1
|
Giunco S, Petrara MR, Indraccolo S, Ciminale V, De Rossi A. Beyond Telomeres: Unveiling the Extratelomeric Functions of TERT in B-Cell Malignancies. Cancers (Basel) 2025; 17:1165. [PMID: 40227701 PMCID: PMC11987798 DOI: 10.3390/cancers17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The reactivation of telomerase enables cancer cells to maintain the telomere length, bypassing replicative senescence and achieving cellular immortality. In addition to its canonical role in telomere maintenance, accumulating evidence highlights telomere-length-independent functions of TERT, the catalytic subunit of telomerase. These extratelomeric functions involve the regulation of signaling pathways and transcriptional networks, creating feed-forward loops that promote cancer cell proliferation, resistance to apoptosis, and disease progression. This review explores the complex mechanisms by which TERT modulates key signaling pathways, such as NF-κB, AKT, and MYC, highlighting its role in driving autonomous cancer cell growth and resistance to therapy in B-cell malignancies. Furthermore, we discuss the therapeutic potential of targeting TERT's extratelomeric functions. Unlike telomere-directed approaches, which may require prolonged treatment to achieve effective telomere erosion, inhibiting TERT's extratelomeric functions offers the prospect of rapid tumor-specific effects. This strategy could complement existing chemotherapeutic regimens, providing an innovative and effective approach to managing B-cell malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Maria Raffaella Petrara
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Stefano Indraccolo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Ciminale
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
| |
Collapse
|
2
|
Serafin A, Ruocco V, Cellini A, Angotzi F, Bonaldi L, Trentin L, Visentin A. Management strategies for patients with chronic lymphocytic leukaemia harbouring complex karyotype. Br J Haematol 2025; 206:832-841. [PMID: 39761654 PMCID: PMC11886947 DOI: 10.1111/bjh.19986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 03/08/2025]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease characterised by the uncontrolled proliferation of mature lymphocytes. A subset of CLL patients harbouring complex karyotype (CK) presents with poor prognosis and limited treatment options. This review aims to discuss the current understanding of such patient subset, including its molecular landscape, diagnostic approaches, treatment modalities and emerging therapies. Furthermore, it outlines strategies for personalised management to improve clinical outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Andrea Serafin
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| | - Valeria Ruocco
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| | - Alessandro Cellini
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| | - Francesco Angotzi
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| | - Laura Bonaldi
- Immunology and Molecular Oncology UnitVeneto Institute of OncologyPadovaItaly
| | - Livio Trentin
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| | - Andrea Visentin
- Hematology Unit, Department of Medicine DIMEDUniversity of PaduaPadovaItaly
| |
Collapse
|
3
|
Carr L, Norris K, Parker H, Nilsson-Takeuchi A, Bryant D, Amarasinghe H, Kadalayil L, Else M, Pettitt A, Hillmen P, Schuh A, Walewska R, Baird DM, Oscier DG, Oakes CC, Gibson J, Pepper C, Strefford JC. Telomere length and DNA methylation epitype both provide independent prognostic information in CLL patients; data from the UK CLL4, ARCTIC and ADMIRE clinical trials. Br J Haematol 2024; 205:2072-2076. [PMID: 39253978 DOI: 10.1111/bjh.19765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Affiliation(s)
- Louise Carr
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Kevin Norris
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Helen Parker
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Anna Nilsson-Takeuchi
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Dean Bryant
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Harindra Amarasinghe
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Latha Kadalayil
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Southampton, UK
| | - Monica Else
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Andrew Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Anna Schuh
- Oxford National Institute for Health Research Biomedical Research Centre/Molecular Diagnostic Centre, University of Oxford, Oxford, UK
| | - Renata Walewska
- Division of Haematology, University Hospitals Dorset, Bournemouth, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - David G Oscier
- Division of Haematology, University Hospitals Dorset, Bournemouth, UK
| | - Christopher C Oakes
- Division of Haematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jane Gibson
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Jonathan C Strefford
- Cancer Genomics, School of Cancer Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
4
|
Rampersaud R, Wu GWY, Reus VI, Lin J, Blackburn EH, Epel ES, Hough CM, Mellon SH, Wolkowitz OM. Shorter telomere length predicts poor antidepressant response and poorer cardiometabolic indices in major depression. Sci Rep 2023; 13:10238. [PMID: 37353495 PMCID: PMC10290110 DOI: 10.1038/s41598-023-35912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Telomere length (TL) is a marker of biological aging, and shorter telomeres have been associated with several medical and psychiatric disorders, including cardiometabolic dysregulation and Major Depressive Disorder (MDD). In addition, studies have shown shorter TL to be associated with poorer response to certain psychotropic medications, and our previous work suggested shorter TL and higher telomerase activity (TA) predicts poorer response to Selective Serotonin Reuptake Inhibitor (SSRI) treatment. Using a new group of unmedicated medically healthy individuals with MDD (n = 48), we sought to replicate our prior findings demonstrating that peripheral blood mononuclear cell (PBMC) TL and TA predict response to SSRI treatment and to identify associations between TL and TA with biological stress mediators and cardiometabolic risk indices. Our results demonstrate that longer pre-treatment TL was associated with better response to SSRI treatment (β = .407 p = .007). Additionally, we observed that TL had a negative relationship with allostatic load (β = - .320 p = .017) and a cardiometabolic risk score (β = - .300 p = .025). Our results suggest that PBMC TL reflects, in part, the cumulative effects of physiological stress and cardiovascular risk in MDD and may be a biomarker for predicting SSRI response.
Collapse
Affiliation(s)
- Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elissa S Epel
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Christina M Hough
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Psychology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|
5
|
Roka K, Solomou EE, Kattamis A. Telomere biology: from disorders to hematological diseases. Front Oncol 2023; 13:1167848. [PMID: 37274248 PMCID: PMC10235513 DOI: 10.3389/fonc.2023.1167848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Variations in the length of telomeres and pathogenic variants involved in telomere length maintenance have been correlated with several human diseases. Recent breakthroughs in telomere biology knowledge have contributed to the identification of illnesses named "telomeropathies" and revealed an association between telomere length and disease outcome. This review emphasizes the biology and physiology aspects of telomeres and describes prototype diseases in which telomeres are implicated in their pathophysiology. We also provide information on the role of telomeres in hematological diseases ranging from bone marrow failure syndromes to acute and chronic leukemias.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| |
Collapse
|
6
|
Olbertova H, Plevova K, Pavlova S, Malcikova J, Kotaskova J, Stranska K, Spunarova M, Trbusek M, Navrkalova V, Dvorackova B, Tom N, Pal K, Jarosova M, Brychtova Y, Panovska A, Doubek M, Pospisilova S. Evolution of TP53 abnormalities during CLL disease course is associated with telomere length changes. BMC Cancer 2022; 22:137. [PMID: 35114947 PMCID: PMC8812042 DOI: 10.1186/s12885-022-09221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Telomeres are protective structures at chromosome ends which shorten gradually with increasing age. In chronic lymphocytic leukemia (CLL), short telomeres have been associated with unfavorable disease outcome, but the link between clonal evolution and telomere shortening remains unresolved. Methods We investigated relative telomere length (RTL) in a well-characterized cohort of 198 CLL patients by qPCR and focused in detail on a subgroup 26 patients who underwent clonal evolution of TP53 mutations (evolTP53). In the evolTP53 subgroup we explored factors influencing clonal evolution and corresponding changes in telomere length through measurements of telomerase expression, lymphocyte doubling time, and BCR signaling activity. Results At baseline, RTL of the evolTP53 patients was scattered across the entire RTL spectrum observed in our CLL cohort. RTL changed in the follow-up samples of 16/26 (62%) evolTP53 cases, inclining to reach intermediate RTL values, i.e., longer telomeres shortened compared to baseline while shorter ones prolonged. For the first time we show that TP53 clonal shifts are linked to RTL change, including unexpected RTL prolongation. We further investigated parameters associated with RTL changes. Unstable telomeres were significantly more frequent among younger patients (P = 0.032). Shorter telomeres were associated with decreased activity of the B-cell receptor signaling components p-ERK1/2, p-ZAP-70/SYK, and p-NFκB (P = 0.04, P = 0.01, and P = 0.02, respectively). Conclusions Our study revealed that changes of telomere length reflect evolution in leukemic subclone proportion, and are associated with specific clinico-biological features of the explored cohort. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09221-z.
