
- Department of Physical Therapy, Asia University, Taichung 413, Taiwan
- Correspondence: ; Tel.: +886-4-2332-3456 (ext. 48031)
| |
Collapse
|
20
|
da Silva SC, da Silva Beggiora P, Catalão CHR, Dutra M, Matias Júnior I, Santos MV, Machado HR, da Silva Lopes L. Hyperbaric oxygen therapy associated with ventricular-subcutaneous shunt promotes neuroprotection in young hydrocephalic rats. Neuroscience 2022; 488:77-95. [DOI: 10.1016/j.neuroscience.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
|
21
|
Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu Ș, Munteanu C. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:907. [PMID: 35055089 PMCID: PMC8846361 DOI: 10.3390/ijms23020907] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral circulation delivers the blood flow to the brain through a dedicated network of sanguine vessels. A healthy human brain can regulate cerebral blood flow (CBF) according to any physiological or pathological challenges. The brain is protected by its self-regulatory mechanisms, which are dependent on neuronal and support cellular populations, including endothelial ones, as well as metabolic, and even myogenic factors. OBJECTIVES Accumulating data suggest that "non-pharmacological" approaches might provide new opportunities for stroke therapy, such as electro-/acupuncture, hyperbaric oxygen therapy, hypothermia/cooling, photobiomodulation, therapeutic gases, transcranial direct current stimulations, or transcranial magnetic stimulations. We reviewed the recent data on the mechanisms and clinical implications of these non-pharmaceutical treatments. METHODS To present the state-of-the-art for currently available non-invasive, non-pharmacological-related interventions in acute ischemic stroke, we accomplished this synthetic and systematic literature review based on the Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses (PRISMA). RESULTS The initial number of obtained articles was 313. After fulfilling the five steps in the filtering/selection methodology, 54 fully eligible papers were selected for synthetic review. We enhanced our documentation with other bibliographic resources connected to our subject, identified in the literature within a non-standardized search, to fill the knowledge gaps. Fifteen clinical trials were also identified. DISCUSSION Non-invasive, non-pharmacological therapeutic/rehabilitative interventions for acute ischemic stroke are mainly holistic therapies. Therefore, most of them are not yet routinely used in clinical practice, despite some possible beneficial effects, which have yet to be supplementarily proven in more related studies. Moreover, few of the identified clinical trials are already completed and most do not have final results. CONCLUSIONS This review synthesizes the current findings on acute ischemic stroke therapeutic/rehabilitative interventions, described as non-invasive and non-pharmacological.
Collapse
Affiliation(s)
- Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Dan Blendea
- Faculty of Medicine, University ”Titu Maiorescu”, 0400511 Bucharest, Romania;
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Daia
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Mihaela Oprea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aura Spinu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Anca Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Ștefan Busnatu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy” Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
22
|
Gao WJ, Bao WJ, Sun SJ. An Evidence-Based Nursing Intervention Decreases Anxiety, Depression, Sleep Quality and Somatic Symptoms of Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2022; 18:2443-2451. [PMID: 36317117 PMCID: PMC9617554 DOI: 10.2147/ndt.s377340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to explore the effects of evidence-based nursing (EBN) intervention on anxiety, depression, sleep quality and somatic symptoms of patients with acute ischemic stroke (AIS). METHODS The eligible AIS patients were randomized into the intervention group and control group in a 1:1 ratio. Patients in both groups received routine nursing care. On the basis of routine nursing, patients in the intervention group also received EBN. Self-rating anxiety scale (SAS), self-rating depression scale (SDS), Pittsburgh Sleep Quality Index (PSQI), and the Patient Health Questionnaire-15 (PHQ-15) were used to assess patients' anxiety, depression, sleep quality, and somatic symptoms at baseline (T0) and 6 months after intervention (T1), respectively. RESULTS There was no difference in SAS, SDS, PSQI, and PHQ-15 scores at T0 between the 2 groups (all P > 0.05). Comparing to the control group, the intervention group had significantly lower SAS and SDS scores at T1 (P = 0.002, P < 0.001, respectively). The SAS and SDS score changes (T1-T0) were more evident in the intervention group than in the control group (all P < 0.001). No difference of PSQI or PHQ-15 score between the 2 groups was observed at T1. However, the PSQI and PHQ-15 score changes were more evident in the intervention group than in the control group (P = 0.044 and P = 0.007, respectively). CONCLUSION EBN invention significantly improved anxiety, depression, sleep quality and somatic symptoms of patients with AIS.
