1
|
Zhuravleva E, Lewinska M, O'Rourke CJ, Pea A, Rashid A, Hsing AW, Taranta A, Chang D, Gao YT, Koshiol J, Oliveira RC, Andersen JB. Mutational signatures define immune and Wnt-associated subtypes of ampullary carcinoma. Gut 2025; 74:804-814. [PMID: 39725462 PMCID: PMC12013699 DOI: 10.1136/gutjnl-2024-333368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Ampullary carcinoma (AMPAC) taxonomy is based on morphology and immunohistochemistry. This classification lacks prognostic reliability and unique genetic associations. We applied an approach of integrative genomics characterising patients with AMPAC exploring molecular subtypes that may guide personalised treatments. DESIGN We analysed the mutational landscapes of 170 patients with AMPAC. The discovery included 110 tumour/normal pairs and the validation comprised 60 patients. In a tumour subset, we interrogated the transcriptomes and DNA methylomes. Patients were stratified based on mutational signatures and associated with molecular and clinical features. To evaluate tumour and immune cellularity, 22 tumours were independently assessed histomorphologically and by digital pathology. RESULTS We defined three patient clusters by mutational signatures independent of histomorphology. Cluster 1 (C1) was defined by spontaneous deamination of DNA 5-methylcytosine and defective mismatch repair. C2 and C3 were related to the activity of transcription-coupled nucleotide excision repair but C3 was further defined by the polymerase eta mutational process. C1-2 showed enrichment of Wnt pathway alterations, aberrant DNA methylation profiles, immune cell exclusion and patients with poor prognosis. These features were associated with a hypermutator phenotype caused by C>T alterations at CpGs. C3 patients with improved overall survival were associated with activation of immune-related pathways, immune infiltration and elevated expression of immunoinhibitory checkpoint genes. CONCLUSION Immunogenicity and Wnt pathway associations, emphasised by the mutational signatures, defined patients with prospective sensitivity to either immunotherapy or Wnt pathway inhibitors. This emphasises a novel mutational signature-based AMPAC classification with prognostic potential, suggesting prospective implications for subgroup-specific management of patients with AMPAC.
Collapse
Affiliation(s)
- Ekaterina Zhuravleva
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Pea
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
- University of Verona, Verona, Italy
| | - Asif Rashid
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Ann W Hsing
- Stanford Cancer Institute and Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrzej Taranta
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Chang
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, Shanghai, China
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, Rockville, Maryland, USA
| | | | - Jesper B Andersen
- Biotech Research and Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Shen Q, Zhou Y, Liu X, Li J, Pan S, Xie N, Lin X, Zhou L, Zhou J, Li T. Clinical and Genetic Characteristics of Pediatric Colorectal Cancer. Pediatr Blood Cancer 2025; 72:e31569. [PMID: 39887884 DOI: 10.1002/pbc.31569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/21/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Compared to colorectal cancer (CRC) in adults, CRC in children is extremely rare. Although its incidence has increased recently, there is a lack of clinical research on the disease. Inherited cancer susceptibility syndromes (ICSS), a group of disorders in which patients are predisposed to susceptibility to a wide range of tumors as a result of pathogenic mutations in genes in their germ line, are an important cause of CRC in children. Delayed diagnosis due to atypical clinical presentation, as well as limited awareness of ICSS among doctors, contributes to poor outcomes in juvenile CRC patients. Therefore, improving clinicians' understanding of the diagnosis and treatment of the disease is crucial to enhancing children's prognosis with CRC. METHODS Clinical data and laboratory reports were collected from eight pediatric patients diagnosed with CRC at the Children's Hospital of Nanjing Medical University between 2020 and 2023. The clinical and genetic characteristics of these patients were evaluated and compared with other patients with early-onset CRC in the literature. RESULTS A total of 8 children with CRC were enrolled in the study, including 5 male and 3 female children, with a median age of 140 (73-177) months. The main clinical manifestations were unexplained abdominal pain, abdominal distension, vomiting, and hematochezia. Three cases of intestinal obstruction and two cases of intestinal intussusception occurred among the patients. All eight children underwent surgical treatment, including one case of snare resection of rectal polyp, five cases of subtotal colectomy, and two cases of radical resection of CRC. One case of radical resection of CRC utilized laparoscopic and colonoscopic combined resection guided by indocyanine green (ICG) fluorescence navigation system. Postoperative combination of pathological pictures and immunohistochemical (IHC) staining results confirmed high-grade squamous intraepithelial lesion (HSIL) in Case 1, and mucinous adenocarcinoma in the remaining seven cases. Out of eight pediatric patients with CRC, except for Case 1 and Case 7, who did not undergo chemotherapy, the remaining six patients all received postoperative chemotherapy; among them, the patients in Cases 1, 6, 7, and 8 achieved complete remission, whereas the patients in Cases 2 and 4 died due to postoperative recurrence and distant metastasis, the patient in Case 3 is still undergoing chemotherapy, and the patient in Case 5 was lost to follow-up after surgery. The results of the genetic test report showed that two children had ICSS caused by mismatch gene repair system defects (deficient MMR, dMMR); in Case 3, the child's genetic test results showed heterozygous mutation of MSH2 in the MMR gene, with high microsatellite instability (MSI-H), and the results of the methylation test of the MLH1 gene were negative, which, combined with the family history of heterozygous mutation of the MSH2 gene, ruled out sporadic CRC and led to the diagnosis of Lynch syndrome (LS); Case 8 genetic testing showed two heterozygous mutations in the MMR gene PMS2 with microsatellite stabilization (MSS), and a diagnosis of constitutional mismatch repair deficiency (CMMRD) was considered. CONCLUSION Pediatric CRC is confronted with delayed diagnosis and poor clinical prognosis, mainly due to nonspecific clinical presentation and the low index of suspicion among clinicians. Early detection and diagnosis is the fundamental guarantee to improve the prognosis of pediatric CRC patients, and pediatric surgeons enhance the understanding of pediatric CRC and standardize the surgery as much as possible.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Yong Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Jian Li
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Sirui Pan
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Nan Xie
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Xinrong Lin
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Li Zhou
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jianfeng Zhou
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Tao Li
- Department of Oncology, Children's Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
3
|
Andarawi S, Vodickova L, Uttarilli A, Hanak P, Vodicka P. Defective DNA repair: a putative nexus linking immunological diseases, neurodegenerative disorders, and cancer. Mutagenesis 2025; 40:4-19. [PMID: 39937585 DOI: 10.1093/mutage/geae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
Collapse
Affiliation(s)
- Safaa Andarawi
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anusha Uttarilli
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Petr Hanak
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| |
Collapse
|
4
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Kratz CP, Lupo PJ, Zelley K, Schienda J, Nichols KE, Stewart DR, Malkin D, Brodeur GM, Maxwell K, Plon SE, Walsh MF. Adult-Onset Cancer Predisposition Syndromes in Children and Adolescents-To Test or not to Test? Clin Cancer Res 2024; 30:1733-1738. [PMID: 38411636 DOI: 10.1158/1078-0432.ccr-23-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
With the increasing use of comprehensive germline genetic testing of children and adolescents with cancer, it has become evident that pathogenic variants (PV) in adult-onset cancer predisposition genes (aoCPG) underlying adult-onset cancer predisposition syndromes, such as Lynch syndrome or hereditary breast and ovarian cancer, are enriched and reported in 1% to 2% of children and adolescents with cancer. However, the causal relationship between PVs in aoCPGs and childhood cancer is still under investigation. The best-studied examples include heterozygous PVs in mismatch repair genes associated with Lynch syndrome in children with mismatch repair deficient high-grade glioma, heterozygous PVs in BARD1 in childhood neuroblastoma, and heterozygous PVs in BRCA2 in children with rhabdomyosarcoma. The low penetrance for pediatric cancers is considered to result from a combination of the low baseline risk of cancer in childhood and the report of only a modest relative risk of disease in childhood. Therefore, we do not advise that healthy children empirically be tested for PVs in an aoCPG before adulthood outside a research study. However, germline panel testing is increasingly being performed in children and adolescents with cancer, and exome and genome sequencing may be offered more commonly in this population in the future. The precise pediatric cancer risks and spectra associated with PVs in aoCPGs, underlying cellular mechanisms and somatic mutational signatures, as well as treatment response, second neoplasm risks, and psycho-oncological aspects require further research.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara Maxwell
- Department of Medicine, Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon E Plon
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Hinić S, Cybulski C, Van der Post RS, Vos JR, Schuurs-Hoeijmakers J, Brugnoletti F, Koene S, Vreede L, van Zelst-Stams WAG, Kets CM, Haadsma M, Spruijt L, Wevers MR, Evans DG, Wimmer K, Schnaiter S, Volk AE, Möllring A, de Putter R, Soikkonen L, Kahre T, Tooming M, de Jong MM, Vaz F, Mensenkamp AR, Genuardi M, Lubinski J, Ligtenberg M, Hoogerbrugge N, de Voer RM. The heterogeneous cancer phenotype of individuals with biallelic germline pathogenic variants in CHEK2. Genet Med 2024; 26:101101. [PMID: 38362852 DOI: 10.1016/j.gim.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE Females with biallelic CHEK2 germline pathogenic variants (gPVs) more often develop multiple breast cancers than individuals with monoallelic CHEK2 gPVs. This study is aimed at expanding the knowledge on the occurrence of other malignancies. METHODS Exome sequencing of individuals who developed multiple primary malignancies identified 3 individuals with the CHEK2 (NM_007194.4) c.1100del p.(Thr367MetfsTer15) loss-of-function gPV in a biallelic state. We collected the phenotypes of an additional cohort of individuals with CHEK2 biallelic gPVs (n = 291). RESULTS In total, 157 individuals (53.4%; 157/294 individuals) developed ≥1 (pre)malignancy. The most common (pre)malignancies next to breast cancer were colorectal- (n = 19), thyroid- (n = 19), and prostate (pre)malignancies (n = 12). Females with biallelic CHEK2 loss-of-function gPVs more frequently developed ≥2 (pre)malignancies and at an earlier age compared with females biallelic for the CHEK2 c.470T>C p.(Ile157Thr) missense variant. Furthermore, 26 males (31%; 26/84 males) with CHEK2 biallelic gPVs developed ≥1 (pre)malignancies of 15 origins. CONCLUSION Our study suggests that CHEK2 biallelic gPVs likely increase the susceptibility to develop multiple malignancies in various tissues, both in females and males. However, it is possible that a substantial proportion of individuals with CHEK2 biallelic gPVs is missed as diagnostic testing for CHEK2 often is limited to individuals who developed breast cancer.