Collapse
Affiliation(s)
- Helena Olbertova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pavlova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotaskova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Spunarova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Navrkalova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbara Dvorackova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic. .,Department of Internal Medicine Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,Department of Medical Genetics and Genomics Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
7
|
Cotugno N, Ruggiero A, Pascucci GR, Bonfante F, Petrara MR, Pighi C, Cifaldi L, Zangari P, Bernardi S, Cursi L, Santilli V, Manno EC, Amodio D, Linardos G, Piccioni L, Barbieri MA, Perrotta D, Campana A, Donà D, Giaquinto C, Concato C, Brodin P, Rossi P, De Rossi A, Palma P. Virological and immunological features of SARS-COV-2 infected children with distinct symptomatology. Pediatr Allergy Immunol 2021; 32:1833-1842. [PMID: 34174102 PMCID: PMC8420243 DOI: 10.1111/pai.13585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although SARS-CoV-2 immunizations have started in most countries, children are not currently included in the vaccination programs; thus, it remains crucial to define their anti-SARS-CoV-2 immune response in order to minimize the risk for other epidemic waves. This study sought to provide a description of the virology ad anti-SARS-CoV-2 immunity in children with distinct symptomatology. METHODS Between March and July 2020, we recruited 15 SARS-CoV-2 asymptomatic (AS) and 51 symptomatic (SY) children, stratified according to WHO clinical classification. We measured SARS-CoV-2 viral load using ddPCR and qPCR in longitudinally collected nasopharyngeal swab samples. To define anti-SARS-CoV-2 antibodies, we measured neutralization activity and total IgG load (DiaSorin). We also evaluated antigen-specific B and CD8+T cells, using a labeled S1+S2 protein and ICAM expression, respectively. Plasma protein profiling was performed with Olink. RESULTS Virological profiling showed that AS patients had lower viral load at diagnosis (p = .004) and faster virus clearance (p = .0002) compared with SY patients. Anti-SARS-CoV-2 humoral and cellular response did not appear to be associated with the presence of symptoms. AS and SY patients showed similar titers of SARS-CoV-2 IgG, levels of neutralizing activity, and frequency of Ag-specific B and CD8+ T cells, whereas pro-inflammatory plasma protein profile was found to be associated with symptomatology. CONCLUSION We demonstrated the development of anti-SARS-CoV-2 humoral and cellular response with any regard to symptomatology, suggesting the ability of both SY and AS patients to contribute toward herd immunity. The virological profiling of AS patients suggested that they have lower virus load associated with faster virus clearance.
Collapse
Affiliation(s)
- Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Ruggiero
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Rubens Pascucci
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Chiara Pighi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Loredana Cifaldi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Zangari
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Bernardi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cursi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Santilli
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emma Concetta Manno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donato Amodio
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giulia Linardos
- Division of Virology, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Piccioni
- Division of Virology, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Daniela Perrotta
- Department of Pediatric Emergency, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Donà
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | | | - Carlo Concato
- Division of Virology, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Petter Brodin
- Department of Woman's and Children Health, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Rossi
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy.,Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Jebaraj BMC, Stilgenbauer S. Telomere Dysfunction in Chronic Lymphocytic Leukemia. Front Oncol 2021; 10:612665. [PMID: 33520723 PMCID: PMC7844343 DOI: 10.3389/fonc.2020.612665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres are nucleprotein structures that cap the chromosomal ends, conferring genomic stability. Alterations in telomere maintenance and function are associated with tumorigenesis. In chronic lymphocytic leukemia (CLL), telomere length is an independent prognostic factor and short telomeres are associated with adverse outcome. Though telomere length associations have been suggested to be only a passive reflection of the cell's replication history, here, based on published findings, we suggest a more dynamic role of telomere dysfunction in shaping the disease course. Different members of the shelterin complex, which form the telomere structure have deregulated expression and POT1 is recurrently mutated in about 3.5% of CLL. In addition, cases with short telomeres have higher telomerase (TERT) expression and activity. TERT activation and shelterin deregulation thus may be pivotal in maintaining the minimal telomere length necessary to sustain survival and proliferation of CLL cells. On the other hand, activation of DNA damage response and repair signaling at dysfunctional telomeres coupled with checkpoint deregulation, leads to terminal fusions and genomic complexity. In summary, multiple components of the telomere system are affected and they play an important role in CLL pathogenesis, progression, and clonal evolution. However, processes leading to shelterin deregulation as well as cell intrinsic and microenvironmental factors underlying TERT activation are poorly understood. The present review comprehensively summarizes the complex interplay of telomere dysfunction in CLL and underline the mechanisms that are yet to be deciphered.
Collapse
Affiliation(s)
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
- Klinik für Innere Medizin I, Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
9
|
Nogueira BMD, Machado CB, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. Telomere Length and Hematological Disorders: A Review. In Vivo 2020; 34:3093-3101. [PMID: 33144412 DOI: 10.21873/invivo.12142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Telomeres compose the end portions of human chromosomes, and their main function is to protect the genome. In hematological disorders, telomeres are shortened, predisposing to genetic instability that may cause DNA damage and chromosomal rearrangements, inducing a poor clinical outcome. Studies from 2010 to 2019 were compiled and experimental studies using samples of patients diagnosed with hematological malignancies that reported the size of the telomeres were described. Abnormal telomere shortening is described in cancer, but in hematological neoplasms, telomeres are still shortened even after telomerase reactivation. In this study, we compared the sizes of telomeres in leukemias, myelodysplastic syndrome and lymphomas, identifying that the smallest telomeres are present in patients at relapse. In conclusion, the experimental and clinical data analyzed in this review demonstrate that excessive telomere shortening is present in major hematological malignancies and its analysis and measurement is a crucial step in determining patient prognosis, predicting disease risk and assisting in the decision for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Zhou XH, Liang JH, Wang L, Zhu HY, Wu JZ, Xia Y, Li Y, Qin SC, Fan L, Li JY, Xu W. High viral loads of circulating Epstein-Barr virus DNA copy number in peripheral blood is associated with inferior prognosis in patients with mantle cell lymphoma. J Cancer 2020; 11:4980-4988. [PMID: 32742445 PMCID: PMC7378913 DOI: 10.7150/jca.37484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a distinct subtype of B cell non-Hodgkin lymphoma. No research has yet documented to investigate the prognostic implications of Epstein-Barr virus (EBV) infection in MCL. The objective of this study was to determine whether EBV DNA load may influence the heterogeneity in the course of the disease in MCL patients. Eighty-eight MCL patients were retrospectively enrolled in the study. EBV DNA load was detected by real-time quantitative PCR for quantification. The univariate and multivariate Cox proportional hazards models were established for the estimation of prognostic factors. Twenty-seven patients were detected positive for EBV DNA and the median virus titer was 1.72×104 copies/mL (range, 8.20×102 to 4.14×105 copies/mL). With a median follow-up of 39 months (range, 9 to 120 months), patients in EBV DNA-positive group displayed unfavorable progression-free survival (PFS) (P=0.012) and overall survival (OS) (P=0.004) than patients in EBV DNA-negative group. Multivariate Cox regression analysis revealed that EBV DNA-positivity was an independent risk factor for both PFS (HR, 2.04; 95% CI, 1.07 to 3.92; P=0.031) and OS (HR, 2.68; 95% CI, 1.20 to 6.00; P=0.016). Reduction in EBV copies was significantly associated with therapy-response. Circulating EBV DNA load in whole blood proved to be a significant predictor of prognosis in patients with MCL, which needs further validation in large-scale clinical studies.
