1
|
Yi JS, Cuglievan B. Acute Leukemia in the Crosshairs: First-in-Class Menin Inhibitor Approval for Adults and Children. Pediatr Blood Cancer 2025; 72:e31657. [PMID: 40103277 DOI: 10.1002/pbc.31657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Joanna S Yi
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA
| | - Branko Cuglievan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Kaya F, Bewicke-Copley F, Miettinen JJ, Casado P, Leddy E, Deniz Ö, Lavallée VP, Philippe C, Zheng J, Grebien F, Khan N, Krizsán S, Saad J, Nolin-Lapalme A, Hébert J, Lemieux S, Audemard E, Matthews J, Grantham M, Di Bella D, Wennerberg K, Parsons A, Gribben J, Cavenagh JD, Freeman SD, Bödör C, Sauvageau G, Wang J, Llamas-Sillero P, Cazier JB, Taussig DC, Bonnet D, Cutillas PR, Heckman CA, Fitzgibbon J, Rouault-Pierre K, Rio-Machin A. DEK::NUP214 acts as an XPO1-dependent transcriptional activator of essential leukemia genes. Leukemia 2025:10.1038/s41375-025-02593-8. [PMID: 40204893 DOI: 10.1038/s41375-025-02593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
The t(6;9)(p22.3;q34.1) translocation/DEK::NUP214 fusion protein defines a distinct subgroup of younger AML patients classified as a separate disease entity by the World Health Organization. DEK is a nuclear factor with multifunctional roles, including gene regulation, while its fusion partner, NUP214, plays a pivotal role in nuclear export by interacting with transport receptors such as XPO1. However, the precise mechanism by which DEK::NUP214 drives leukemia remains unclear. A comprehensive multi-omics comparison of 57 AML primary samples (including whole genome sequencing, targeted sequencing, transcriptomics, and drug screening with >500 compounds) revealed that t(6;9) cases display a selective response to XPO1 inhibitors (Selinexor & Eltanexor) and a distinct transcriptomic signature characterized by the overexpression of FOXC1 and HOX genes that are key leukemia mediators. CUT&RUN experiments demonstrated the direct binding of DEK::NUP214 to the promoters of FOXC1 and HOXA/B clusters. Strikingly, the expression of these genes and the binding of DEK::NUP214 to their regulatory regions were selectively reduced upon XPO1 inhibition in t(6;9) cells. Altogether, these results identified a novel function of DEK::NUP214 as an XPO1-dependent transcriptional activator of key leukemia drivers and provide a rationale to explore the use of XPO1 inhibitors in this patient population.
Collapse
Affiliation(s)
- Fadimana Kaya
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Pedro Casado
- Centre for Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eve Leddy
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Epigenetics, Queen Mary University of London, London, E1 2AT, UK
| | - Özgen Deniz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Epigenetics, Queen Mary University of London, London, E1 2AT, UK
| | - Vincent-Philippe Lavallée
- Division of Hematology and Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Celine Philippe
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Jiexin Zheng
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Florian Grebien
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Naeem Khan
- School of Infection, Inflammation and Immunology, University of Birmingham College of Medicine and Health, Birmingham, UK
| | - Szilvia Krizsán
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Joseph Saad
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | | | - Josée Hébert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Hôpital Maisonneuve-Rosemont, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Sébastien Lemieux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Eric Audemard
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | | | - Doriana Di Bella
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Alun Parsons
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James D Cavenagh
- Department of Haemato-Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Sylvie D Freeman
- School of Infection, Inflammation and Immunology, University of Birmingham College of Medicine and Health, Birmingham, UK
| | - Csaba Bödör
- HCEMM-SU, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Guy Sauvageau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Hôpital Maisonneuve-Rosemont, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Jun Wang
- Centre for Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - David C Taussig
- Acute Leukaemia Team, Institute of Cancer Research, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, UK
| | - Pedro R Cutillas
- Centre for Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jude Fitzgibbon
- Centre for Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain.