Collapse
Affiliation(s)
- Snežana Hinić
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Rachel S Van der Post
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Janet R Vos
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Fulvia Brugnoletti
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Saskia Koene
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Lilian Vreede
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Wendy A G van Zelst-Stams
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - C Marleen Kets
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maaike Haadsma
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Liesbeth Spruijt
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Marijke R Wevers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - D Gareth Evans
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; The University of Manchester, Genomic Medicine, Division of Evolution, Infection and Genomic Sciences, Manchester, United Kingdom
| | - Katharina Wimmer
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schnaiter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander E Volk
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Möllring
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin de Putter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Leila Soikkonen
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Oulu University Hospital, Department of Clinical Genetics, Oulu, Finland
| | - Tiina Kahre
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mikk Tooming
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mirjam M de Jong
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Fátima Vaz
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Instituto Português Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Arjen R Mensenkamp
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maurizio Genuardi
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Richarda M de Voer
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Wen T, Ehivet F, Stanislaw C, Mao R, Hegde M. Hereditary Colorectal Cancer Diagnosis by Next-Generation Sequencing. Curr Protoc 2023; 3:e941. [PMID: 38112503 DOI: 10.1002/cpz1.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Pathogenic germline variants causally contribute to the etiology of colorectal cancer (CRC) and polyposis. The era of massively parallel sequencing, also known as next-generation sequencing (NGS), make it highly possible, effective, and efficient to offer rapid and cost-effective diagnosis for CRC. To aid clinical laboratories in testing the most clinically significant genes, along with the published ACMG CRC technical standard guidelines, this protocol aims to provide a step-by-step technical workflow for carrying out the NGS-panel based CRC molecular diagnosis focusing on the wet lab portion of library preparation and massively parallel sequencing. Using the most popular pull-down-based target enrichment, the chapter particularly encompasses genomic DNA (gDNA) fragmentation, adapter ligation, indexing, hybridization, and capture, which is the most variable and technically challenging part of NGS testing involving at least 3 quality control (QC) checkpoints plus the pre- and post-capture PCR. The gDNA extraction and sequencing is less covered because they are relatively standard technologies with little variations and choices. Although this protocol also introduces pertinent testing algorithms and a brief guideline for pre- and post-testing genetic counselling, the audiences are required to refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine the most appropriate testing strategies. Since NGS panel-based testing is a highly complex and dynamic platform with multiple choices from different technology and commercial resources, this technical benchtop-based protocol also aims to cover some of the key ramification points for decision-making by each laboratory at the discretion of the directors. © 2023 Wiley Periodicals LLC. Basic Protocol: Hereditary colorectal cancer (CRC) diagnosis by next-generation sequencing.
Collapse
Affiliation(s)
- Ting Wen
- University of Utah School of Medicine, Salt Lake City, Utah
- ARUP Laboratories, Salt Lake City, Utah
| | - Fabienne Ehivet
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Christine Stanislaw
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rong Mao
- University of Utah School of Medicine, Salt Lake City, Utah
- ARUP Laboratories, Salt Lake City, Utah
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
- Revvity, Waltham, Massachusetts
| |
Collapse
|
8
|
Samborska M, Galli D, Achkar R, Thambyrajah S, Derwich K. Constitutional Mismatch Repair Deficiency Syndrome as a Cause of Numerous Malignancies in a Teenage Patient-A Case Report. J Pediatr Hematol Oncol 2023; 45:e917-e920. [PMID: 37526375 DOI: 10.1097/mph.0000000000002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Constitutional mismatch repair deficiency syndrome is a genetic disorder resulting from a biallelic mutation in one of the following genes: MLH1, MSH2, MSH6, or PMS2. Individuals with constitutional mismatch repair deficiency are highly predisposed to develop both hematological and solid cancers in childhood, particularly lymphoma, brain tumors, and gastrointestinal neoplasms. We report a case of a boy diagnosed with B-cell acute lymphoblastic leukemia at the age of 3. In 2013, at the age of 6, head magnetic resonance imaging revealed hamartoma and astrocytoma lesions in the central nervous system. Two years after treatment completion, a diagnosis of precursor T-cell lymphoblastic lymphoma, accompanied by the vena cava syndrome, was established and treated accordingly. During treatment, a genetic test using Sanger sequencing was performed-a biallelic mutation in the MSH6 gene was detected. The study revealed that the mutation 17-bp c.2277-2293del. was inherited from the patient's mother. The second mutation, 5-bp c.1135_1139delAGAGA, developed inpatient de novo. At the age of 14, the diagnosis of isolated bone marrow relapse of acute lymphoblastic leukemia B-cell type was established. Due to the almost exceeded total dose of anthracyclines, the patient's treatment included blinatumomab, and subsequently, he was qualified for allogeneic hematopoietic cell transplantation. The patient remains in complete remission for 11 months after allogeneic hematopoietic stem cell transplantation under the care of the transplant center.
Collapse
Affiliation(s)
- Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciencces, Poznan, Poland
| | | | | | | | | |
Collapse
|
9
|
Winter K, Tan M, Briscoe E, Hyde A, Daniel Stanley J. Diagnosis and Management of Constitutional Mismatch Repair Deficiency Syndrome. Am Surg 2023; 89:3953-3955. [PMID: 37260094 DOI: 10.1177/00031348231173987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare autosomal recessive genetic disorder that has little more than 200 total cases reported as of 2020. Whereas a single mutation in genes responsible for mismatch repair causes the autosomal dominant Lynch syndrome (LS), CMMRD is caused by biallelic heterozygous defects: distinct deleterious mutations on each allele for a single gene. As the disease is exceedingly rare and may present via a wide variety of signs, including neurofibromatosis type 1- and Lynch Syndrome-associated malignancies, diagnosis and subsequent surveillance are complex with suggested methods published by the International Replication Repair Deficiency Consortium. We report here the history and management of a patient whose newly diagnosed CMMRD was managed with both curative and prophylactic surgical treatment.
Collapse
Affiliation(s)
- Kelly Winter
- Department of Surgery, University of Tennessee Health Science Center College of Medicine Chattanooga, Chattanooga, TN, USA
| | - Martin Tan
- Department of Surgery, University of Tennessee Health Science Center College of Medicine Chattanooga, Chattanooga, TN, USA
| | - Eric Briscoe
- Department of Surgery, University of Tennessee Health Science Center College of Medicine Chattanooga, Chattanooga, TN, USA
| | - Alan Hyde
- Department of Surgery, University of Tennessee Health Science Center College of Medicine Chattanooga, Chattanooga, TN, USA
| | - J Daniel Stanley
- Department of Surgery, University of Tennessee Health Science Center College of Medicine Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
10
|
Mir A, AlMudhry M, AlOtaibi W, AlHazmi R, AlBaradie R, AlHarbi Q, Bashir S, Chamdine O, Housawi Y. Constitutional Mismatch Repair Deficiency Syndromes, a Neurofibromatosis 1 Mimicker That Hinders Timely Management. J Pediatr Hematol Oncol 2023; 45:e613-e620. [PMID: 36897649 DOI: 10.1097/mph.0000000000002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND Constitutional mismatch repair deficiency (CMMRD) is a rare, autosomal recessive disease caused by a biallelic germline mutation in one of the DNA mismatch repair genes ( MLH1 , MSH2 , MSH6 and PMS2 ). In addition to colorectal, brain, and hematological malignancies, many additional premalignant and non-malignant features that can point toward the diagnosis of CMMRD have been reported. The report from the CMMRD consortium revealed that all children with CMMRD have café-au-lait macules (CALMs) but the number of CALMs does not reach > 5 in all CMMRD patients, which is one of the diagnostic criterions of NF1. About half of the patients with CMMRD develop brain tumors and up to 40% develop metachronous second malignancies. METHODS This is an observational retrospective case series describing five pediatric patients with CMMRD. RESULTS All the five patients in our cohort developed brain tumors and showed a predilection to the frontal lobe. In our cohort, multiple Mongolian spots, coloboma, obesity, CHD, dysmorphism, and clubfoot were also encountered. In all our patients, NF1 and other tumorigenic predisposing syndromes were initially suspected. CONCLUSION Increasing awareness of this condition and its shared reminiscent NF1 features, particularly CALMs among child neurologists, oncologists, geneticists, and dermatologists can help uncover the tip of the iceberg of CMMRD that carries an important consequence on management.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology
| | | | | | | | | | - Qasim AlHarbi
- Department of Pediatric Hematology, Oncology and Stem Cell Transplant
| | | | - Omar Chamdine
- Department of Pediatric Hematology, Oncology and Stem Cell Transplant
| | - Yousef Housawi
- Department of Genetic and Metabolic, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, Gylfason A, Sveinbjornsson G, Holley G, Stefansson OA, Halldorsson GH, Olafsson S, Arnadottir GA, Olason PI, Eiriksson O, Masson G, Thorsteinsdottir U, Rafnar T, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Sequence variants affecting the genome-wide rate of germline microsatellite mutations. Nat Commun 2023; 14:3855. [PMID: 37386006 PMCID: PMC10310707 DOI: 10.1038/s41467-023-39547-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.9-65.4) microsatellite de novo mutations (mDNMs) per offspring per generation, excluding one bp repeats motifs (homopolymers) the estimate is 48.2 mDNMs (95% CI: 46.7-49.6). Paternal mDNMs occur at longer repeats than maternal ones, which are in turn larger with a mean size of 3.4 bp vs 3.1 bp for paternal ones. mDNMs increase by 0.97 (95% CI: 0.90-1.04) and 0.31 (95% CI: 0.25-0.37) per year of father's and mother's age at conception, respectively. Here, we find two independent coding variants that associate with the number of mDNMs transmitted to offspring; The minor allele of a missense variant (allele frequency (AF) = 1.9%) in MSH2, a mismatch repair gene, increases transmitted mDNMs from both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant (AF = 20.3%) in NEIL2, a DNA damage repair gene, increases paternally transmitted mDNMs (effect: 4.4 mDNMs). Thus, the microsatellite mutation rate in humans is in part under genetic control.