Collapse
Affiliation(s)
- Xiao-Hui Zhou
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Shu-Chao Qin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| |
Collapse
|
11
|
Giunco S, Zangrossi M, Dal Pozzolo F, Celeghin A, Ballin G, Petrara MR, Amin A, Argenton F, Godinho Ferreira M, De Rossi A. Anti-Proliferative and Pro-Apoptotic Effects of Short-Term Inhibition of Telomerase In Vivo and in Human Malignant B Cells Xenografted in Zebrafish. Cancers (Basel) 2020; 12:cancers12082052. [PMID: 32722398 PMCID: PMC7463531 DOI: 10.3390/cancers12082052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumor growth/progression through extra-telomeric functions. Our previous in vitro studies demonstrated that short-term TERT inhibition by BIBR1532 (BIBR), an inhibitor of TERT catalytic activity, negatively impacts cell proliferation and viability via telomeres’ length-independent mechanism. Here we evaluate the anti-proliferative and pro-apoptotic effects of short-term telomerase inhibition in vivo in wild-type (wt) and tert mutant (terthu3430/hu3430; tert−/−) zebrafish embryos, and in malignant human B cells xenografted in casper zebrafish embryos. Short-term Tert inhibition by BIBR in wt embryos reduced cell proliferation, induced an accumulation of cells in S-phase and ultimately led to apoptosis associated with the activation of DNA damage response; all these effects were unrelated to telomere shortening/dysfunction. BIBR treatment showed no effects in tert−/− embryos. Xenografted untreated malignant B cells proliferated in zebrafish embryos, while BIBR pretreated cells constantly decreased and were significantly less than those in the controls from 24 to up to 72 h after xenotransplantation. Additionally, xenografted tumor cells, treated with BIBR prior- or post-transplantation, displayed a significant higher apoptotic rate compared to untreated control cells. In conclusion, our data demonstrate that short-term telomerase inhibition impairs proliferation and viability in vivo and in human malignant B cells xenografted in zebrafish, thus supporting therapeutic applications of TERT inhibitors in human malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
- Correspondence: ; Tel.: +39-049-821-5831
| | - Manuela Zangrossi
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Francesca Dal Pozzolo
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| | - Andrea Celeghin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Giovanni Ballin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Maria Raffaella Petrara
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Aamir Amin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 UNS, Université Côte d’Azur, 06107 Nice CEDEX 2, France;
| | - Anita De Rossi
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
12
|
Jebaraj BMC, Tausch E, Landau DA, Bahlo J, Robrecht S, Taylor-Weiner AN, Bloehdorn J, Scheffold A, Mertens D, Böttcher S, Kneba M, Jäger U, Zenz T, Wenger MK, Fingerle-Rowson G, Wendtner C, Fink AM, Wu CJ, Eichhorst B, Fischer K, Hallek M, Döhner H, Stilgenbauer S. Short telomeres are associated with inferior outcome, genomic complexity, and clonal evolution in chronic lymphocytic leukemia. Leukemia 2019; 33:2183-2194. [PMID: 30911113 PMCID: PMC6737251 DOI: 10.1038/s41375-019-0446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/19/2019] [Accepted: 02/11/2019] [Indexed: 11/08/2022]
Abstract
Telomere length in chronic lymphocytic leukemia (CLL) has been shown to be of prognostic importance, but the analyses have largely been executed on heterogeneous patient cohorts outside of clinical trials. In the present study, we performed a comprehensive analysis of telomere length associations in the well characterized CLL8 trial (n = 620) of the German CLL study group, with validation in a representative cohort of the CLL4 trial (n = 293). Absolute telomere length was analyzed using quantitative-PCR. Apart from identifying associations of short telomere length with adverse prognostic factors and survival, the study identified cases with 17p- and 11q- associated with TP53 and ATM loss, respectively, to have the shortest telomeres, even when these aberrations were present in small subclones. Thus, telomere shortening may precede acquisition of the high-risk aberrations, contributing to disease evolution. In line with this, telomere shortening was associated with an increase in genomic complexity as well as clonal evolution, highlighting its importance as a biomarker especially in monitoring disease progression in non-high-risk CLL.
Collapse
Affiliation(s)
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Dan A Landau
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
- New York Genome Center, New York, NY, USA
| | - Jasmin Bahlo
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | | | | | - Annika Scheffold
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Mechanisms of Leukemogenesis, DKFZ, Heidelberg, Germany
| | - Sebastian Böttcher
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
- Division of Internal Medicine, Medical Clinic III, Rostock University Medical Center, Rostock, Germany
| | - Michael Kneba
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaeology, Medical University of Vienna, Vienna, Austria
| | - Thorsten Zenz
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Division of Hematology, University Hospital Zürich, Zürich, Switzerland
| | | | | | - Clemens Wendtner
- Klinikum Schwabing, Academic Teaching Hospital of University of Munich, Munich, Germany
| | - Anna-Maria Fink
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | | | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
13
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. Molecular pathogenesis of chronic lymphocytic leukaemia. Br J Haematol 2019; 186:668-684. [DOI: 10.1111/bjh.16102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyle Crassini
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - William S. Stevenson
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
| | - Stephen P. Mulligan
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| | - O. Giles Best
- Northern Blood Research Centre Kolling Institute of Medical Research SydneyNSWAustralia
- School of Life and Environmental Science University of Sydney Sydney NSW Australia
| |
Collapse
|
14
|
Telomere length and its correlation with gene mutations in chronic lymphocytic leukemia in a Korean population. PLoS One 2019; 14:e0220177. [PMID: 31335885 PMCID: PMC6650075 DOI: 10.1371/journal.pone.0220177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/10/2019] [Indexed: 11/19/2022] Open
Abstract
Telomere length (TL) is a prognostic indicator in Caucasian chronic lymphocytic leukemia (CLL), but its significance in Asian CLL remains unknown. To investigate the prognostic significance of TL and its correlation with cytogenetic aberrations and somatic mutations, we analyzed TL measurements at the cellular level by interphase fluorescence in situ hybridization in patients with CLL in Korea. The present study enrolled 110 patients (41 females and 69 males) diagnosed with CLL according to the World Health Organization criteria (2001-2017). TLs of bone marrow nucleated cells at the single-cell level were measured by quantitative fluorescence in situ hybridization (Q-FISH) in 71 patients. The correlations of TL with clinical characteristics, cytogenetic aberrations, genetic mutations, and overall survival were assessed. The median value of mean TL in CLL patients (T/C ratio 7.46 (range 1.19-18.14) was significantly shorter than that in the normal controls (T/C ratio 15.28 (range 8.59-24.93) (p < 0.001). Shorter TLs were associated with complex karyotypes (p = 0.030), del(11q22) (p = 0.023), presence of deletion and/or mutation in ATM and/or TP53 (p = 0.019), and SH2B3 mutation (p = 0.015). A shorter TL was correlated with lower hemoglobin levels and adverse survival (mean TL < 9.35, p = 0.021). When the proportion of cells with extremely short TLs (< 7.61) was greater than 90%, CLL patients showed poor survival (p = 0.002). Complex karyotypes, TP53 mutation, and the number of mutated genes were determined to be significant adverse variables by multivariable Cox analysis (p = 0.011, p = 0.002, and p = 0.002, respectively). TL was attrited in CLL, and attrited telomeres were correlated with adverse survival and other well-known adverse prognostic factors. We infer that TL is an independent adverse prognostic predictor in Korean CLL.
Collapse
|
15
|
Wysoczanska B, Dratwa M, Gebura K, Mizgala J, Mazur G, Wrobel T, Bogunia-Kubik K. Variability within the human TERT gene, telomere length and predisposition to chronic lymphocytic leukemia. Onco Targets Ther 2019; 12:4309-4320. [PMID: 31239704 PMCID: PMC6551596 DOI: 10.2147/ott.s198313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The human telomerase reverse transcriptase (TERT) gene encodes the catalytic subunit of telomerase that is essential for maintenance of telomere length. We aimed to find out whether variability within the TERT gene could be associated with telomere length and development of the disease in non-treated patients with chronic lymphocytic leukemia (CLL). Materials and methods: Telomere length, rs2736100, rs2853690, rs33954691, rs35033501 single-nucleotide polymorphisms, and variable number of tandem repeats (VNTR-MNS16A) were assessed in patients at diagnosis. In addition, blood donors served as controls for the polymorphism studies. Results: The minor rs35033501 A variant was more frequent among CLL patients than in healthy controls (OR=3.488, p=0.039). CLL patients over 60 years of age were characterized with lower disease stage at diagnosis (p=0.001 and p=0.008, for the Rai and Binet criteria, respectively). The MNS16A VNTR-243 short allele was more frequent in patients with a low disease stage (p=0.020 and p=0.028, for the Rai and Binet staging system) and also among older patients having longer telomeres (p=0.046). Patients with Rai 0-I stage were characterized with longer telomeres than those with more advanced disease (p=0.030). This relationship was especially pronounced in patients carrying the rs2736100 C allele, independently of the criteria used, ie, Binet (p=0.048) or Rai (p=0.001). Conclusion: Our results showed that the genetic variation within the TERT gene seems to play a regulatory role in CLL and telomere length.
Collapse
Affiliation(s)
- Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Katarzyna Gebura
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Jakub Mizgala
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, 50-001, Poland
| | - Tomasz Wrobel
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw50-367, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| |
Collapse
|
16
|
Han P, Dang Z, Shen Z, Dai H, Bai Y, Li B, Shao Y. Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population. Int J Clin Oncol 2019; 24:1042-1048. [PMID: 31016429 DOI: 10.1007/s10147-019-01442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND Laryngeal carcinoma (LC) is one of common diagnosed head and neck malignancies. Telomere length has been reported involved in malignant transformation and tumorigenesis. We speculate that single nucleotide polymorphisms (SNPs) in telomere length-related gene oligonucleotide/oligosaccharide-binding folds containing 1 (OBFC1) may have an association with LC in Chinese Han male population. METHODS To prove this hypothesis, we performed a case-control study to analyze the OBFC1 polymorphisms in 172 LC patients and 180 healthy controls. A total of five SNPs (i.e., rs9325507, rs3814220, rs12765878, rs11191865, rs9420707) were selected for further genotyping. RESULTS There was a significant difference in rs9325507 T allele frequency (OR = 0.88, 95% CI 0.64-1.21, P = 0.036) and rs11191865 A allele frequency (OR = 0.86, 95% CI 0.62-1.18, P = 0.009) between patient and control groups. In addition, the rs9325507 T/C genotype, rs3814220 G/A genotype, rs12765878 C/T genotype and rs11191865 A/G genotype had a lower risk of LC based on the results of logistic regression model analysis. CONCLUSIONS The results indicate a potential association between OBFC1 and LC risk in Chinese Han male population. Further work is required to confirm these results and explore the mechanisms of these effects.