| |
Collapse
|
3
|
Charles Cano F, Kloos A, Hebalkar RY, Plenge T, Geffers R, Kirchhoff H, Kattre N, Görlich K, Büsche G, Shcherbata HR, Scherr M, Döhner K, Gabdoulline R, Heuser M. XPO1-dependency of DEK::NUP214 leukemia. Leukemia 2025:10.1038/s41375-025-02570-1. [PMID: 40148556 DOI: 10.1038/s41375-025-02570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/01/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
The nuclear export protein XPO1 interacts with nucleoporin 214 (NUP214) and has been implicated in the pathogenesis of SET::NUP214 acute myeloid leukemia (AML). We evaluated DEK::NUP214 (DN), characterizing a distinct AML entity, for its dependency on XPO1 in human AML models. Deletion of XPO1 in DN-positive FKH-1 cells revealed a strong dependency on XPO1. Pharmacologic inhibition of XPO1 by the second-generation selective inhibitor of nuclear export, eltanexor, in primary human and FKH-1 cells reduced XPO1 expression, disrupted co-localization of XPO1 and DN, and induced apoptosis and cell cycle arrest. Functionally, XPO1 and DN co-localized at chromatin, and this co-localization was strongly reduced by XPO1 inhibition. Loss of chromatin binding resulted in downregulation of DN target genes and pathways related to cell cycle and self-renewal. Eltanexor treatment of a patient-derived DN-AML xenograft model disrupted leukemia development, showing molecular clearance in bone marrow after a median of 377 days in eltanexor-treated mice, while control mice succumbed after a median of 244 days. In summary, XPO1 stabilizes DN at chromatin to allow the activation of its oncogenic gene signature, while targeting XPO1 treats leukemia successfully in vivo. These findings establish XPO1 as a molecular target in DEK::NUP214 AML.
Collapse
Affiliation(s)
- Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Kloos
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Rucha Y Hebalkar
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Plenge
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hanna Kirchhoff
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nadine Kattre
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kerstin Görlich
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
- University Hospital Halle (Saale), Department of Internal Medicine IV, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
4
|
Liu D, Liu S, Ji Y, Jin Z, He Z, Hou M, Li D, Ma X. Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML. Sci Rep 2025; 15:1511. [PMID: 39789150 PMCID: PMC11718094 DOI: 10.1038/s41598-025-86136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype. Lactylation plays a significant role in cancer, inflammation, and tissue regeneration, but the underlying mechanisms are not yet fully understood. This research examined the influence of lactylation on gene expression within KMT2Ar-AML, initially identifying twelve notable lactylation-dependent differentially expressed genes (DEGs). Using advanced machine learning techniques, six key lactylation-associated genes (PFN1, S100A6, CBR1, LDHB, LGALS1, PRDX1) were identified as essential for prognostic evaluation and linked to relevant disease pathways. The study also suggested PI3K inhibitors and Pevonedistat as possible therapeutic options to modulate immune cell infiltration. Our findings confirm the critical role of lactylation in KMT2Ar-AML and identify six key genes that may serve as biomarkers for diagnosis and treatment. In addition to highlighting the need for further validation in clinical settings, these findings contribute to our understanding of KMT2Ar-AML's molecular mechanisms.
Collapse
Grants
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 81900130 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Dan Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China.
| | - Silu Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Yujie Ji
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziyan Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhewei He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Hou
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Dongyang Li
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.
| |
Collapse
|
5
|
He H, Li J, Li W, Zhao X, Xue T, Liu S, Zhang R, Zheng H, Gao C. Clinical features and long-term outcomes of pediatric patients with de novo acute myeloid leukemia in China with or without specific gene abnormalities: a cohort study of patients treated with BCH-AML 2005. Hematology 2024; 29:2406596. [PMID: 39361146 DOI: 10.1080/16078454.2024.2406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Acute myeloid leukemia (AML), which has distinct genetic abnormalities, has unique clinical and biological features. In this study, the incidence, clinical characteristics, induction treatment response, and outcomes of a large cohort of Chinese AML pediatric patients treated according to the BCH-AML 2005 protocol were analyzed. RUNX1-RUNX1T1 was the most common fusion transcript, followed by the CBFβ-MHY11 and KMT2A rearrangements. FLT3-ITD and KIT mutations are associated with unfavorable clinical features and induction responses, along with KMT2A rearrangements, DEK-NUP214, and CBF-AML. The 5-year event-free survival (EFS) and overall survival (OS) rates of our cohort were 53.9 ± 3.7% and 58.5 ± 3.6%, with the best survival found among patients with CBFβ-MYH11 and the worst survival among those with DEK-NUP214. In addition, we found that patients with FLT3-ITD mutation had adverse outcomes and that KIT mutation had a negative impact on OS in RUNX1-RUNX1T1+ patients. Furthermore, the risk classification and response to treatment after each induction block also influenced the prognosis, and HSCT after first remission could improve OS in high-risk patients. Not achieving complete remission after induction 2 was found to be an independent prognostic factor for OS and EFS. These findings indicate that genetic abnormalities could be considered stratification factors, predict patient outcomes, and imply the application of targeted therapy.