Collapse
Affiliation(s)
- Snaedis Kristmundsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Doruk Beyter
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gudny A Arnadottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gisli Masson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Agnar Helgason
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | |
Collapse
|
12
|
Biswas K, Mohammed A, Sharan SK, Shoemaker RH. Genetically engineered mouse models for hereditary cancer syndromes. Cancer Sci 2023; 114:1800-1815. [PMID: 36715493 PMCID: PMC10154891 DOI: 10.1111/cas.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Advances in molecular diagnostics have led to improved diagnosis and molecular understanding of hereditary cancers in the clinic. Improving the management, treatment, and potential prevention of cancers in carriers of predisposing mutations requires preclinical experimental models that reflect the key pathogenic features of the specific syndrome associated with the mutations. Numerous genetically engineered mouse (GEM) models of hereditary cancer have been developed. In this review, we describe the models of Lynch syndrome and hereditary breast and ovarian cancer syndrome, the two most common hereditary cancer predisposition syndromes. We focus on Lynch syndrome models as illustrative of the potential for using mouse models to devise improved approaches to prevention of cancer in a high-risk population. GEM models are an invaluable tool for hereditary cancer models. Here, we review GEM models for some hereditary cancers and their potential use in cancer prevention studies.
Collapse
Affiliation(s)
- Kajal Biswas
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
13
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
14
|
Morales-Juarez DA, Jackson SP. Clinical prospects of WRN inhibition as a treatment for MSI tumours. NPJ Precis Oncol 2022; 6:85. [PMID: 36379964 PMCID: PMC9666358 DOI: 10.1038/s41698-022-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of synthetic lethal interactions with genetic deficiencies in cancers has highlighted several candidate targets for drug development, with variable clinical success. Recent work has unveiled a promising synthetic lethal interaction between inactivation/inhibition of the WRN DNA helicase and tumours with microsatellite instability, a phenotype that arises from DNA mismatch repair deficiency. While these and further studies have highlighted the therapeutic potential of WRN inhibitors, compounds with properties suitable for clinical exploitation remain to be described. Furthermore, the complexities of MSI development and its relationship to cancer evolution pose challenges for clinical prospects. Here, we discuss possible paths of MSI tumour development, the viability of WRN inhibition as a strategy in different scenarios, and the necessary conditions to create a roadmap towards successful implementation of WRN inhibitors in the clinic.
Collapse
Affiliation(s)
- David A Morales-Juarez
- Wellcome and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Stephen P Jackson
- Wellcome and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Kratz CP, Smirnov D, Autry R, Jäger N, Waszak SM, Großhennig A, Berutti R, Wendorff M, Hainaut P, Pfister SM, Prokisch H, Ripperger T, Malkin D. Heterozygous BRCA1 and BRCA2 and Mismatch Repair Gene Pathogenic Variants in Children and Adolescents With Cancer. J Natl Cancer Inst 2022; 114:1523-1532. [PMID: 35980168 DOI: 10.1093/jnci/djac151] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/21/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Genetic predisposition is has been identified as a cause of cancer, yet little is known about the role of adult cancer predisposition syndromes in childhood cancer. We examined the extent to which heterozygous pathogenic germline variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, MSH2, MSH6, MLH1, and PMS2 contribute to cancer risk in children and adolescents. METHODS We conducted a meta-analysis of 11 studies that incorporated comprehensive germline testing for children and adolescents with cancer. ClinVar pathogenic or likely pathogenic variants (PVs) in genes of interest were compared with 2 control groups. Results were validated in a cohort of mainly European patients and controls. We employed the Proxy External Controls Association Test to account for different pipelines. RESULTS Among 3975 children and adolescents with cancer, statistically significant associations with cancer risk were observed for PVs in BRCA1 and 2 (26 PVs vs 63 PVs among 27 501 controls, odds ratio = 2.78, 95% confidence interval = 1.69 to 4.45; P < .001) and mismatch repair genes (19 PVs vs 14 PVs among 27 501 controls, odds ratio = 7.33, 95% confidence interval = 3.64 to 14.82; P <.001). Associations were seen in brain and other solid tumors but not in hematologic neoplasms. We confirmed similar findings in 1664 pediatric cancer patients primarily of European descent. CONCLUSION These data suggest that heterozygous PVs in BRCA1 and 2 and mismatch repair genes contribute with reduced penetrance to cancer risk in children and adolescents. No changes to predictive genetic testing and surveillance recommendations are required.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dmitrii Smirnov
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert Autry
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Anika Großhennig
- Institute of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Pierre Hainaut
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
17
|
Lynch Syndrome: From Carcinogenesis to Prevention Interventions. Cancers (Basel) 2022; 14:cancers14174102. [PMID: 36077639 PMCID: PMC9454739 DOI: 10.3390/cancers14174102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Promoting proper preventive interventions to reduce morbidity and mortality is one of the most important challenges pertaining to inherited conditions. Lynch syndrome (LS) is an inherited disorder that predisposes to several kinds of tumor and is responsible for a relevant proportion of human colorectal and endometrial cancers. Recent knowledge has allowed for a better understanding of the genetic cause, pathogenesis, underlying immunological mechanisms, epidemiological distribution, and prevalence of this disease. This opens up unpredictable perspectives of translating such knowledge into validated programs for prevention and surveillance, in order to reduce the health impact of this disease through medical interventions before cancer development. In our review, we summarize the updated guidelines of the screening, surveillance, and risk-reducing strategies for LS patients. Moreover, we present novel opportunities in the treatment and prevention of LS patients through harnessing the immune system using immunocheckpoint inhibitors and vaccines. Abstract Lynch syndrome (LS) is the most common inherited disorder responsible for an increased risk of developing cancers at different sites, most frequently in the gastrointestinal and genitourinary tracts, caused by a germline pathogenic variant affecting the DNA mismatch repair system. Surveillance and risk-reducing procedures are currently available and warranted for LS patients, depending on underlying germline mutation, and are focused on relevant targets for early cancer diagnosis or primary prevention. Although pharmacological approaches for preventing LS-associated cancer development were started many years ago, to date, aspirin remains the most studied drug intervention and the only one suggested by the main surveillance guidelines, despite the conflicting findings. Furthermore, we also note that remarkable advances in anticancer drug discovery have given a significant boost to the application of novel immunological strategies such as immunocheckpoint inhibitors and vaccines, not only for cancer treatment, but also in a preventive setting. In this review, we outline the clinical, biologic, genetic, and morphological features of LS as well as the recent three-pathways carcinogenesis model. Furthermore, we provide an update on the dedicated screening, surveillance, and risk-reducing strategies for LS patients and describe emerging opportunities of harnessing the immune system.
Collapse
|
18
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
19
|
Uner M, Saglam A, Tukun A, Aydın B, Akyol A, Uner A. Diffuse Large B-Cell Lymphoma, Epstein-Barr Virus -Positive Kappa Monotypic Plasma Cell Proliferation and Invasive Carcinoma, Developing in a Child With Defective Mismatch Repair. Pediatr Dev Pathol 2022; 25:339-344. [PMID: 35227120 DOI: 10.1177/10935266221075605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is characterized by biallelic mutations in a mismatch repair gene and is associated with development of childhood cancers and symptoms resembling neurofibromatosis type 1, like café-au-lait spots. We describe the extremely rare case of a 12-year-old male presenting with several light brown macular lesions on the skin, gastrointestinal diffuse large B-cell lymphoma, adenomatous polyposis throughout the gastrointestinal tract and an intra-abdominal invasive carcinoma derived from upper gastrointestinal system. All neoplasia, as well as normal tissues, showed loss of Msh6 expression with immunohistochemistry. Molecular studies showed pathogenic homozygous p.F1088Sfs*2 mutation in MSH6. Furthermore, signs consistent with immunodeficiency, namely decreased levels of IgG and IgA in the serum, nodular lymphoid hyperplasia and EBV-associated plasma cell proliferation with monotypic kappa light chain expression in the ileum, were also noted. Our case depicts the phenotypic diversity of CMMRD syndrome and emphasizes its association with immunodeficiency, raising awareness to a feature not widely recognized.
Collapse
Affiliation(s)
- Meral Uner
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Arzu Saglam
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Ajlan Tukun
- Department of Medical Genetics, Düzen Laboratories Group, Ankara, Turkey
| | - Burca Aydın
- Department of Pediatric Oncology, Hacettepe Cancer Institute, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Medical School, 64005Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
21
|
Dutzmann CM, Spix C, Popp I, Kaiser M, Erdmann F, Erlacher M, Dörk T, Schindler D, Kalb R, Kratz CP. Cancer in Children With Fanconi Anemia and Ataxia-Telangiectasia-A Nationwide Register-Based Cohort Study in Germany. J Clin Oncol 2022; 40:32-39. [PMID: 34597127 PMCID: PMC8683217 DOI: 10.1200/jco.21.01495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Fanconi anemia (FA) and ataxia-telangiectasia (AT) are rare inherited syndromes characterized by abnormal DNA damage response and caused by pathogenic variants in key DNA repair proteins that are also relevant in the pathogenesis of breast cancer and other cancer types. The risk of cancer in children with these diseases is poorly understood and has never been assessed in a population-based cohort before. METHODS We identified 421 patients with FA and 160 patients with AT diagnosed between 1973 and 2020 through German DNA repair disorder reference laboratories. We linked patients' laboratory data with childhood cancer data from the German Childhood Cancer Registry. RESULTS Among 421 patients with FA, we observed 33 cases of childhood cancer (15 cases of myelodysplastic syndrome; seven cases of acute myeloid leukemia; two cases of lymphoma, carcinoma, medulloblastoma, and nephroblastoma, respectively; and one case of rhabdomyosarcoma, acute lymphoblastic leukemia, and glioma, respectively) versus 0.74 expected (on the basis of population-based incidence rates in Germany). This corresponds to a 39-fold increased risk (standardized incidence ratio [SIR] = 39; 95% CI, 26 to 56). For all FA subgroups combined, the cancer-specific SIR for myeloid neoplasms was 445 (95% CI, 272 to 687). Among the 160 patients with AT, we observed 19 cases of childhood cancer (15 cases of lymphoma, three cases of leukemia, and one case of medulloblastoma) versus 0.32 expected. This corresponds to a 56-fold increased risk (SIR = 56; 95% CI, 33 to 88). The cancer-specific SIR for Hodgkin lymphoma was 215 (95% CI, 58 to 549) and for non-Hodgkin lymphoma 470 (95% CI, 225 to 865). CONCLUSION Approximately 11% of patients with FA and 14% of patients with AT develop cancer by age 18 years.