Collapse
Affiliation(s)
- Peng Han
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Zhongping Dang
- Department of Operation, Chang'an District Hospital of Xi'an Jiaotong University, Xi'an, 710100, Shaanxi, China
| | - Zhen Shen
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Dai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yanxia Bai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Baiya Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yuan Shao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Olbertova H, Plevova K, Stranska K, Pospisilova S. Telomere dynamics in adult hematological malignancies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:1-7. [PMID: 30631211 DOI: 10.5507/bp.2018.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Telomeres are repetitive DNA sequences protecting physical ends of linear chromosomes against degradation and end-to-end chromosomal fusion. Telomeres shorten with each cell division, which regulates the cellular lifespan in somatic cells and limits their renewal capacity. Cancer cells are often able to overcome this physiological barrier and become immortal with unlimited replicative capacity. In this review, we present current knowledge on the role of telomeres in human aging with a focus on their behavior in hematological malignancies of adults. Associations of telomere length to age-related diseases and to the prevention of telomere shortening are also discussed.
Collapse
Affiliation(s)
- Helena Olbertova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Abstract
Telomere length measurement is increasingly recognized as a clinical gauge for age-related disease risk. There are several methods for studying blood telomere length (BTL) as a clinical biomarker. The first is an observational study approach, which directly measures telomere lengths using either cross-sectional or longitudinal patient cohorts and compares them to a population of age- and sex-matched individuals. These direct traceable measurements can be considered reflective of an individual's current health or disease state. Escalating interest in personalized medicine, access to high-throughput genotyping and resulting acquisition of large volumes of genetic data corroborates the second method, Mendelian randomization (MR). MR employs telomere length-associated genetic variants to indicate predisposition to disease risk based on the genomic composition of the individual. When assessed from cells in the bloodstream, telomeres can show variation from their genetically predisposed lengths due to environmental-induced changes. These alterations in telomere length act as an indicator of cellular health, which, in turn, can provide disease risk status. Overall, BTL measurement is a dynamic marker of biological health and well-being that together with genetically defined telomere lengths can provide insights into improved healthcare for the individual.
Collapse
|
19
|
Kaifie A, Schikowsky C, Vasko T, Kraus T, Brümmendorf TH, Ziegler P. Additional benefits of telomere length (TL) measurements in chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:541-543. [PMID: 29966475 DOI: 10.1080/10428194.2018.1482544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrea Kaifie
- a Institute of Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University
| | - Christian Schikowsky
- a Institute of Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University
| | - Theresa Vasko
- a Institute of Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University
| | - Thomas Kraus
- a Institute of Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University
| | - Tim Henrik Brümmendorf
- b Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation , University Hospital RWTH Aachen, Medical Faculty , Aachen , Germany
| | - Patrick Ziegler
- a Institute of Occupational, Social and Environmental Medicine, Medical Faculty , RWTH Aachen University
| |
Collapse
|
20
|
Rampazzo E, Del Bianco P, Bertorelle R, Boso C, Perin A, Spiro G, Bergamo F, Belluco C, Buonadonna A, Palazzari E, Leonardi S, De Paoli A, Pucciarelli S, De Rossi A. The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients. Br J Cancer 2018; 118:878-886. [PMID: 29449673 PMCID: PMC5877438 DOI: 10.1038/bjc.2017.492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. METHODS 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT=T0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4-8 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. RESULTS Plasma levels of TERT were significantly lower at T2 (P<0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73-0.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10-4.11)-fold and 4.55 (95% CI 1.48-13.95)-fold higher, respectively, than those with undetectable plasma TERT levels. CONCLUSIONS Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy.
Collapse
Affiliation(s)
- Enrica Rampazzo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, Padova 35128, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistic Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Roberta Bertorelle
- Immunology and Molecular Oncology Unit, IOV- IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Caterina Boso
- Radiotherapy and Nuclear Medicine Unit, IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Alessandro Perin
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Giovanna Spiro
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Francesca Bergamo
- Medical Oncology Unit 1, IOV-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Claudio Belluco
- Department of Surgical Oncology, Centro di Riferimento Oncologico (CRO)-IRCCS, Aviano, Italy
| | | | | | - Sara Leonardi
- Medical Oncology Unit 1, IOV-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | | | - Salvatore Pucciarelli
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, Padova 35128, Italy
- Immunology and Molecular Oncology Unit, IOV- IRCCS, Via Gattamelata 64, Padova 35128, Italy
| |
Collapse
|
21
|
Telomeres and Telomerase in Hematopoietic Dysfunction: Prognostic Implications and Pharmacological Interventions. Int J Mol Sci 2017; 18:ijms18112267. [PMID: 29143804 PMCID: PMC5713237 DOI: 10.3390/ijms18112267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Leukocyte telomere length (TL) has been suggested as a marker of biological age in healthy individuals, but can also reflect inherited and acquired hematopoietic dysfunctions or indicate an increased turnover of the hematopoietic stem and progenitor cell compartment. In addition, TL is able to predict the response rate of tyrosine kinase inhibitor therapy in chronic myeloid leukemia (CML), indicates clinical outcomes in chronic lymphocytic leukemia (CLL), and can be used as screening tool for genetic sequencing of selected genes in patients with inherited bone marrow failure syndromes (BMFS). In tumor cells and clonal hematopoietic disorders, telomeres are continuously stabilized by reactivation of telomerase, which can selectively be targeted by telomerase-specific therapy. The use of the telomerase inhibitor Imetelstat in patients with essential thrombocythmia or myelofibrosis as well as the use of dendritic cell-based telomerase vaccination in AML patients with complete remissions are promising examples for anti-telomerase targeted strategies in hematologic malignancies. In contrast, the elevation in telomerase levels through treatment with androgens has become an exciting clinical intervention for patients with BMFS. Here, we review recent developments, which highlight the impact of telomeres and telomerase targeted therapies in hematologic dysfunctions.
Collapse
|
22
|
Steinbrecher D, Jebaraj BMC, Schneider C, Edelmann J, Cymbalista F, Leblond V, Delmer A, Ibach S, Tausch E, Scheffold A, Bloehdorn J, Hallek M, Dreger P, Döhner H, Stilgenbauer S. Telomere length in poor-risk chronic lymphocytic leukemia: associations with disease characteristics and outcome. Leuk Lymphoma 2017; 59:1614-1623. [PMID: 29063805 DOI: 10.1080/10428194.2017.1390236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Telomere length in chronic lymphocytic leukemia (CLL) is described as an independent prognostic factor based largely on previously untreated patients from chemotherapy based trials. Here, we studied telomere length associations in high-risk, relapsed/refractory CLL treated with alemtuzumab in the CLL2O study (n = 110) of German and French CLL study groups. Telomere length (median 3.28 kb, range 2.52-7.24 kb) was relatively short, since 84.4% of patients had 17p- which is generally associated with short telomeres. Median telomere length was used for dichotomization into short and long telomere subgroups. Telomere length was associated with s-TK (p = .025) and TP53 mutations (p = .050) in untreated patients, while no association with clinical/biological characteristics was observed in relapsed/refractory CLL. Short telomeres had significant association with shorter PFS (p = .018) only in refractory CLL. Presence of short telomeres, loss of genes maintaining genomic integrity (SMC5) and increased incidence of chromothripsis, indicated the prevalence of genomic instability in this high-risk cohort (clinicaltrials.gov: NCT01392079).
Collapse
Affiliation(s)
| | | | - Christof Schneider
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Jennifer Edelmann
- b Barts Cancer Institute, Queen Mary University of London , London , UK
| | | | - Véronique Leblond
- d Service d'Hématologie , Hôpital Pitié-Salpêtrière , Paris , France
| | - Alain Delmer
- e Service d'Hématologie Clinique , CHU de Reims , Reims , France
| | - Stefan Ibach
- f WiSP Wissenschaftliche Service Pharma GmbH , Langenfeld , Germany
| | - Eugen Tausch
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Annika Scheffold
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Johannes Bloehdorn
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | - Michael Hallek
- g Internal Medicine I , University Cologne , Cologne , Germany
| | - Peter Dreger
- h Internal Medicine V , University of Heidelberg , Heidelberg , Germany
| | - Hartmut Döhner
- a Department of Internal Medicine III , University of Ulm , Ulm , Germany
| | | |
Collapse
|
23
|
Dos Santos PC, Panero J, Stanganelli C, Palau Nagore V, Stella F, Bezares R, Slavutsky I. Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia. PLoS One 2017; 12:e0179883. [PMID: 28666010 PMCID: PMC5493334 DOI: 10.1371/journal.pone.0179883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022] Open
Abstract
Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico-pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p≤0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p<0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.