Collapse
Affiliation(s)
- Wen-Juan Gao
- Neurology, Hebei General Hospital, Shijiazhuang City, Hebei 050051, People's Republic of China
| | - Wen-Juan Bao
- Department of Hepato-Biliary-Pancreatic Surgery, Hebei General Hospital, Shijiazhuang City, Hebei, 050051, People's Republic of China
| | - Su-Juan Sun
- Nursing Department, Hebei General Hospital, Shijiazhuang City, Hebei, 050051, People's Republic of China
| |
Collapse
|
23
|
Hadanny A, Forer R, Volodarsky D, Daniel-Kotovsky M, Catalogna M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy induces transcriptome changes in elderly: a prospective trial. Aging (Albany NY) 2021; 13:24511-24523. [PMID: 34818212 PMCID: PMC8660606 DOI: 10.18632/aging.203709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
Introduction: Aging is characterized by the progressive loss of physiological capacity. Changes in gene expression can alter activity in defined age-related molecular pathways leading to cellular aging and increased aging disease susceptibility. The aim of the current study was to evaluate whether hyperbaric oxygen therapy (HBOT) affects gene expression in normal, non-pathological, aging adults. Methods: Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th HBOT session, and 1–2 weeks following the last session. Differential gene expression analysis was performed. Results: Following 60 sessions of HBOT, 1342 genes and 570 genes were differently up- and downregulated (1912 total), respectively (p < 0.01 FDR), compared to baseline. Out of which, five genes were downregulated with a >1.5-fold change: ABCA13 (FC = −2.28), DNAJ6 (FC = −2.16), HBG2 (FC = −1.56), PDXDC1 (FC = −1.53), RANBP17 (FC = −1.75). Two weeks post-HBOT, ABCA13 expression was significantly downregulated with a >1.5fold change (FC = −1.54, p = 0.008). In conclusion, for the first time in humans, the study provides direct evidence of HBOT is associated with transcriptome changes in whole-blood samples. Our results demonstrate significant changes in gene expression of normal aging population.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Bar Ilan University, Ramat-Gan, Israel.,Aviv Scientific LTD, Bnei-Brak, Israel
| | | | | | - Malka Daniel-Kotovsky
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Merav Catalogna
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yonatan Zemel
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Aviv Scientific LTD, Bnei-Brak, Israel
| | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Aviv Scientific LTD, Bnei-Brak, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Aviv Scientific LTD, Bnei-Brak, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Gottfried I, Schottlender N, Ashery U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021; 11:biom11101520. [PMID: 34680155 PMCID: PMC8533945 DOI: 10.3390/biom11101520] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the medical use of oxygen at environmental pressure greater than one atmosphere absolute—is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT’s mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.
Collapse
Affiliation(s)
- Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
| | - Nofar Schottlender
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6409827
| |
Collapse
|
25
|
Zhang S, Zhang J, Wang C, Chen X, Zhao X, Jing H, Liu H, Li Z, Wang L, Shi J. COVID‑19 and ischemic stroke: Mechanisms of hypercoagulability (Review). Int J Mol Med 2021; 47:21. [PMID: 33448315 PMCID: PMC7849983 DOI: 10.3892/ijmm.2021.4854] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, some patients with severe COVID-19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D-dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID-19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID-19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID-19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID-19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID-19 with ischemic stroke and prevent AIS during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuoqi Zhang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinming Zhang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunxu Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojing Chen
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinyi Zhao
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhuxin Li
- Department of Acupuncture and Moxibustion, College of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Lihua Wang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
26
|
Chen CA, Huang YC, Lo JJ, Wang SH, Huang SH, Wu SH. Hyperbaric Oxygen Therapy Attenuates Burn-Induced Denervated Muscle Atrophy. Int J Med Sci 2021; 18:3821-3830. [PMID: 34790058 PMCID: PMC8579280 DOI: 10.7150/ijms.65976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Neuronal apoptosis and inflammation in the ventral horn of the spinal cord contribute to denervated muscle atrophy post-burn. Hyperbaric oxygen therapy (HBOT) exerts anti-inflammation and neuroprotection. Furthermore, hypoxia-inducible factor (HIF)-1α has been reported to promote inflammation and apoptosis. We investigated the therapeutic potential of HBOT and the role of HIF-1α post-burn. Methods: Sprague-Dawley rats were divided into three groups: a control group, an untreated burn group receiving burn and sham treatment, and a HBOT group receiving burn injury and HBOT. The burn injury was induced with 75ºC ± 5ºC at the right hindpaw. HBOT (100% oxygen at 2.5 atmosphere, 90 min/day) and sham HBOT (21% oxygen at 1 atmosphere, 90 min/day) was started on day 28 after burn injury and continued for 14 treatments (days 28-41). Incapacitance (hind limb weight bearing) testing was conducted before burn and weekly after burn. At day 42 post-burn, the gastrocnemius muscle and the spinal cord ventral horn were analyzed. Results: HBOT improved burn-induced weight bearing imbalance. At day 42 post-burn, less gastrocnemius muscle atrophy and fibrosis were noted in the HBOT group than in the untreated burn group. In the ventral horn, HBOT attenuated the neuronal apoptosis and glial activation post-burn. The increases in phosphorylated AKT/mTOR post-burn were reduced after HBOT. HBOT also inhibited HIF-1α signaling, as determined by immunofluorescence and western blot. Conclusions: HBOT reduces burn-induced neuronal apoptosis in the ventral horn, possibly through HIF-1α signaling.