Collapse
Affiliation(s)
- Christina M. Dutzmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Isabell Popp
- Department of Human Genetics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Melanie Kaiser
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Friederike Erdmann
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany,German Cancer Consortium (DKTK), Freiburg, Freiburg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thilo Dörk
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Reinhard Kalb
- Department of Human Genetics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Christian P. Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany,Christian P. Kratz, MD, Pediatric Hematology and Oncology and Rare Disease Program, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; e-mail:
| |
Collapse
|
22
|
Rosenbaum MW, Gonzalez RS. Immunohistochemistry as predictive and prognostic markers for gastrointestinal malignancies. Semin Diagn Pathol 2021; 39:48-57. [PMID: 34740486 DOI: 10.1053/j.semdp.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022]
Abstract
Biomarkers play a key role in the comprehensive pathologic evaluation of gastrointestinal malignancies. These biomarkers can be predictive, indicating whether a tumor is likely to respond to a particular therapy, or prognostic, providing information about the likely course and outcome of a disease. This review article will discuss available immunohistochemical stains for assessing these markers, including staining rationale, scoring criteria, associated systemic therapies, and pictorial examples. PD-L1, HER2, and mismatch repair status can be evaluated via immunohistochemistry for esophageal, gastric, and colorectal carcinomas. Biomarkers currently play a more limited role in evaluation of pancreatic and small bowel malignancies. Immunohistochemistry can also be used to evaluate biomarker status in gastrointestinal stromal tumors, gastrointestinal malignancies with NTRK gene fusions, and undifferentiated carcinomas with switch-sucrose non-fermentable complex abnormalities.
Collapse
Affiliation(s)
- Matthew W Rosenbaum
- Department of Pathology, Beth Israel Deaconess Medical Center, United States
| | - Raul S Gonzalez
- Department of Pathology, Beth Israel Deaconess Medical Center, United States.
| |
Collapse
|
23
|
Hassan NT, Makhoul E, Sallameh J, Ghanem A, Rajab S, Ali W, Alshehabi Z. Lymphoblastic lymphoma in two young siblings (coincidence or genetics?): two case reports. J Med Case Rep 2021; 15:375. [PMID: 34315532 PMCID: PMC8317302 DOI: 10.1186/s13256-021-02977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-Hodgkin lymphoma is the fourth most common malignancy in children, and it is not considered to be a hereditary disorder. However, it could affect members from the same family. CASE PRESENTATION We are presenting two cases of Caucasian female siblings who were diagnosed with mediastinal lymphoblastic lymphoma in the same year. The two young females were presented to the emergency department with respiratory symptoms. After doing radiological investigations and biopsies, they were diagnosed with lymphoblastic lymphoma. The elder sister died before confirming the diagnosis, and the other is on chemotherapy now, with good treatment outcomes. CONCLUSIONS This case emphasizes the crucial role of precursor genetics in lymphoblastic lymphomas and suggests a strong relation between these genetics and age at symptom presentation. This is the first report of non-Hodgkin lymphoma in a pair of siblings in the pediatric population.
Collapse
Affiliation(s)
- Naya Talal Hassan
- Department of Dermatology, Tishreen University Hospital, Latakia, Syria. .,Cancer Research Center, Tishreen University, Latakia, Syria.
| | - Ebrahim Makhoul
- Cancer Research Center, Tishreen University, Latakia, Syria.,Faculty of Medicine, Tishreen University, Latakia, Syria
| | - Jafar Sallameh
- Cancer Research Center, Tishreen University, Latakia, Syria.,Department of Orthopedic Surgery, Tishreen University Hospital, Latakia, Syria
| | - Abdulmunem Ghanem
- Cancer Research Center, Tishreen University, Latakia, Syria.,Department of Pediatrics, Tishreen University Hospital, Latakia, Syria
| | - Samer Rajab
- Department of Thoracic Surgery, Tishreen University Hospital, Latakia, Syria
| | - Waseem Ali
- Department of Thoracic Surgery, Tishreen University Hospital, Latakia, Syria
| | - Zuheir Alshehabi
- Cancer Research Center, Tishreen University, Latakia, Syria.,Department of Pathology, Tishreen University Hospital, Latakia, Syria
| |
Collapse
|
24
|
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108386. [PMID: 34893151 DOI: 10.1016/j.mrrev.2021.108386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
Approximately 10 % of malignancies occur in carriers of germline mutations predisposing to cancer. A high risk of developing lymphomas has been noted in many primary immunodeficiencies, including DNA repair disorders. Moreover, implementation of next-generation sequencing has recently enabled to uncover rare genetic variants predisposing patients to lymphoid neoplasms. Some patients harboring inherited predisposition to lymphomas require dedicated clinical management, which will contribute to effective cancer treatment and to the prevention of potential severe toxicities and secondary malignancies. In line with that, our review summarizes the natural history of lymphoid tumors developing on different germline genetic backgrounds and discusses the progress that has been made toward successfully treating these malignancies.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
Durno C, Ercan AB, Bianchi V, Edwards M, Aronson M, Galati M, Atenafu EG, Abebe-Campino G, Al-Battashi A, Alharbi M, Azad VF, Baris HN, Basel D, Bedgood R, Bendel A, Ben-Shachar S, Blumenthal DT, Blundell M, Bornhorst M, Bronsema A, Cairney E, Rhode S, Caspi S, Chamdin A, Chiaravalli S, Constantini S, Crooks B, Das A, Dvir R, Farah R, Foulkes WD, Frenkel Z, Gallinger B, Gardner S, Gass D, Ghalibafian M, Gilpin C, Goldberg Y, Goudie C, Hamid SA, Hampel H, Hansford JR, Harlos C, Hijiya N, Hsu S, Kamihara J, Kebudi R, Knipstein J, Koschmann C, Kratz C, Larouche V, Lassaletta A, Lindhorst S, Ling SC, Link MP, Loret De Mola R, Luiten R, Lurye M, Maciaszek JL, MagimairajanIssai V, Maher OM, Massimino M, McGee RB, Mushtaq N, Mason G, Newmark M, Nicholas G, Nichols KE, Nicolaides T, Opocher E, Osborn M, Oshrine B, Pearlman R, Pettee D, Rapp J, Rashid M, Reddy A, Reichman L, Remke M, Robbins G, Roy S, Sabel M, Samuel D, Scheers I, Schneider KW, Sen S, Stearns D, Sumerauer D, Swallow C, Taylor L, Thomas G, Toledano H, Tomboc P, Van Damme A, Winer I, Yalon M, Yen LY, Zapotocky M, Zelcer S, Ziegler DS, et alDurno C, Ercan AB, Bianchi V, Edwards M, Aronson M, Galati M, Atenafu EG, Abebe-Campino G, Al-Battashi A, Alharbi M, Azad VF, Baris HN, Basel D, Bedgood R, Bendel A, Ben-Shachar S, Blumenthal DT, Blundell M, Bornhorst M, Bronsema A, Cairney E, Rhode S, Caspi S, Chamdin A, Chiaravalli S, Constantini S, Crooks B, Das A, Dvir R, Farah R, Foulkes WD, Frenkel Z, Gallinger B, Gardner S, Gass D, Ghalibafian M, Gilpin C, Goldberg Y, Goudie C, Hamid SA, Hampel H, Hansford JR, Harlos C, Hijiya N, Hsu S, Kamihara J, Kebudi R, Knipstein J, Koschmann C, Kratz C, Larouche V, Lassaletta A, Lindhorst S, Ling SC, Link MP, Loret De Mola R, Luiten R, Lurye M, Maciaszek JL, MagimairajanIssai V, Maher OM, Massimino M, McGee RB, Mushtaq N, Mason G, Newmark M, Nicholas G, Nichols KE, Nicolaides T, Opocher E, Osborn M, Oshrine B, Pearlman R, Pettee D, Rapp J, Rashid M, Reddy A, Reichman L, Remke M, Robbins G, Roy S, Sabel M, Samuel D, Scheers I, Schneider KW, Sen S, Stearns D, Sumerauer D, Swallow C, Taylor L, Thomas G, Toledano H, Tomboc P, Van Damme A, Winer I, Yalon M, Yen LY, Zapotocky M, Zelcer S, Ziegler DS, Zimmermann S, Hawkins C, Malkin D, Bouffet E, Villani A, Tabori U. Survival Benefit for Individuals With Constitutional Mismatch Repair Deficiency Undergoing Surveillance. J Clin Oncol 2021; 39:2779-2790. [PMID: 33945292 PMCID: PMC8407605 DOI: 10.1200/jco.20.02636] [Show More Authors] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Constitutional mismatch repair deficiency syndrome (CMMRD) is a lethal cancer predisposition syndrome characterized by early-onset synchronous and metachronous multiorgan tumors. We designed a surveillance protocol for early tumor detection in these individuals.