Collapse
Affiliation(s)
- Patricia Carolina Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Virginia Palau Nagore
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Teodoro Álvarez, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
24
|
Adam R, Díez-González L, Ocaña A, Šeruga B, Amir E, Templeton AJ. Prognostic role of telomere length in malignancies: A meta-analysis and meta-regression. Exp Mol Pathol 2017; 102:455-474. [PMID: 28506770 DOI: 10.1016/j.yexmp.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
Telomere length (TL) has been associated with several health conditions including cancer. To quantify the effect of TL on outcomes in malignancies and explore the role of type of TL measurement we conducted a librarian-led systematic search of electronic databases identified publications exploring the prognostic role of TL on cancer outcomes. Overall survival (OS) was the primary outcome measure while other time-to-event endpoints were secondary outcomes. Data from studies reporting a hazard ratio (HR) with 95% confidence interval (CI) and/or p-value were pooled in a meta-analysis. HRs were weighted by generic inverse variance and computed by random effects modeling. All statistical tests were two-sided. Sixty-one studies comprising a total of 14,720 patients were included of which 41 (67%) reported OS outcomes. Overall, the pooled HR for OS was 0.88 (95%CI=0.69-1.11, p=0.28). Long (versus short) telomeres were associated with improved outcomes in chronic lymphatic leukemia (CLL) and urothelial cancer (HR=0.45, 95%CI=0.29-0.71 and HR=0.68, 95%CI=0.46-1.00, respectively), conversely worse OS was seen with hepatocellular carcinoma (HR=1.90, 95%CI=1.51-2.38). Pooled HRs (95% CI) for progression-free survival, relapse/disease-free survival, cancer-specific survival, and treatment-free survival were 0.56 (0.41-0.76), 0.76 (0.53-1.10), 0.72 (0.48-1.10), and 0.48 (0.39-0.60), respectively. There was substantial heterogeneity of tissues and methods used for TL measurement and no clear association between TL and outcome was identified in subgroups. In conclusion, there is inconsistent effect of TL on cancer outcomes possibly due to variable methods of measurement. Standardization of measurement and reporting of TL is warranted before the prognostic value of TL can be accurately assessed.
Collapse
Affiliation(s)
- Roman Adam
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Laura Díez-González
- Traslational Research laboratory, Albacete University Hospital, and Regional Biomedical Research Center, Castilla La Mancha University, Albacete, Spain
| | - Alberto Ocaña
- Traslational Research laboratory, Albacete University Hospital, and Regional Biomedical Research Center, Castilla La Mancha University, Albacete, Spain
| | - Boštjan Šeruga
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Eitan Amir
- Divisions of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| | - Arnoud J Templeton
- Faculty of Medicine, University of Basel, Basel, Switzerland; Department of Medical Oncology and Hematology, St. Claraspital, Basel, Switzerland.
| |
Collapse
|
25
|
Rampazzo E, Bojnik E, Trentin L, Bonaldi L, Del Bianco P, Frezzato F, Visentin A, Facco M, Semenzato G, De Rossi A. Role of miR-15a/miR-16-1 and the TP53 axis in regulating telomerase expression in chronic lymphocytic leukemia. Haematologica 2017; 102:e253-e256. [PMID: 28385779 DOI: 10.3324/haematol.2016.157669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Enrica Rampazzo
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova
| | - Engin Bojnik
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova
| | - Livio Trentin
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | | | | | - Federica Frezzato
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Andrea Visentin
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Monica Facco
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Gianpietro Semenzato
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova .,Istituto Oncologico Veneto-IRCCS, Padova, Italy
| |
Collapse
|
26
|
Prognostic impact of Epstein-Barr virus (EBV)-DNA copy number at diagnosis in chronic lymphocytic leukemia. Oncotarget 2016; 7:2135-42. [PMID: 26539641 PMCID: PMC4811522 DOI: 10.18632/oncotarget.6281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV)-DNA is detected in the blood of some persons with chronic lymphocytic leukemia (CLL) at diagnosis. Whether this is important in the development or progression of CLL is controversial. We interrogated associations between blood EBV-DNA copy number and biological and clinical variables in 243 new-diagnosed consecutive subjects with CLL. Quantification of EBV-DNA copies was done by real-time quantitative PCR (RQ-PCR). All subjects had serological evidence of prior EBV-infection. However, only 24 subjects (10%) had a EBV-DNA-positive test at diagnosis. EBV-DNA-positive subjects at diagnosis had lower hemoglobin concentrations and platelet levels, higher thymidine kinase-1 and serum ferritin levels, un-mutated IGHV genes and a greater risk of Richter transformation compared with EBV-DNA-negative subjects. Percent CD20-, CD148- and ZAP70-positive cells and mean fluorescence intensity (MFI) of each cluster designation were also increased in EBV-DNA-positive subjects at diagnosis. EBV-DNA test positivity was associated with a briefer time-to-treatment interval (HR 1.85; [95% confidence interval, 1.13, 3.03]; P=0.014) and worse survival (HR 2.77; [1.18, 6.49]; P=0.019). Reduction in EBV copies was significantly associated with therapy-response. A positive blood EBV-DNA test at diagnosis and sequential testing of EBV copies during therapy were significantly associated with biological and clinical variables, time-to-treatment, therapy-response and survival. If validated these data may be added to CLL prognostic scoring systems.
Collapse
|
27
|
Guièze R, Pages M, Véronèse L, Combes P, Lemal R, Gay-bellile M, Chauvet M, Callanan M, Kwiatkowski F, Pereira B, Vago P, Bay JO, Tournilhac O, Tchirkov A. Telomere status in chronic lymphocytic leukemia with TP53 disruption. Oncotarget 2016; 7:56976-56985. [PMID: 27486974 PMCID: PMC5302966 DOI: 10.18632/oncotarget.10927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/10/2016] [Indexed: 12/23/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents.
Collapse
Affiliation(s)
- Romain Guièze
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Mélanie Pages
- Department de Neuropathologie, Hôpital Sainte-Anne, Paris, France
- Université Paris Descartes, Paris, France
| | - Lauren Véronèse
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Patricia Combes
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Richard Lemal
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Mathilde Gay-bellile
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Martine Chauvet
- Inserm U823, Institut Albert Bonniot & Université Joseph Fourier, Grenoble, France
- CHU Grenoble, Laboratoire de Génétique Onco-hématologique, Grenoble, France
| | - Mary Callanan
- Inserm U823, Institut Albert Bonniot & Université Joseph Fourier, Grenoble, France
- CHU Grenoble, Laboratoire de Génétique Onco-hématologique, Grenoble, France
| | - Fabrice Kwiatkowski
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
- Centre Jean Perrin, Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de la Recherche Clinique et de l’Innovation, Département de Biostatistiques, CHU Clermont-Ferrand, Clermont Ferrand, France
| | - Philippe Vago
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Jacques-Olivier Bay
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Olivier Tournilhac
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Andreï Tchirkov
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| |
Collapse
|
28
|
Scheffold A, Jebaraj BMC, Jaramillo S, Tausch E, Steinbrecher D, Hahn M, Böttcher S, Ritgen M, Bunjes D, Zeis M, Stadler M, Uharek L, Scheid C, Hegenbart U, Hallek M, Kneba M, Schmitz N, Döhner H, Dreger P, Stilgenbauer S. Impact of telomere length on the outcome of allogeneic stem cell transplantation for poor-risk chronic lymphocytic leukaemia: results from the GCLLSG CLL3X trial. Br J Haematol 2016; 179:342-346. [PMID: 27391907 DOI: 10.1111/bjh.14219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Sonia Jaramillo
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Michael Hahn
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Böttcher
- Department of Medicine II, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Matthias Ritgen
- Department of Medicine II, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Donald Bunjes
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Matthias Zeis
- Department of Haematology and Stem Cell Transplantation, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Michael Stadler
- Department of Haematology, Haemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lutz Uharek
- Department of Medicine for Haematology, Oncology and Tumour Immunology, Charité Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Scheid
- Department of Medicine I, Centre for Integrated Oncology Cologne Bonn, University of Cologne, Cologne, Germany
| | - Ute Hegenbart
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Michael Hallek
- Department of Medicine I, Centre for Integrated Oncology Cologne Bonn, University of Cologne, Cologne, Germany
| | - Michael Kneba
- Department of Medicine II, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Norbert Schmitz
- Department of Haematology and Stem Cell Transplantation, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
29
|
Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med 2016; 10:191-203. [PMID: 27185042 DOI: 10.1007/s11684-016-0450-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
The relationship between telomere length and cancer survival has been widely studied. To gain a deeper insight, we reviewed the published studies. A total of 29 studies evaluated telomere length in the peripheral blood; 22 studies evaluated telomere length in the tumor tissue. First, in the peripheral blood studies, for solid tumor patients with shortened telomere length, the combined hazard ratios (HRs) for mortality and tumor progression were 1.21 (95%CI, 1.10-1.32) and 1.71 (95%CI, 1.37-2.13), respectively. Meanwhile, in hematology malignancy, the combined HRs for mortality and tumor progression were 2.83 (95%CI, 2.14-3.74) and 2.65 (95%CI, 2.18-3.22), respectively. Second, in the studies that use tumor tissue, for patients with shortened telomeres, the combined HRs for mortality and tumor progression were 1.26 (95%CI, 0.95-1.66) and 1.65 (95%CI, 1.26-2.15), respectively. In the studies that calculate the telomere length ratios of tumor tissue to adjacent normal mucosa, for patients with lower telomere length ratios, the combined HRs were 0.66 (95%CI, 0.53-0.83) and 0.74 (95%CI, 0.41-1.32) for mortality and tumor progression, respectively. In conclusion, shortened telomere in peripheral blood and tumor tissue might indicate poor survival for cancer patients. However, by calculating the telomere length ratios of tumor tissue to adjacent normal mucosa, the lower ratio might indicate better survival.