Collapse
Affiliation(s)
- Hongbo He
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jun Li
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Weijing Li
- Hematologic Disease Laboratory, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Xiaoxi Zhao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tianlin Xue
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuguang Liu
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Ruidong Zhang
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huyong Zheng
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chao Gao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
6
|
Nadiminti KVG, Sahasrabudhe KD, Liu H. Menin inhibitors for the treatment of acute myeloid leukemia: challenges and opportunities ahead. J Hematol Oncol 2024; 17:113. [PMID: 39558390 PMCID: PMC11575055 DOI: 10.1186/s13045-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
The AML treatment landscape has significantly changed in recent years with the approval of targeted therapies in the front-line and relapsed/refractory settings, including inhibitors of FLT3 and IDH1/2 mutations. More importantly, approval of the combination of the BCl-2 inhibitor, venetoclax, and hypomethylating agents or low dose cytarabine provided unprecedented breakthrough for the frontline treatment of older, unfit AML patients. Even with all this exciting progress, more targeted therapies for AML treatment are needed. Recent development of menin inhibitors targeting AML with KMT2A rearrangements or NPM1 mutations could represent a promising new horizon of treatment for patients within these subsets of AML. Our current review will focus on a summary and updates of recent developments of menin inhibitors in the treatment of AML, on the challenges ahead arising from drug resistance, as well as on the opportunities of novel combinations with menin inhibitors.
Collapse
Affiliation(s)
- Kalyan V G Nadiminti
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA.
| | - Kieran D Sahasrabudhe
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| | - Hongtao Liu
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| |
Collapse
|
7
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Shen YY, Yang DL, He Y, Pang AM, Chen X, Ma QL, Zhang RL, Wei JL, Zhai WH, Han MZ, Jiang EL, Feng SZ. [Analysis of therapeutic effects of allogeneic hematopoietic stem cell transplantation in 12 patients with DEK-NUP214 fusion gene positive acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:383-387. [PMID: 38951067 PMCID: PMC11167997 DOI: 10.3760/cma.j.cn121090-20230913-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 07/03/2024]
Abstract
Twelve DEK-NUP214 fusion gene-positive patients with acute myeloid leukemia and on allo-HSCT treatment at the Hematology Hospital of the Chinese Academy of Medical Sciences from November 2016 to August 2022 were included in the study, and their clinical data were retrospectively analyzed. The patients comprised five men and seven women with a median age of 34 (16-52) years. At the time of diagnosis, all the patients were positive for the DEK-NUP214 fusion gene. Chromosome karyotyping analysis showed t (6;9) (p23;q34) translocation in 10 patients (two patients did not undergo chromosome karyotyping analysis), FLT3-ITD mutation was detected in 11 patients, and high expression of WT1 was observed in 11 patients. Nine patients had their primary disease in the first complete remission state before transplantation, one patient had no disease remission, and two patients were in a recurrent state. All patients received myeloablative pretreatment, five patients received sibling allogeneic hematopoietic stem cell transplantation, and seven patients received haploid hematopoietic stem cell transplantation. The median number of mononuclear cells in the transplant was 10.87 (7.09-17.89) ×10(8)/kg, and the number of CD34(+) cells was 3.29 (2.53-6.10) ×10(6)/kg. All patients achieved blood reconstruction, with a median time of 14 (10-20) days for neutrophil implantation and 15 (9-27) days for platelet implantation. The 1 year transplant-related mortality rate after transplantation was 21.2%. The cumulative recurrence rates 1 and 3 years after transplantation were 25.0% and 50.0%, respectively. The leukemia free survival rates were (65.6±14.0) % and (65.6±14.0) %, respectively. The overall survival rates were (72.2±13.8) % and (72.2±13.8) %, respectively.