Collapse
Affiliation(s)
- Carol Durno
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.,Mount Sinai Hospital, The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Toronto, ON, Canada
| | - Ayse Bahar Ercan
- The Hospital for Sick Children, The Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, ON, Canada.,University of Toronto, Institute of Medical Science, Toronto, ON, Canada
| | - Vanessa Bianchi
- The Hospital for Sick Children, The Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, ON, Canada
| | - Melissa Edwards
- The Hospital for Sick Children, The Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, ON, Canada
| | - Melyssa Aronson
- Mount Sinai Hospital, The Familial Gastrointestinal Cancer Registry at the Zane Cohen Centre for Digestive Disease, Toronto, ON, Canada
| | - Melissa Galati
- The Hospital for Sick Children, The Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, ON, Canada.,University of Toronto, Institute of Medical Science, Toronto, ON, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Gadi Abebe-Campino
- Department of Pediatric Hematology-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Abeer Al-Battashi
- Ministry of Health Oman, Child Health Specialist Muscat, Muscat, Oman
| | - Musa Alharbi
- Department of Pediatric Hematology Oncology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Vahid Fallah Azad
- MAHAK Pediatric Cancer Treatment and Research Center (MPCTRC), Tehran, Iran
| | - Hagit N Baris
- Rambam Health Care Campus, The Genetics Institute, Haifa, Israel
| | - Donald Basel
- Medical College of Wisconsin, Pediatrics, Milwaukee, WI
| | | | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Shay Ben-Shachar
- Tel Aviv Sourasky Medical Center, Genetic Institute, Tel Aviv, Israel
| | - Deborah T Blumenthal
- Oncology Division, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | | | - Miriam Bornhorst
- Children's National Medical Center, Brain Tumor Institute, Washington, DC
| | - Annika Bronsema
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elizabeth Cairney
- Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Sara Rhode
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - Shani Caspi
- Sheba Medical Center, Cancer Research Center, Tel Hashomer, Israel
| | - Aghiad Chamdin
- Michigan State University, College of Human Medicine, Center for Bleeding and Clotting Disorders, East Lansing, MI
| | - Stefano Chiaravalli
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Lombardia, Italy
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Bruce Crooks
- Division of Hematology-Oncology, IWK Health Centre, Halifax, NS, Canada
| | - Anirban Das
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rina Dvir
- Department of Pediatric Hemato-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roula Farah
- Lebanese American University Medical Center-Rizk, Beirut, Lebanon
| | - William D Foulkes
- Deparments of Oncology and Human Genetics, McGill University Health Centre, Cancer Genetics Program, Montreal, QC, Canada
| | | | - Bailey Gallinger
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Gardner
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - David Gass
- Department of Pediatric Hematology and Oncology, Atrium Health, Charlotte, NC
| | - Mithra Ghalibafian
- MAHAK Pediatric Cancer Treatment and Research Center (MPCTRC), Tehran, Iran
| | - Catherine Gilpin
- Children's Hospital of Eastern Ontario, Genetics, Ottawa, ON, Canada
| | - Yael Goldberg
- Department of Oncology, Hadassah Medical Center, Jerusalem, Israel
| | - Catherine Goudie
- Division of Oncology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Heather Hampel
- The Ohio State University Comprehensive Cancer Center, Internal Medicine, Columbus, OH
| | - Jordan R Hansford
- The Royal Children's Hospital Melbourne, Children's Cancer Centre, Parkville, Victoria, Australia
| | - Craig Harlos
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Nobuko Hijiya
- Pediatric Hematology Oncology and Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY
| | - Saunders Hsu
- Department of Pediatric Hematology-Oncology, Sutter Health, Sacramento, CA
| | - Junne Kamihara
- Dana-Farber Children's Hospital Cancer Center, Pediatric Oncology, Boston, MA
| | - Rejin Kebudi
- Department of Pediatric Hematology-Oncology, Istanbul University, Fatih, Istanbul, Turkey
| | - Jeffrey Knipstein
- Department of Pediatric Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Carl Koschmann
- Department of Pediatric Hematology-Oncology, University of Michigan Medical School, Ann Arbor, MI
| | - Christian Kratz
- Department of Pediatric Haematology and Oncology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Valerie Larouche
- Department of Hematology-Oncology, CHU de Quebec-Universite Laval, Quebec, QC, Canada
| | - Alvaro Lassaletta
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Nino Jesus, Madrid, Spain
| | - Scott Lindhorst
- Department of Hematology-Medical Oncology, Medical University of South Carolina, Charleston, SC
| | - Simon C Ling
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael P Link
- Department of Pediatrics, Stanford Medicine, Stanford, CA
| | | | - Rebecca Luiten
- Department of Clinical Cancer Genetics, Banner MD Anderson Cancer Center, Gilbert, AZ
| | - Michal Lurye
- Sheba Medical Center at Tel Hashomer, Tel Hashomer, Israel
| | | | | | - Ossama M Maher
- Department of Pediatric Hematology-Oncology, Nicklaus Children's Hospital, Miami, FL
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Lombardia, Italy
| | - Rose B McGee
- Saint Jude Children's Research Hospital, Memphis, TN
| | | | - Gary Mason
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Monica Newmark
- Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL
| | - Garth Nicholas
- Division of Medical Oncology, University of Ottawa, Ottawa, ON, Canada
| | - Kim E Nichols
- Department of Oncology, Saint Jude Children's Research Hospital, Memphis, TN
| | - Theodore Nicolaides
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - Enrico Opocher
- Department of Pediatrics, University of Padua, Padova, Veneto, Italy
| | - Michael Osborn
- Paediatric Haematology, Womens and Childrens Hospital (WCH), North Adelaide, South Australia, Australia
| | - Benjamin Oshrine
- Johns Hopkins All Children's Hospital, Cancer and Blood Disorders Institute, Saint Petersburg, FL
| | - Rachel Pearlman
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Jan Rapp
- West Virginia University Cancer Institute, Morgantown, WV
| | | | - Alyssa Reddy
- University of California San Francisco, San Francisco, CA
| | - Lara Reichman
- McGill University Health Centre, Montreal, QC, Canada
| | - Marc Remke
- University Hospital Dusseldorf, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Gabriel Robbins
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | | | - Magnus Sabel
- Department of Pediatrics, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| | | | - Isabelle Scheers
- Universite Catholique de Louvain La Faculte de Medecine, Bruxelles, Belgium
| | - Kami Wolfe Schneider
- Department of Pediatric Hematology-Oncology, Children's Hospital Colorado, Aurora, CO
| | - Santanu Sen
- Department of Pediatrics, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India
| | - Duncan Stearns
- UH Rainbow Babies and Children's Hospital Division of Pediatrics, Pediatric Neuro-oncology, Cleveland, OH
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Carol Swallow
- Department of Surgery, Mount Sinai Hospital, Toronto, ON, Canada
| | - Leslie Taylor
- Saint Jude Children's Research Hospital, Memphis, TN
| | | | - Helen Toledano
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Patrick Tomboc
- Department of Pediatrics, West Virginia University, Morgantown, WV
| | - An Van Damme
- Department of Pediatric Hematology and Oncology, Universite Catholique de Louvain, Louvain-la-Neuve, Walloon Brabant, Belgium
| | | | - Michal Yalon
- Department of Pediatric Hematology-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Lee Yi Yen
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Shayna Zelcer
- Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - David S Ziegler
- Sydney Children's Hospital Randwick, Kids Cancer Centre, Randwick, New South Wales, Australia
| | - Stefanie Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
27
|
Combined vaccine-immune-checkpoint inhibition constitutes a promising strategy for treatment of dMMR tumors. Cancer Immunol Immunother 2021; 70:3405-3419. [PMID: 33870463 PMCID: PMC8571220 DOI: 10.1007/s00262-021-02933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
Background Mlh1-knock-out-driven mismatch-repair-deficient (dMMR) tumors can be targeted immunologically. By applying therapeutic tumor vaccination, tumor growth is delayed but escape mechanisms evolve, including upregulation of immune-checkpoint molecules (LAG-3, PD-L1). To counteract immune escape, we investigated the therapeutic activity of a combined tumor vaccine-immune-checkpoint inhibitor therapy using α-PD-L1. Design In this trial, Mlh1-knock-out mice with established gastrointestinal tumors received single or thrice injections of α-PD-L1 monoclonal antibody clone 6E11 (2.5 mg/kg bw, q2w, i.v.) either alone or in combination with the vaccine. Longitudinal flow cytometry and PET/CT imaging studies were followed by ex vivo functional immunological and gene expression assays. Results 6E11 monotherapy slightly increased median overall survival (mOS: 6.0 weeks vs. control 4.0 weeks). Increasing the number of injections (n = 3) improved therapy outcome (mOS: 9.2 weeks) and was significantly boosted by combining 6E11 with the vaccine (mOS: 19.4 weeks vs. 10.2 weeks vaccine monotherapy). Accompanying PET/CT imaging confirmed treatment-induced tumor growth control, with the strongest inhibition in the combination group. Three mice (30%) achieved a complete remission and showed long-term survival. Decreased levels of circulating splenic and intratumoral myeloid-derived suppressor cells (MDSC) and decreased numbers of immune-checkpoint-expressing splenic T cells (LAG-3, CTLA-4) accompanied therapeutic effects. Gene expression and protein analysis of residual tumors revealed downregulation of PI3K/Akt/Wnt-and TGF-signaling, leading to T cell infiltration, reduced numbers of macrophages, neutrophils and MDSC. Conclusions By successful uncoupling of the PD-1/PD-L1 axis, we provide further evidence for the safe and successful application of immunotherapies to combat dMMR-driven malignancies that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02933-4.
Collapse
|
28
|
Khdair-Ahmad O, Al Husaini M, Ghunaimat S, Ismael T, Amayiri N, Halalsheh H, Jaara M, Sultan I. Constitutional Mismatch Repair Deficiency in children with colorectal carcinoma: A jordanian center experience. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Metachronous Wilms Tumor, Glioblastoma, and T-cell Leukemia in an Child With Constitutional Mismatch Repair Deficiency syndrome due to Novel Mutation in MSH6 (c.2590G>T). J Pediatr Hematol Oncol 2021; 43:e198-e202. [PMID: 31815888 DOI: 10.1097/mph.0000000000001687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is an autosomal recessively inherited childhood cancer predisposition syndrome results from biallelic germline mutations affecting the key DNA mismatch repair gene: MLH1, MSH2, MSH6, or PMS2. CMMRD is associated with a high risk of developing early onset of central nervous system tumors, hematologic, and intestinal tract tumors. Clinical manifestations, genetic screening, and cancer prevention strategies are limited. In this report we present a patient with metachronous Wilms tumor, glioblastoma, and acute T-cell lymphoblastic leukemia. He had cutaneous features of neurofibromatosis type 1 (NF1). Molecular testing revealed a novel homozygous mutation in MSH6 (c.2590G>T; p.G864*) that has not been reported previously. CMMRD should be considered in patients with cutaneous features similar to NF1 if tumor is found other than expected tumors in NF, early onset cancer, and strong family history of cancer.