Collapse
Affiliation(s)
- Xinsen Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhixin Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanyan Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
30
|
Ojha J, Codd V, Nelson CP, Samani NJ, Smirnov IV, Madsen NR, Hansen HM, de Smith AJ, Bracci PM, Wiencke JK, Wrensch MR, Wiemels JL, Walsh KM. Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol Biomarkers Prev 2016; 25:1043-9. [PMID: 27197291 DOI: 10.1158/1055-9965.epi-15-1329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Shorter mean telomere length in leukemic cells has been associated with more aggressive disease. Germline polymorphisms in telomere maintenance genes affect telomere length and may contribute to CLL susceptibility. METHODS We collected genome-wide data from two groups of patients with CLL (N = 273) and two control populations (N = 5,725). In ancestry-adjusted case-control comparisons, we analyzed eight SNPs in genes definitively associated with inter-individual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208, and RTEL1 RESULTS: Three of the eight LTL-associated SNPs were associated with CLL risk at P < 0.05, including those near: TERC [OR, 1.46; 95% confidence interval (CI), 1.15-1.86; P = 1.8 × 10(-3)], TERT (OR = 1.23; 95% CI, 1.02-1.48; P = 0.030), and OBFC1 (OR, 1.36; 95% CI, 1.08-1.71; P = 9.6 × 10(-3)). Using a weighted linear combination of the eight LTL-associated SNPs, we observed that CLL patients were predisposed to longer LTL than controls in both case-control sets (P = 9.4 × 10(-4) and 0.032, respectively). CLL risk increased monotonically with increasing quintiles of the weighted linear combination. CONCLUSIONS Genetic variants in TERC, TERT, and OBFC1 are associated with both longer LTL and increased CLL risk. Because the human CST complex competes with shelterin for telomeric DNA, future work should explore the role of OBFC1 and other CST complex genes in leukemogenesis. IMPACT A genetic predisposition to longer telomere length is associated with an increased risk of CLL, suggesting that the role of telomere length in CLL etiology may be distinct from its role in disease progression. Cancer Epidemiol Biomarkers Prev; 25(7); 1043-9. ©2016 AACR.
Collapse
Affiliation(s)
- Juhi Ojha
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Nils R Madsen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - John K Wiencke
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Kyle M Walsh
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Program in Neurologic Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | | |
Collapse
|
31
|
Giunco S, Rampazzo E, Celeghin A, Petrara MR, De Rossi A. Telomere and Telomerase in Carcinogenesis: Their Role as Prognostic Biomarkers. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Visco C, Falisi E, Young KH, Pascarella M, Perbellini O, Carli G, Novella E, Rossi D, Giaretta I, Cavallini C, Scupoli MT, De Rossi A, D'Amore ESG, Rassu M, Gaidano G, Pizzolo G, Ambrosetti A, Rodeghiero F. Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival. Oncotarget 2015; 6:18653-18663. [PMID: 26087198 PMCID: PMC4621917 DOI: 10.18632/oncotarget.4418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022] Open
Abstract
The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an independent retrospective cohort of 112 patients with CLL. EBV DNA load was detectable in 59%, and high (≥2000 copies/µg DNA) in 19% of patients, but it was negative in plasma samples. EBV DNA load was significantly higher in CLL patients than in healthy subjects (P < .0001). No relation was found between high EBV load and clinical stage or biological variables, except for 11q deletion (P = .004), CD38 expression (P = .003), and NOTCH1 mutations (P = .05). High EBV load led to a 3.14-fold increase in the hazard ratio of death and to a shorter overall survival (OS; P = .001). Poor OS was attributable, at least in part, to shorter time-to-first-treatment (P = .0008), with no higher risk of Richter's transformation or second cancer. Multivariate analysis selected high levels of EBV load as independent predictor of OS after controlling for confounding clinical and biological variables. EBV DNA load at presentation is an independent predictor of OS in patients with CLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cells, Cultured
- DNA, Viral/blood
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/drug therapy
- Epstein-Barr Virus Infections/virology
- Female
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Host-Pathogen Interactions
- Humans
- Kaplan-Meier Estimate
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Male
- Middle Aged
- Multivariate Analysis
- Mutation
- Outcome Assessment, Health Care/methods
- Outcome Assessment, Health Care/statistics & numerical data
- Polymerase Chain Reaction
- Prognosis
- Proportional Hazards Models
- Viral Load/genetics
Collapse
Affiliation(s)
- Carlo Visco
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Erika Falisi
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Omar Perbellini
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Carli
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Elisabetta Novella
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Ilaria Giaretta
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Chiara Cavallini
- Research Center LURM (University Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Istituto Oncologico Veneto(IOV)-IRCCS, Padova, Italy
| | | | | | - Mario Rassu
- Department of Microbiology, San Bortolo Hospital, Vicenza, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Giovanni Pizzolo
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Achille Ambrosetti
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
33
|
The Association between Telomere Length and Cancer Prognosis: Evidence from a Meta-Analysis. PLoS One 2015; 10:e0133174. [PMID: 26177192 PMCID: PMC4503690 DOI: 10.1371/journal.pone.0133174] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/24/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Telomeres are essential for chromosomal integrity and stability. Shortened telomere length (TL) has been associated with risk of cancers and aging-related diseases. Several studies have explored associations between TL and cancer prognosis, but the results are conflicting. METHODS Prospective studies on the relationship between TL and cancer survival were identified by a search of PubMed up to May 25, 2015. There were no restrictions on the cancer type or DNA source. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. Meta-analysis approaches were conducted to determine pooled relative risks and 95% confidence intervals. RESULTS Thirty-three articles containing forty-five independent studies were ultimately involved in our meta-analysis, of which twenty-seven were about overall cancer survival and eighteen were about cancer progression. Short TL was associated with increased cancer mortality risk (RR = 1.30, 95%CI: 1.06-1.59) and poor cancer progression (RR = 1.44, 95%CI: 1.10-1.88), both with high levels of heterogeneity (I2 = 83.5%, P = 0.012for overall survival and I2 = 75.4%, P = 0.008 for progression). TL was an independent predictor of overall cancer survival and progression in chronic lymphocytic leukemia. Besides, short telomeres were also associated with increased colorectal cancer mortality and decreased overall survival of esophageal cancer, but not in other cancers. Cancer progression was associated with TL in Asian and America populations and short TL predicted poor cancer survival in older populations. Compared with tumor tissue cells, TL in blood lymphocyte cells was better for prediction. In addition, the associations remained significant when restricted to studies with adjustments for age, with larger sample sizes, measuring TL using southern blotting or estimating risk effects by hazard ratios. CONCLUSION Short TL demonstrated a significant association with poor cancer survival, suggesting the potential prognostic significance of TL. Additional large well-designed studies are needed to confirm our findings.