Collapse
Affiliation(s)
- Chin-An Chen
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan
| | - Yi-Chen Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hung Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hyperbaric Oxygen Therapy Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Cevolani D, Di Donato F, Santarella L, Bertossi S, Cellerini M. Functional MRI (fMRI) Evaluation of Hyperbaric Oxygen Therapy (HBOT) Efficacy in Chronic Cerebral Stroke: A Small Retrospective Consecutive Case Series. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010190. [PMID: 33383925 PMCID: PMC7794810 DOI: 10.3390/ijerph18010190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 05/07/2023]
Abstract
Topics: Functional Magnetic Resonance Imaging (fMRI) evaluation of HyberBaric Oxygen Therapy (HBOT) effects on chronic cerebral stroke Patients (Pts). Introduction: Our aim was to evaluate with fMRI, in a 3 Tesla system, the functional effects of HBOT on the Central Nervous System (CNS) in four Pts with established ischaemic and haemorrhagic cerebral strokes (2 Pts each). To our knowledge, no author used this Magnetic Resonance (MR) technique for this purpose, till now. Methods: All four Pts underwent a fMRI study before and after 40 HBOT sessions, with a time window of a few days. They carried out two language (text listening, silent word-verb generation) and two motor (hand and foot movements) tasks (30 s On-Off block paradigms). Results: After HBOT, all Pts reported a clinical improvement, mostly concerning language fluency and motor paresis. fMRI analysis demonstrated an increase in both the extent and the statistical significance of most of the examined eloquent areas. Conclusions: These changes were consistent with the clinical improvement in all Pts, suggesting a possible role of fMRI in revealing neuronal functional correlates of neuronal plasticity and HBOT-related neoangiogenesis. Although only four Pts were examined, fMRI proved to be a sensitive, non-invasive and reliable modality for monitoring neuronal functional changes before and after HBOT.
Collapse
Affiliation(s)
- Daniela Cevolani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, c/o Neuroradiology Unit, “Bellaria” Hospital, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-339-46-222-47
| | - Ferruccio Di Donato
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Luigi Santarella
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Simone Bertossi
- Hyperbaric Centre of Bologna, Quarto Inferiore, 40057 Bologna, Italy; (F.D.D.); (L.S.); (S.B.)
| | - Martino Cellerini
- Neuroradiology Unit, “Bellaria” Hospital, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy;
| |
Collapse
|
28
|
Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY) 2020; 12:22445-22456. [PMID: 33206062 PMCID: PMC7746357 DOI: 10.18632/aging.202188] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Aging is characterized by the progressive loss of physiological capacity. At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence. Repeated intermittent hyperoxic exposures, using certain hyperbaric oxygen therapy (HBOT) protocols, can induce regenerative effects which normally occur during hypoxia. The aim of the current study was to evaluate whether HBOT affects TL and senescent cell concentrations in a normal, non-pathological, aging adult population. METHODS Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th session, and 1-2 weeks following the last HBOT session. Peripheral blood mononuclear cells (PBMCs) telomeres length and senescence were assessed. RESULTS Telomeres length of T helper, T cytotoxic, natural killer and B cells increased significantly by over 20% following HBOT. The most significant change was noticed in B cells which increased at the 30th session, 60th session and post HBOT by 25.68%±40.42 (p=0.007), 29.39%±23.39 (p=0.0001) and 37.63%±52.73 (p=0.007), respectively. There was a significant decrease in the number of senescent T helpers by -37.30%±33.04 post-HBOT (P<0.0001). T-cytotoxic senescent cell percentages decreased significantly by -10.96%±12.59 (p=0.0004) post-HBOT. In conclusion, the study indicates that HBOT may induce significant senolytic effects including significantly increasing telomere length and clearance of senescent cells in the aging populations.
Collapse
Affiliation(s)
- Yafit Hachmo
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Bar Ilan University, Ramat-Gan, Israel
| | - Ramzia Abu Hamed
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Malka Daniel-Kotovsky
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Merav Catalogna
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Gregory Fishlev
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Nir Polak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Keren Doenyas
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Mony Friedman
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yonatan Zemel
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel.,The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
29
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
30
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|