Collapse
|
30
|
Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing to pediatric brain tumors. Neurooncol Pract 2021; 8:375-390. [PMID: 34277017 DOI: 10.1093/nop/npab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput sequencing approaches including paired tumor/normal sampling with therapeutic intent has demonstrated that 8%-19% of pediatric CNS tumor patients harbor a germline alteration in a classical tumor predisposition gene (NF1, P53). In addition, large-scale germline sequencing studies in unselected cohorts of pediatric neuro-oncology patients have demonstrated novel candidate tumor predisposition genes (ELP1 alterations in sonic hedgehog medulloblastoma). Therefore, the possibility of an underlying tumor predisposition syndrome (TPS) should be considered in all pediatric patients diagnosed with a CNS tumor which carries critical implications including accurate prognostication, selection of optimal therapy, screening, risk reduction, and family planning. The Pediatric Cancer Working Group of the American Association for Cancer Research (AACR) recently published consensus screening recommendations for children with the most common TPS. In this review, we provide an overview of the most relevant as well as recently identified TPS associated with the most frequently encountered pediatric CNS tumors with an emphasis on pathogenesis, genetic testing, clinical features, and treatment implications.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
31
|
Emdadi A, Eslahchi C. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model. BMC Bioinformatics 2021; 22:33. [PMID: 33509079 PMCID: PMC7844991 DOI: 10.1186/s12859-021-03974-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Predicting the response of cancer cell lines to specific drugs is an essential problem in personalized medicine. Since drug response is closely associated with genomic information in cancer cells, some large panels of several hundred human cancer cell lines are organized with genomic and pharmacogenomic data. Although several methods have been developed to predict the drug response, there are many challenges in achieving accurate predictions. This study proposes a novel feature selection-based method, named Auto-HMM-LMF, to predict cell line-drug associations accurately. Because of the vast dimensions of the feature space for predicting the drug response, Auto-HMM-LMF focuses on the feature selection issue for exploiting a subset of inputs with a significant contribution. RESULTS This research introduces a novel method for feature selection of mutation data based on signature assignments and hidden Markov models. Also, we use the autoencoder models for feature selection of gene expression and copy number variation data. After selecting features, the logistic matrix factorization model is applied to predict drug response values. Besides, by comparing to one of the most powerful feature selection methods, the ensemble feature selection method (EFS), we showed that the performance of the predictive model based on selected features introduced in this paper is much better for drug response prediction. Two datasets, the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) are used to indicate the efficiency of the proposed method across unseen patient cell-line. Evaluation of the proposed model showed that Auto-HMM-LMF could improve the accuracy of the results of the state-of-the-art algorithms, and it can find useful features for the logistic matrix factorization method. CONCLUSIONS We depicted an application of Auto-HMM-LMF in exploring the new candidate drugs for head and neck cancer that showed the proposed method is useful in drug repositioning and personalized medicine. The source code of Auto-HMM-LMF method is available in https://github.com/emdadi/Auto-HMM-LMF .
Collapse
Affiliation(s)
- Akram Emdadi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), 193955746, Tehran, Iran.
| |
Collapse
|
32
|
Hicks SR, Cozart AK, Bellus GA, Schneider KW. A Retrospective Chart Review of Children in Neurocutaneous Clinic Who May Benefit from Further Evaluation Beyond Neurofibromatosis Type I. Cancer Prev Res (Phila) 2021; 14:471-478. [PMID: 33431377 DOI: 10.1158/1940-6207.capr-20-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
While most individuals with a clinical diagnosis of Neurofibromatosis type 1 (NF1) have a detectable pathogenic variant in the NF1 gene, other conditions have phenotypic features overlapping with NF1. Without molecular confirmation, individuals may be misdiagnosed and have a different underlying condition. Namely, if a child has constitutional mismatch repair deficiency (CMMRD), early detection and prevention strategies for cancer risk would include surveillance recommendations not typically recommended for children with NF1. This study aimed to explore phenotypes of individuals with a clinical diagnosis of NF1 to identify subpopulations who may benefit from further genetic counseling or testing for an alternate diagnosis. Retrospective review of 240 medical records of children who attended a neurocutaneous clinic identified 135 children with a molecularly confirmed pathogenic variant in NF1 or autosomal dominant pattern of clinical NF1 ("controls") and 102 children deemed "at-risk" for another condition like CMMRD. Clinical presentation, family history of NF1, personal history of cancer, and family history of cancer were compared. When comparing clinical presentation, family history, and cancer history, minimal statistical differences were found, indicating that the at-risk population appears clinically indistinguishable from those with a clear diagnosis of NF1. Given the lack of distinguishable features between the at-risk and control population, this study suggests that tiered genetic testing for all individuals being evaluated for NF1 may be beneficial for identifying patients who may be misdiagnosed with NF1 and subsequently mismanaged. This study suggests that at-risk population with a suspected NF1 diagnosis may benefit from further evaluation. Correct diagnosis of constitutional mismatch repair deficiency is crucial to diagnose cancer at an early stage or prevent cancer from occurring. PREVENTION RELEVANCE: This study suggests that at-risk population with a suspected NF1 diagnosis may benefit from further evaluation. Correct diagnosis of constitutional mismatch repair deficiency is crucial to diagnose cancer at an early stage or prevent cancer from occurring.
Collapse
Affiliation(s)
- Stephanie R Hicks
- Children's Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Amanda K Cozart
- Children's Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Gary A Bellus
- Children's Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Kami W Schneider
- Children's Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
33
|
Xie T, Feng Q, Li Z, Lu M, Li J, Lizaso A, Xiang J, Zhang L, Shen L, Peng Z. Heterogeneous constitutional mismatch repair deficiency with MSH6 missense mutation clinically benefits from pembrolizumab and regorafenib combination therapy: a case report and literature review. Hered Cancer Clin Pract 2021; 19:7. [PMID: 33422121 PMCID: PMC7797131 DOI: 10.1186/s13053-021-00165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Germline DNA mismatch repair (MMR) gene aberrations are associated with colorectal cancer (CRC) predisposition and high tumor mutation burden (TMB-H), with increased likelihood of favorable response to immune checkpoint inhibitors (ICIs). Case presentation We present a 32-year old male patient diagnosed with constitutional MMR deficiency (CMMRD) CRC whose MMR immunohistochemistry (IHC) revealed inconsistent results from two tumor blocks. Targeted sequencing of two tumor specimens used in MMR-IHC and plasma-derived circulating tumor DNA consistently revealed the detection of bi-allelic germline MSH6 c.3226C > T (p.R1076C) mutation, TMB-H as well as the genetic heterogeneity of the tumor samples. Unexpectedly, both blocks were microsatellite stable (MSS) after PCR confirmation. Interestingly, the patient failed to show response to ICI monotherapy or dual therapy, but clinically benefitted from combined therapy of ICI pembrolizumab plus multi-kinase inhibitor regorafenib. Conclusion Our case reported a CMMRD patient with heterogeneous MMR results who showed complicated response to ICIs, highlighting the importance of accurate diagnosis using targeted sequencing with multiple specimens to reveal the possible mechanism of response to ICI in patients with CMMRD. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-021-00165-2.
Collapse
Affiliation(s)
- Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Qin Feng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | | | | | - Lu Zhang
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
34
|
Modi MB, Patel PN, Modi VM, Mehta SP, Nilkanthe RG, Patel PH, Trivedi PP, Jetly DH. First reported case of alveolar soft part sarcoma in constitutional mismatch repair deficiency syndrome tumor spectrum - diagnosed in one of the siblings with constitutional mismatch repair deficiency. South Asian J Cancer 2020; 6:41-43. [PMID: 28413802 PMCID: PMC5379899 DOI: 10.4103/2278-330x.202569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Pratik N Patel
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Vishal M Modi
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Shailee P Mehta
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Ramrao G Nilkanthe
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Priyesh H Patel
- Department of Radiology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Priti P Trivedi
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Dhaval H Jetly
- Department of Pathology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
35
|
Chung J, Maruvka YE, Sudhaman S, Kelly J, Haradhvala NJ, Bianchi V, Edwards M, Forster VJ, Nunes NM, Galati MA, Komosa M, Deshmukh S, Cabric V, Davidson S, Zatzman M, Light N, Hayes R, Brunga L, Anderson ND, Ho B, Hodel KP, Siddaway R, Morrissy AS, Bowers DC, Larouche V, Bronsema A, Osborn M, Cole KA, Opocher E, Mason G, Thomas GA, George B, Ziegler DS, Lindhorst S, Vanan M, Yalon-Oren M, Reddy AT, Massimino M, Tomboc P, Van Damme A, Lossos A, Durno C, Aronson M, Morgenstern DA, Bouffet E, Huang A, Taylor MD, Villani A, Malkin D, Hawkins CE, Pursell ZF, Shlien A, Kunkel TA, Getz G, Tabori U. DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discov 2020; 11:1176-1191. [PMID: 33355208 DOI: 10.1158/2159-8290.cd-20-0790] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yosef E Maruvka
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas J Haradhvala
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Victoria J Forster
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno M Nunes
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa A Galati
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin Komosa
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shriya Deshmukh
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Vanja Cabric
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew Zatzman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Reid Hayes
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nathaniel D Anderson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karl P Hodel
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, Louisiana
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Sorana Morrissy
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Charbonneau Cancer Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Daniel C Bowers
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas
| | - Valérie Larouche
- Department of Pediatrics, Centre Mere-enfant Soleil du CHU de Quebec, CRCHU de Quebec, Universite Laval, Quebec City, Quebec, Canada
| | - Annika Bronsema
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Osborn
- Department of Haematology and Oncology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Kristina A Cole
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrico Opocher
- Pediatric Oncology and Hematology, Azienda Ospedaliera-Universita' degli Studi di Padova, Padova, Italy
| | - Gary Mason
- Department of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Gregory A Thomas
- Division of Pediatric Hematology-Oncology, Oregon Health and Science University, Portland, Oregon
| | - Ben George
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Scott Lindhorst
- Neuro-Oncology, Department of Neurosurgery, and Department of Medicine, Division of Hematology/Medical Oncology, Medical University of South Carolina Charleston, South Carolina
| | - Magimairajan Vanan
- Department of Pediatric Hematology-Oncology, Cancer Care Manitoba; Research Institute in Oncology and Hematology (RIOH), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michal Yalon-Oren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Alyssa T Reddy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Patrick Tomboc
- Department of Pediatrics Section of Hematology-Oncology, WVU Medicine Children's, Morgantown, West Virginia
| | - An Van Damme
- Division of Hematology and Oncology, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Alexander Lossos
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel A Morgenstern
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anita Villani
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Malkin
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia E Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, Louisiana
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas A Kunkel
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina
| | - Gad Getz
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts. .,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Paul C, Chakraborty S, Chakraborty S, Goswami K. Constitutional Mismatch Repair Deficiency Syndrome in a patient from India. Clin Case Rep 2020; 8:2824-2826. [PMID: 33363830 PMCID: PMC7752390 DOI: 10.1002/ccr3.3249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
This report highlights an extremely rare genetic condition constitutional mismatch repair deficiency (CMMRD) in an Indian pediatric patient with dual malignancies, who suffered from transient encephalopathy, a rare side effect of the drug Nivolumab and the associated challenge during CSF protein electrophoresis interpretation.