Collapse
|
34
|
Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia. Tumour Biol 2015; 36:8317-24. [DOI: 10.1007/s13277-015-3556-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
|
35
|
Boscolo-Rizzo P, Rampazzo E, Perissinotto E, Piano MA, Giunco S, Baboci L, Spinato G, Spinato R, Tirelli G, Da Mosto MC, Del Mistro A, De Rossi A. Telomere shortening in mucosa surrounding the tumor: biosensor of field cancerization and prognostic marker of mucosal failure in head and neck squamous cell carcinoma. Oral Oncol 2015; 51:500-7. [PMID: 25771075 DOI: 10.1016/j.oraloncology.2015.02.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/01/2015] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the pattern of telomere length and telomerase expression in cancer tissues and the surrounding mucosa (SM), as markers of field cancerization and clinical outcome in patients successfully treated for with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS This investigation was a prospective cohort study. Telomere length and levels of telomerase reverse transcriptase (TERT) transcripts were quantified by real-time PCR in cancer tissues and SM from 139 and 90 patients with HNSCC, respectively. RESULTS No correlation was found between age and telomere length in SM. Patients with short telomeres in SM had a higher risk of mucosal failure (adjusted HR=4.29). Patients with high TERT levels in cancer tissues had a higher risk of regional failure (HR=2.88), distant failure (HR=7.27), worse disease-specific survival (HR for related death=2.62) but not mucosal failure. High-risk patients having both short telomeres in SM and high levels of TERT in cancer showed a significantly lower overall survival (HR=2.46). CONCLUSIONS Overall these findings suggest that telomere shortening in SM is a marker of field cancerization and may precede reactivation of TERT. Short telomeres in SM are strongly prognostic of mucosal failure, whereas TERT levels in cancer tissues increase with the aggressiveness of the disease and are prognostic of tumor spread.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Section of Otolaryngology and Regional Center for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Enrica Rampazzo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Egle Perissinotto
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiological Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Maria Assunta Piano
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Silvia Giunco
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Lorena Baboci
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giacomo Spinato
- Head and Neck Department, University of Trieste, Trieste, Italy
| | | | | | - Maria Cristina Da Mosto
- Section of Otolaryngology and Regional Center for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Annarosa Del Mistro
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto - IRCCS, Padova, Italy.
| |
Collapse
|
36
|
Wysoczanska B, Wrobel T, Dobrzynska O, Mazur G, Bogunia-Kubik K. Role of the functional MNS16A VNTR-243 variant of the human telomerase reverse transcriptase gene in progression and response to therapy of patients with non-Hodgkin's B-cell lymphomas. Int J Immunogenet 2015; 42:100-5. [PMID: 25684018 DOI: 10.1111/iji.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 01/06/2023]
Abstract
MNS16A is a functional polymorphic tandem repeat within the human telomerase reverse transcriptase (hTERT) gene. To investigate whether any of the MNS16A repeats represents a genetic risk factor for NHL susceptibility, progression of or response to therapy in 75 patients with non-Hodgkin's lymphomas (NHLs) and 126 healthy individuals were genotyped using the PCR-VNTR technique. A slightly higher frequency of the MNS16A VNTR-243 variant was detected among patients who did not respond to treatment (NR) as compared to patients with complete or partial remission (0.83 vs. 0.51, P = 0.055). NR patients more frequently developed aggressive than indolent type of the disease (0.92 vs. 0.41, P = 0.001). The VNTR-243 allele was more frequently detected among patients with an intermediate-high/high International Prognostic Index (IPI 3-4) score (P = 0.063), especially in patients with advanced age and IPI 3-4 (P = 0.040). In multivariate analysis, higher IPI 3-4 score (OR = 11.364, P = 0.051) and aggressive type of the disease (OR = 18.182, P = 0.012) were found to be independent genetic markers associated with nonresponse to treatment. Presence of the MNS16A VNTR-243 variant also strongly tended to affect the risk of a less favourable response to therapy and was more frequently present among nonresponders (OR = 5.848, P = 0.059). Genetic variation within the hTERT gene may affect the progression and treatment of lymphoproliferative disorders.
Collapse
Affiliation(s)
- B Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
37
|
Hoxha M, Fabris S, Agnelli L, Bollati V, Cutrona G, Matis S, Recchia AG, Gentile M, Cortelezzi A, Morabito F, Bertazzi PA, Ferrarini M, Neri A. Relevance of telomere/telomerase system impairment in early stage chronic lymphocytic leukemia. Genes Chromosomes Cancer 2014; 53:612-21. [PMID: 24706380 DOI: 10.1002/gcc.22171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/18/2014] [Indexed: 01/10/2023] Open
Abstract
Several studies have proposed telomere length and telomerase activity as prognostic factors in chronic lymphocytic leukemia (CLL), whereas information addressing the role of telomere-associated genes is limited. We measured relative telomere length (RTL) and TERT expression levels in purified peripheral CD19(+) B-cells from seven healthy donors and 77 untreated CLLs in early stage disease (Binet A). Data were correlated with the major biological and cytogenetic markers, global DNA methylation (Alu and LINE-1), and clinical outcome. The expression profiles of telomere-associated genes were also investigated. RTL was decreased in CLLs as compared with controls (P < 0.001); within CLL, a progressive and significant RTL shortening was observed in patients from 13q- through +12, 11q-, and 17p- alterations; short telomeres were significantly associated with unmutated IGHV configuration and global DNA hypomethylation. Decreased RTL was associated with a shorter time to first treatment. A significant upregulation of POT1, TRF1, RAP1, MRE11A, RAD50, and RPA1 transcript levels was observed in CLLs compared with controls. Our study suggests that impairment of telomere/telomerase system represents an early event in CLL pathogenesis. Moreover, the correlation between telomere shortening and global DNA hypomethylation supports the involvement of DNA hypomethylation to increase chromosome instability. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirjam Hoxha
- Department of Clinical Sciences and Community Health, Center of Molecular and Genetic Epidemiology, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Differential sensitivity of telomerase from human hematopoietic stem cells and leukemic cell lines to mild hyperthermia. Cell Biochem Biophys 2014; 69:681-91. [PMID: 24590263 DOI: 10.1007/s12013-014-9853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have investigated the effects of hyperthermia (HT) on cell proliferation and telomerase activity of human hematopoietic stem cells (HSCs) and compared with human leukemic cell lines (TF-1, K562 and HL-60). The cells were exposed to HT at 42 and 43 °C up to 120 min. The cells were incubated at 37 °C for 96 h. Then the cells were collected and assayed for cell proliferation, viability, telomerase activity, and terminal restriction fragment (TRF) lengths. The enzyme activity from HSCs was decreased up to 68.6 at 42 and 85.1 % at 43 °C for 120 min. This inhibition in leukemic cells was up to 28.9 and 53.6 % in TF-1; 53 and 63.9 % in K562; 45.2 and 61.1 % in HL-60 cells. The treated cells showed TRF lengths about 5.3 kb for control HL-60 cells, 5.0 kb for HL-60 cells treated at 42 and 4.5 kb at 43 °C for 120 min. In HSCs, the TRF length was about 4.5 kb for untreated cells and 4.0-4.5 kb for treated cells at 42 and 43 °C for 120 min. The time response curves indicated that, inhibition of the enzyme activity in leukemic cells was dependent to the time of exposure to HT. But in HSCs, the inhibition was reached to steady state at 15 min exposure to 43 °C heat stress. TRF length was constant at treated two types of cells, which implies that in cells subjected to mild HT no telomere shortening was observed.
Collapse
|
39
|
Dolcetti R, Giunco S, Dal Col J, Celeghin A, Mastorci K, De Rossi A. Epstein-Barr virus and telomerase: from cell immortalization to therapy. Infect Agent Cancer 2014; 9:8. [PMID: 24572088 PMCID: PMC3943417 DOI: 10.1186/1750-9378-9-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
Overcoming cellular senescence is strictly required for virus-driven tumors, including those associated with Epstein-Barr virus (EBV). This critical step is successfully accomplished by EBV through TERT expression and telomerase activation in infected cells. We herein review the complex interplay between EBV and TERT/telomerase in EBV-driven tumorigenesis. Evidence accumulated so far clearly indicates that elucidation of this issue may offer promising opportunities for the design of innovative treatment modalities for EBV-associated malignancies. Indeed, several therapeutic strategies for telomerase inhibition have been developed and are being investigated in clinical trials. In this respect, our recent finding that TERT inhibition sensitizes EBV+ lymphoma cells to antivirals through activation of EBV lytic replication is particularly promising and provides a rationale for the activation of clinical studies aimed at assessing the effects of combination therapies with TERT inhibitors and antivirals for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO Aviano, National Cancer Institute, Aviano, PN, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Paiva RMA, Calado RT. Telomere dysfunction and hematologic disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:133-57. [PMID: 24993701 DOI: 10.1016/b978-0-12-397898-1.00006-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aplastic anemia is a disease in which the hematopoietic stem cell fails to adequately produce peripheral blood cells, causing pancytopenia. In some cases of acquired aplastic anemia and in inherited type of aplastic anemia, dyskeratosis congenita, telomere biology gene mutations and telomere shortening are etiologic. Telomere erosion hampers the ability of hematopoietic stem and progenitor cells to adequately replicate, clinically resulting in bone marrow failure. Additionally, telomerase mutations and short telomeres are genetic risk factors for the development of some hematologic cancers, including myelodysplastic syndrome, acute myeloid leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Raquel M A Paiva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
41
|
Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy. Transl Res 2013; 162:353-63. [PMID: 23732052 PMCID: PMC3834083 DOI: 10.1016/j.trsl.2013.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022]
Abstract
Telomeres are DNA-protein structures that form a protective cap on chromosome ends. As such, they prevent the natural ends of linear chromosomes from being subjected to DNA repair activities that would result in telomere fusion, degradation, or recombination. Both the DNA and protein components of the telomere are required for this essential function, because insufficient telomeric DNA length, loss of the terminal telomeric DNA structure, or deficiency of key telomere-associated factors may elicit a DNA damage response and result in cellular senescence or apoptosis. In the setting of failed checkpoint mechanisms, such DNA-protein defects can also lead to genomic instability through telomere fusions or recombination. Thus, as shown in both model systems and in humans, defects in telomere biology are implicated in cellular and organismal aging as well as in tumorigenesis. Bone marrow failure and malignancy are 2 life-threatening disease manifestations in the inherited telomere biology disorder dyskeratosis congenita. We provide an overview of basic telomere structure and maintenance. We outline the telomere biology defects observed in dyskeratosis congenita, focusing on recent discoveries in this field. Last, we review the evidence of how telomere biology may impact sporadic aplastic anemia and the risk for various cancers.