Collapse
Affiliation(s)
- Chandramallika Paul
- Department of BiochemistryAll India Institute of Medical Sciences (AIIMS‐Kalyani)KalyaniIndia
- Department of Clinical BiochemistryTATA Medical CenterKolkataIndia
| | | | - Sarit Chakraborty
- Department of Computer Science EngineeringGovernment College of Engineering & Leather TechnologyKolkataIndia
| | - Kalyan Goswami
- Department of BiochemistryAll India Institute of Medical Sciences (AIIMS‐Kalyani)KalyaniIndia
| |
Collapse
|
37
|
Sharma R, Lewis S, Wlodarski MW. DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Front Pediatr 2020; 8:570084. [PMID: 33194896 PMCID: PMC7644847 DOI: 10.3389/fped.2020.570084] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage response is essential to human physiology. A broad spectrum of pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance of essential DNA damage response pathways manifest early in life with multi-systemic involvement and a high propensity for hematologic and solid cancers, as well as bone marrow failure. In this review, we describe classic biallelic DNA repair cancer syndromes arising from faulty single- and double-strand DNA break repair, as well as dysfunctional DNA helicases. These clinical entities include xeroderma pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2, as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth understanding of these disorders, we provide historical overview and discuss the interplay between complex biology and heterogeneous clinical manifestations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sara Lewis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Frontline Management of Epithelial Ovarian Cancer-Combining Clinical Expertise with Community Practice Collaboration and Cutting-Edge Research. J Clin Med 2020; 9:jcm9092830. [PMID: 32882942 PMCID: PMC7565288 DOI: 10.3390/jcm9092830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common histology of ovarian cancer defined as epithelial cancer derived from the ovaries, fallopian tubes, or primary peritoneum. It is the fifth most common cause of cancer-related death in women in the United States. Because of a lack of effective screening and non-specific symptoms, EOC is typically diagnosed at an advanced stage (FIGO stage III or IV) and approximately one third of patients have malignant ascites at initial presentation. The treatment of ovarian cancer consists of a combination of cytoreductive surgery and systemic chemotherapy. Despite the advances with new cytotoxic and targeted therapies, the five-year survival rate for all-stage EOC in the United States is 48.6%. Delivery of up-to-date guideline care and multidisciplinary team efforts are important drivers of overall survival. In this paper, we review our frontline management of EOC that relies on a multi-disciplinary approach drawing on clinical expertise and collaboration combined with community practice and cutting edge clinical and translational research. By optimizing partnerships through team medicine and clinical research, we combine our cancer center clinical expertise, community practice partnership, and clinical and translational research to understand the biology of this deadly disease, advance therapy and connect our patients with the optimal treatment that offers the best possible outcomes.
Collapse
|
39
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
40
|
Kerpel A, Yalon M, Soudack M, Chiang J, Gajjar A, Nichols KE, Patay Z, Shrot S, Hoffmann C. Neuroimaging Findings in Children with Constitutional Mismatch Repair Deficiency Syndrome. AJNR Am J Neuroradiol 2020; 41:904-910. [PMID: 32354708 DOI: 10.3174/ajnr.a6512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Constitutional mismatch repair deficiency is a hereditary childhood cancer predisposition syndrome characterized by brain tumors and colorectal and hematologic malignancies. Our objective was to describe the neuroimaging findings in patients with constitutional mismatch repair deficiency. MATERIALS AND METHODS This retrospective study included 14 children with genetically confirmed constitutional mismatch repair deficiency who were referred to 2 tertiary pediatric oncology centers. RESULTS Fourteen patients from 11 different families had diagnosed constitutional mismatch repair deficiency. The mean age at presentation was 9.3 years (range, 5-14 years). The most common clinical presentation was brain malignancy, diagnosed in 13 of the 14 patients. The most common brain tumors were glioblastoma (n = 7 patients), anaplastic astrocytoma (n = 3 patients), and diffuse astrocytoma (n = 3 patients). Nonspecific subcortical white matter T2 hyperintensities were noted in 10 patients (71%). Subcortical hyperintensities transformed into overt brain tumors on follow-up imaging in 3 patients. Additional non-neoplastic brain MR imaging findings included developmental venous anomalies in 12 patients (85%) and nontherapy-induced cavernous hemangiomas in 3 patients (21%). CONCLUSIONS On brain MR imaging, these patients have both highly characteristic intra-axial tumors (typically multifocal high-grade gliomas) and nonspecific findings, some of which might represent early stages of neoplastic transformation. The incidence of developmental venous anomalies is high in these patients for unclear reasons. Awareness of these imaging findings, especially in combination, is important to raise the suspicion of constitutional mismatch repair deficiency in routine diagnostic imaging evaluation or surveillance imaging studies of asymptomatic carriers because early identification of the phenotypic "gestalt" might improve outcomes.
Collapse
Affiliation(s)
- A Kerpel
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel .,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - M Yalon
- Pediatric Hemato-Oncology (M.Y.), Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - M Soudack
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | | | - A Gajjar
- Divisions of Neuro-Oncology (A.G.)
| | | | - Z Patay
- Department of Oncology and Section of Neuroimaging, Department of Diagnostic Imaging (Z.P.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - S Shrot
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| | - C Hoffmann
- From the Department of Radiology (A.K., M.S., S.S., C.H.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine (A.K., M.Y., M.S., S.S., C.H.), Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Frequency of Mismatch Repair Protein (MMRP) Deficiency among Young Jordanians Diagnosed with Colorectal Carcinoma (CRC). Gastroenterol Res Pract 2020; 2020:5632984. [PMID: 32382267 PMCID: PMC7195647 DOI: 10.1155/2020/5632984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Microsatellite instability (MSI) caused by mismatch repair protein (MMRP) deficiency is detected in 15% of sporadic colorectal cancers (CRCs). Our aim is to investigate the frequency of MMRP deficiency in young CRC patients, using immunohistochemical analysis. Methods This study targeted cases of CRC at King Hussein Cancer Center from 2004 until 2012 in patients 45 years of age or younger at the time of diagnosis. Clinicopathological data was obtained from 155 patients' records. Immunohistochemistry for MLH1, MSH2, PMS2, and MSH6 proteins was performed on paraffin-embedded tissue containing carcinoma. Results The median age of patient at diagnosis was 38 years. A total of 29 (19%) cases showed deficient MMRP(dMMRP)expression. Loss of expression of PMS2 was seen in 17 cases, 12 cases of which showed loss of MLH1 expression. Loss of expression of MSH6 was seen in 10 cases, 9 of which showed loss of MSH2 expression. One case (3.4%) showed loss of all four MMR proteins, and another case (3.4%) showed loss of PMS2/MLH1 and MSH6. There was a significant association between abnormal MMR protein expression and tumor location proximal to splenic flexure (p value 0.000), pathologic features suggestive of microsatellite instability (p value 0.000), P53 negativity (p value 0.000), and stage (p value 0.02). Patients with dMMRP CRC appeared to have a significantly better overall survival compared to patients with proficient MMRP(pMMRP)(p value 0.02). Loss of MSH2/MSH6 was significantly associated with positive family history of cancer (p value = 0.020). Conclusions The prevalence of dMMRP tumors in this age group appears to be similar to international literature. dMMRP tumors tends to be associated with earlier stages and better outcomes compared to pMMRP cases. dMMRP can serve as a biomarker for better prognosis. These results are of value in directing the clinical management of young patients with CRC.
Collapse
|
42
|
Molecular-Clinical Correlation in Pediatric Medulloblastoma: A Cohort Series Study of 52 Cases in Taiwan. Cancers (Basel) 2020; 12:cancers12030653. [PMID: 32168907 PMCID: PMC7139704 DOI: 10.3390/cancers12030653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
In 2016, a project was initiated in Taiwan to adopt molecular diagnosis of childhood medulloblastoma (MB). In this study, we aimed to identify a molecular-clinical correlation and somatic mutation for exploring risk-adapted treatment, drug targets, and potential genetic predisposition. In total, 52 frozen tumor tissues of childhood MBs were collected. RNA sequencing (RNA-Seq) and DNA methylation array data were generated. Molecular subgrouping and clinical correlation analysis were performed. An adjusted Heidelberg risk stratification scheme was defined for updated clinical risk stratification. We selected 51 genes for somatic variant calling using RNA-Seq data. Relevant clinical findings were defined. Potential drug targets and genetic predispositions were explored. Four core molecular subgroups (WNT, SHH, Group 3, and Group 4) were identified. Genetic backgrounds of metastasis at diagnosis and extent of tumor resection were observed. The adjusted Heidelberg scheme showed its applicability. Potential drug targets were detected in the pathways of DNA damage response. Among the 10 patients with SHH MBs analyzed using whole exome sequencing studies, five patients exhibited potential genetic predispositions and four patients had relevant germline mutations. The findings of this study provide valuable information for updated risk adapted treatment and personalized care of childhood MBs in our cohort series and in Taiwan.
Collapse
|
43
|
Bosse KR, Majzner RG, Mackall CL, Maris JM. Immune-Based Approaches for the Treatment of Pediatric Malignancies. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020; 4:353-370. [PMID: 34113750 PMCID: PMC8189419 DOI: 10.1146/annurev-cancerbio-030419-033436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia (ALL), offering a chance of a cure for children with previously lethal disease and a potentially more targeted therapy to limit treatment-related morbidities. The developmental origins of most pediatric cancers make them ideal targets for immune-based therapies that capitalize on the differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review the current status of immune-based therapies for childhood cancers, discuss challenges to developing immunotherapeutics for these diseases, and outline future directions of pediatric immunotherapy discovery and development.