Collapse
|
42
|
Ferlin A, Rampazzo E, Rocca MS, Keppel S, Frigo AC, De Rossi A, Foresta C. In young men sperm telomere length is related to sperm number and parental age. Hum Reprod 2013; 28:3370-6. [DOI: 10.1093/humrep/det392] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Falci C, Gianesin K, Sergi G, Giunco S, De Ronch I, Valpione S, Soldà C, Fiduccia P, Lonardi S, Zanchetta M, Keppel S, Brunello A, Zafferri V, Manzato E, De Rossi A, Zagonel V. Immune senescence and cancer in elderly patients: results from an exploratory study. Exp Gerontol 2013; 48:1436-42. [PMID: 24120567 DOI: 10.1016/j.exger.2013.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The challenge of immune senescence has never been addressed in elderly cancer patients. This study compares the thymic output and peripheral blood telomere length in ≥70year old cancer patients. PATIENTS AND METHODS Fifty-two elderly cancer patients and 39 age-matched controls without personal history of cancer were enrolled. All patients underwent a Comprehensive Geriatric Assessment (CGA), from which a multidimensional prognostic index (MPI) score was calculated. Peripheral blood samples were studied for naïve and recent thymic emigrant (RTE) CD4(+) and CD8(+) cells by flow cytometry. T-cell receptor rearrangement excision circle (TREC) levels, telomere length and telomerase activity in peripheral blood cells were quantified by real-time PCR. RESULTS The percentages of CD8(+) naïve and CD8(+) RTE cells and TREC levels were significantly lower in cancer patients than in controls (p=0.003, p=0.004, p=0.031, respectively). Telomere lengths in peripheral blood cells were significantly shorter in cancer patients than in controls (p=0.046) and did not correlate with age in patients, whereas it did in controls (r=-0.354, p=0.031). Short telomere (≤median)/low TREC (≤median) profile was associated with higher risk of cancer (OR=3.68 [95% CI 1.22-11.11]; p=0.021). Neither unfitness on CGA nor MPI score were significantly related to thymic output or telomere length in either group. CONCLUSIONS Immune senescence is significantly worse in elderly cancer patients than in age-matched controls. The low thymic output and the shorter telomeres in peripheral blood cells of cancer patients may reflect a pre-existing condition which facilitates the onset of malignancies in elderly people.
Collapse
Affiliation(s)
- Cristina Falci
- Medical Oncology Unit II, Istituto Oncologico Veneto (IOV), IRCCS, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shawi M, Chu TW, Martinez-Marignac V, Yu Y, Gryaznov SM, Johnston JB, Lees-Miller SP, Assouline SE, Autexier C, Aloyz R. Telomerase contributes to fludarabine resistance in primary human leukemic lymphocytes. PLoS One 2013; 8:e70428. [PMID: 23922990 PMCID: PMC3726637 DOI: 10.1371/journal.pone.0070428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022] Open
Abstract
We report that Imetelstat, a telomerase inhibitor that binds to the RNA component of telomerase (hTR), can sensitize primary CLL lymphocytes to fludarabine in vitro. This effect was observed in lymphocytes from clinically resistant cases and with cytogenetic abnormalities associated with bad prognosis. Imetelstat mediated-sensitization to fludarabine was not associated with telomerase activity, but with the basal expression of Ku80. Since both Imetelstat and Ku80 bind hTR, we assessed 1) if Ku80 and Imetelstat alter each other's binding to hTR in vitro and 2) the effect of an oligonucleotide complementary to the Ku binding site in hTR (Ku oligo) on the survival of primary CLL lymphocytes exposed to fludarabine. We show that Imetelstat interferes with the binding of Ku70/80 (Ku) to hTR and that the Ku oligo can sensitize CLL lymphocytes to FLU. Our results suggest that Ku binding to hTR may contribute to fludarabine resistance in CLL lmphocytes. This is the first report highlighting the potentially broad effectiveness of Imetelstat in CLL, and the potential biological and clinical implications of a functional interaction between Ku and hTR in primary human cancer cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Catalytic Domain/drug effects
- Chromosome Deletion
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation
- Gene Expression Regulation, Leukemic/drug effects
- Histones/metabolism
- Humans
- Indoles/pharmacology
- Ku Autoantigen
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Middle Aged
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Oligonucleotides
- Phosphorylation
- Protein Binding/drug effects
- Telomerase/chemistry
- Telomerase/genetics
- Telomerase/metabolism
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- May Shawi
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tsz Wai Chu
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Veronica Martinez-Marignac
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Y. Yu
- University of Calgary, Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | | | - James B. Johnston
- Manitoba Institute of Cell Biology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Susan P. Lees-Miller
- University of Calgary, Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | - Sarit E. Assouline
- Oncology Department, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Raquel Aloyz
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Oncology Department, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
45
|
Abstract
Key Points
Telomere length in MCL is variable but does not correlate with disease characteristics and survival.
Collapse
|
46
|
Fordyce CA, Patten KT, Fessenden TB, DeFilippis R, Hwang ES, Zhao J, Tlsty TD. Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes. Breast Cancer Res 2012; 14:R155. [PMID: 23216814 PMCID: PMC3786321 DOI: 10.1186/bcr3368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
Introduction Tumors are characterized by alterations in the epithelial and stromal compartments, which both contribute to tumor promotion. However, where, when, and how the tumor stroma develops is still poorly understood. We previously demonstrated that DNA damage or telomere malfunction induces an activin A-dependent epithelial stress response that activates cell-intrinsic and cell-extrinsic consequences in mortal, nontumorigenic human mammary epithelial cells (HMECs and vHMECs). Here we show that this epithelial stress response also induces protumorigenic phenotypes in neighboring primary fibroblasts, recapitulating many of the characteristics associated with formation of the tumor stroma (for example, desmoplasia). Methods The contribution of extrinsic and intrinsic DNA damage to acquisition of desmoplastic phenotypes was investigated in primary human mammary fibroblasts (HMFs) co-cultured with vHMECs with telomere malfunction (TRF2-vHMEC) or in HMFs directly treated with DNA-damaging agents, respectively. Fibroblast reprogramming was assessed by monitoring increases in levels of selected protumorigenic molecules with quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and immunocytochemistry. Dependence of the induced phenotypes on activin A was evaluated by addition of exogenous activin A or activin A silencing. In vitro findings were validated in vivo, in preinvasive ductal carcinoma in situ (DCIS) lesions by using immunohistochemistry and telomere-specific fluorescent in situ hybridization. Results HMFs either cocultured with TRF2-vHMEC or directly exposed to exogenous activin A or PGE2 show increased expression of cytokines and growth factors, deposition of extracellular matrix (ECM) proteins, and a shift toward aerobic glycolysis. In turn, these "activated" fibroblasts secrete factors that promote epithelial cell motility. Interestingly, cell-intrinsic DNA damage in HMFs induces some, but not all, of the molecules induced as a consequence of cell-extrinsic DNA damage. The response to cell-extrinsic DNA damage characterized in vitro is recapitulated in vivo in DCIS lesions, which exhibit telomere loss, heightened DNA damage response, and increased activin A and cyclooxygenase-2 expression. These lesions are surrounded by a stroma characterized by increased expression of α smooth muscle actin and endothelial and immune cell infiltration. Conclusions Thus, synergy between stromal and epithelial interactions, even at the initiating stages of carcinogenesis, appears necessary for the acquisition of malignancy and provides novel insights into where, when, and how the tumor stroma develops, allowing new therapeutic strategies.
Collapse
|