Collapse
Affiliation(s)
- Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robbie G Majzner
- Department of Pediatrics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Crystal L Mackall
- Department of Pediatrics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
44
|
Chong A, Chong G, Foulkes WD, Saskin A. Reclassification of a frequent African‐origin variant from
PMS2
to the pseudogene
PMS2CL. Hum Mutat 2020; 41:749-752. [DOI: 10.1002/humu.23978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Anne‐Sophie Chong
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - George Chong
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - William D. Foulkes
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - Avi Saskin
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| |
Collapse
|
45
|
Biswas A, Kashyap L, Bakhshi S. Radiation-Associated Glioblastoma after Prophylactic Cranial Irradiation in a Patient of ALL: Review of Literature and Report of a Rare Case. Pediatr Neurosurg 2020; 55:409-417. [PMID: 33271550 DOI: 10.1159/000511996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/04/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The cumulative incidence of radiation-induced second malignancy is 1-2% per decade after radiotherapy (RT). Radiation-induced malignant glioma (RIMG) is a rare complication of cranial RT. CASE PRESENTATION We herein describe a case of left frontal glioblastoma arising 5 years after prophylactic cranial irradiation (12.6 Gy/7 fractions/1.5 weeks) as a part of INCTR-02-04 protocol in a 3-year-old boy with B-cell ALL. He underwent gross total excision (GTE) of the tumour followed by post-operative intensity modulated RT (59.4 Gy/33 fractions/6.5 weeks) and concurrent and adjuvant (3 cycles) temozolomide. Thereafter, he had rapid disease progression, which entailed re-excision of the recurrent tumour. Subsequently, there was widespread subependymal and leptomeningeal spread of tumour, leading to death 10.5 months after the initial diagnosis. CONCLUSION RIMG is an aggressive malignancy with a dismal prognosis, and in spite of multimodality management, it exhibits relentless progression, occasionally characterized by subependymal and leptomeningeal dissemination, leading to eventual death within a year of diagnosis.
Collapse
Affiliation(s)
- Ahitagni Biswas
- Department of Radiotherapy & Oncology, All India Institute of Medical Sciences, New Delhi, India,
| | - Lakhan Kashyap
- Department of Radiotherapy & Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Daino K, Ishikawa A, Suga T, Amasaki Y, Kodama Y, Shang Y, Hirano-Sakairi S, Nishimura M, Nakata A, Yoshida M, Imai T, Shimada Y, Kakinuma S. Mutational landscape of T-cell lymphoma in mice lacking the DNA mismatch repair gene Mlh1: no synergism with ionizing radiation. Carcinogenesis 2019; 40:216-224. [PMID: 30721949 DOI: 10.1093/carcin/bgz013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Biallelic germline mutations in the DNA mismatch repair gene MLH1 lead to constitutional mismatch repair-deficiency syndrome and an increased risk for childhood hematopoietic malignancies, including lymphoma and leukemia. To examine how Mlh1 dysfunction promotes lymphoma as well as the influence of ionizing radiation (IR) exposure, we used an Mlh1-/- mouse model and whole-exome sequencing to assess genomic alterations in 23 T-cell lymphomas, including 8 spontaneous and 15 IR-associated lymphomas. Exposure to IR accelerated T-cell lymphoma induction in the Mlh1-/- mice, and whole-exome sequencing revealed that IR exposure neither increased the number of mutations nor altered the mutation spectrum of the lymphomas. Frequent mutations were evident in genes encoding transcription factors (e.g. Ikzf1, Trp53, Bcl11b), epigenetic regulators (e.g. Suv420h1, Ep300, Kmt2d), transporters (e.g. Rangap1, Kcnj16), extracellular matrix (e.g. Megf6, Lrig1), cell motility (e.g. Argef19, Dnah17), protein kinase cascade (e.g. Ptpro, Marcks) and in genes involved in NOTCH (e.g. Notch1), and PI3K/AKT (e.g. Pten, Akt2) signaling pathways in both spontaneous and IR-associated lymphomas. Frameshift mutations in mononucleotide repeat sequences within the genes Trp53, Ep300, Kmt2d, Notch1, Pten and Marcks were newly identified in the lymphomas. The lymphomas also exhibited a few chromosomal abnormalities. The results establish a landscape of genomic alterations in spontaneous and IR-associated lymphomas that occur in the context of mismatch repair dysfunction and suggest potential targets for cancer treatment.
Collapse
Affiliation(s)
- Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yotaro Kodama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shinobu Hirano-Sakairi
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Mitsuaki Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Takashi Imai
- Medical Databank Section, Hospital, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
47
|
Mardis ER. Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response. Genome Med 2019; 11:71. [PMID: 31747945 PMCID: PMC6865009 DOI: 10.1186/s13073-019-0684-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
The resurgence of immune therapies in cancer medicine has elicited a corresponding interest in understanding the basis of patient response or resistance to these treatments. One aspect of patient response clearly lies in the genomic alterations that are associated with cancer onset and progression, including those that contribute to genomic instability and the resulting creation of novel peptide sequences that may present as neoantigens. The immune reaction to these unique ‘non-self’ peptides is frequently suppressed by the tumor itself, but the use of checkpoint blockade therapies, personalized vaccines, or a combination of these treatments may elicit a tumor-specific immune response that results in cell death. Massively parallel sequencing, coupled with different computational analyses, provides unbiased identification of the germline and somatic alterations that drive cancer development, and of those alterations that lead to neoantigens. These range from simple point mutations that change single amino acids to complex alterations, such as frameshift insertion or deletion mutations, splice-site alterations that lead to exon skipping, structural alterations that lead to the formation of fusion proteins, and other forms of collateral damage caused by genome instability that result in new protein sequences unique to the cancer. The various genome instability phenotypes can be identified as alterations that impact DNA replication or mismatch repair pathways or by their genomic signatures. This review provides an overview of current knowledge regarding the fundamentals of genome replication and of both germline and somatic alterations that disrupt normal replication, leading to various forms of genomic instability in cancers, to the resulting generation of neoantigens and, ultimately, to immune-responsive and resistant phenotypes.
Collapse
Affiliation(s)
- Elaine R Mardis
- Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Children's Drive, Colombus, OH, 43205, USA.
| |
Collapse
|
48
|
Järviaho T, Bang B, Zachariadis V, Taylan F, Moilanen J, Möttönen M, Smith CIE, Harila-Saari A, Niinimäki R, Nordgren A. Predisposition to childhood acute lymphoblastic leukemia caused by a constitutional translocation disrupting ETV6. Blood Adv 2019; 3:2722-2731. [PMID: 31519648 PMCID: PMC6759729 DOI: 10.1182/bloodadvances.2018028795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Pathogenic germline variants in ETV6 have been associated with familial predisposition to thrombocytopenia and hematological malignancies, predominantly childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In addition, overrepresentation of a high hyperdiploid subtype and older age at diagnosis have been reported among sporadic BCP-ALL cases with germline variants in ETV6 We studied a family with 2 second-degree relatives who developed childhood high hyperdiploid BCP-ALL at ages 8 and 12 years, respectively. A constitutional balanced reciprocal translocation t(12;14)(p13.2;q23.1) was discovered in both patients by routine karyotyping at diagnosis and, subsequently, in 7 healthy family members who had not experienced hematological malignancies. No carriers had thrombocytopenia. Whole-genome sequencing confirmed the translocation, resulting in 2 actively transcribed but nonfunctional fusion genes, causing heterozygous loss and consequently monoallelic expression of ETV6 Whole-genome sequencing analysis of the affected female subjects' leukemia excluded additional somatic aberrations in ETV6 and RTN1 as well as shared somatic variants in other genes. Expression studies, performed to confirm decreased expression of ETV6, were not conclusive. We suggest that germline aberrations resulting in monoallelic expression of ETV6 contribute to leukemia susceptibility, whereas more severe functional deficiency of ETV6 is required for developing THC5. To our knowledge, this report is the first of a constitutional translocation disrupting ETV6 causing predisposition to childhood ALL.
Collapse
Affiliation(s)
- Tekla Järviaho
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Benedicte Bang
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jukka Moilanen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Clinical Genetics and
| | - Merja Möttönen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Riitta Niinimäki
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Natali F, Rancati G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front Genet 2019; 10:713. [PMID: 31447882 PMCID: PMC6691094 DOI: 10.3389/fgene.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
The mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes). In this review, we first provide an overview of what we learned from model organisms about the roles of these genes and the genome instability that arises as a consequence of their dysregulation. We then discuss our current understanding of how mutator phenotypes shape the evolution of bacteria and yeast species. We end by bringing clinical evidence that lessons learned from single-cell organisms can be applied to tumor evolution.
Collapse
Affiliation(s)
- Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
50
|
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, Scarpa A. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 2019; 30:1232-1243. [PMID: 31056702 DOI: 10.1093/annonc/mdz116] [Citation(s) in RCA: 643] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having microsatellite instability (MSI). Therefore, MSI is a marker of dMMR. MSI/dMMR can be identified using immunohistochemistry to detect loss of MMR proteins and/or molecular tests to show microsatellite alterations. Together with tumour mutational burden (TMB) and PD-1/PD-L1 expression, it plays a role as a predictive biomarker for immunotherapy. METHODS To define best practices to implement the detection of dMMR tumours in clinical practice, the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project, based on a systematic review-approach, to generate consensus recommendations on the: (i) definitions related to the concept of MSI/dMMR; (ii) methods of MSI/dMMR testing and (iii) relationships between MSI, TMB and PD-1/PD-L1 expression. RESULTS The MSI-related definitions, for which a consensus frame-work was used to establish definitions, included: 'microsatellites', 'MSI', 'DNA mismatch repair' and 'features of MSI tumour'. This consensus also provides recommendations on MSI testing; immunohistochemistry for the mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 represents the first action to assess MSI/dMMR (consensus with strong agreement); the second method of MSI/dMMR testing is represented by polymerase chain reaction (PCR)-based assessment of microsatellite alterations using five microsatellite markers including at least BAT-25 and BAT-26 (strong agreement). Next-generation sequencing, coupling MSI and TMB analysis, may represent a decisive tool for selecting patients for immunotherapy, for common or rare cancers not belonging to the spectrum of Lynch syndrome (very strong agreement). The relationships between MSI, TMB and PD-1/PD-L1 expression are complex, and differ according to tumour types. CONCLUSIONS This ESMO initiative is a response to the urgent questions raised by the growing success of immunotherapy and provides also important insights on the relationships between MSI, TMB and PD-1/PD-L1.
Collapse
Affiliation(s)
- C Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Bibeau
- Department of Pathology, Caen University Hospital, Caen, France
| | - M J L Ligtenberg
- Departments of Human Genetics Radboud university medical center, Nijmegen, The Netherlands; Departments of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - N Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - A Nottegar
- Department of Surgery, San Bortolo Hospital, Vicenza, Italy
| | - T Bosse
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Miller
- Department of Oncology, University College London, London, UK
| | - N Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J-Y Douillard
- European Society for Medical Oncology, Lugano, Switzerland
| | - F Andre
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
| | - A Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|