Collapse
Affiliation(s)
- Y Y Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - D L Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Y He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - A M Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - X Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q L Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - R L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - J L Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, ChinaState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W H Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - M Z Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - E L Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - S Z Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
9
|
Brunetti M, Andersen K, Spetalen S, Lenartova A, Osnes LTN, Vålerhaugen H, Heim S, Micci F. NUP214 fusion genes in acute leukemias: genetic characterization of rare cases. Front Oncol 2024; 14:1371980. [PMID: 38571499 PMCID: PMC10987735 DOI: 10.3389/fonc.2024.1371980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Alterations of the NUP214 gene (9q34) are recurrent in acute leukemias. Rearrangements of chromosomal band 9q34 targeting this locus can be karyotypically distinct, for example t(6;9)(p22;q34)/DEK::NUP214, or cryptic, in which case no visible change of 9q34 is seen by chromosome banding. Methods We examined 9 cases of acute leukemia with NUP214 rearrangement by array Comparative Genomic Hybridization (aCGH), reverse-transcription polymerase chain reaction (RT-PCR), and cycle sequencing/Sanger sequencing to detect which fusion genes had been generated. Results The chimeras DEK::NUP214, SET::NUP214, and NUP214::ABL1 were found, only the first of which can be readily detected by karyotyping. Discussion The identification of a specific NUP214 rearrangement is fundamental in the management of these patients, i.e., AMLs with DEK::NUP214 are classified as an adverse risk group and might be considered for allogenic transplant. Genome- and/or transcriptome-based next generation sequencing (NGS) techniques can be used to screen for these fusions, but we hereby present an alternative, step-wise procedure to detect these rearrangements.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Andrea Lenartova
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | | | - Helen Vålerhaugen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Potluri S, Kellaway SG, Coleman DJL, Keane P, Imperato MR, Assi SA, Cockerill PN, Bonifer C. Gene regulation in t(6;9) DEK::NUP214 Acute Myeloid Leukemia resembles that of FLT3-ITD/NPM1 Acute Myeloid Leukemia but with an altered HOX/MEIS axis. Leukemia 2024; 38:403-407. [PMID: 38172329 PMCID: PMC10844093 DOI: 10.1038/s41375-023-02118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Blood Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Xia J, Zhao Y, Wu XJ, Qiu HY, Tang XW, Wang Y, Jin ZM, Miao M, Ma X, Wu DP, Chen SN, Chen F. [Clinical observation on 16 cases of DEK-NUP214 fusion gene positive acute myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:1041-1044. [PMID: 38503531 PMCID: PMC10834877 DOI: 10.3760/cma.j.issn.0253-2727.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/21/2024]
Affiliation(s)
- J Xia
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou 215000, China
| | - Y Zhao
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou 215000, China
| | - X J Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou 215000, China
| | - H Y Qiu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - X W Tang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - Y Wang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - Z M Jin
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - M Miao
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - X Ma
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou 215000, China
| | - D P Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - S N Chen
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China
| | - F Chen
- Department of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215000, China Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou 215000, China
| |
Collapse
|
13
|
Juul-Dam KL, Shukla NN, Cooper TM, Cuglievan B, Heidenreich O, Kolb EA, Rasouli M, Hasle H, Zwaan CM. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression. Eur J Med Genet 2023; 66:104869. [PMID: 38174649 PMCID: PMC11195042 DOI: 10.1016/j.ejmg.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 10/22/2023] [Indexed: 01/05/2024]
Abstract
Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.
Collapse
Affiliation(s)
- Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - E Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Song J, Li H, Fan S. SET-CAN/NUP214 fusion gene in leukemia: general features and clinical advances. Front Oncol 2023; 13:1269531. [PMID: 37909026 PMCID: PMC10613893 DOI: 10.3389/fonc.2023.1269531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
SET-CAN/NUP214 fusion is a recurrent event commonly observed in adult male patients diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and has occasionally been reported in other diseases such as acute myeloid leukemia (AML), myeloid sarcoma (MS), acute undifferentiated leukemia (AUL), chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). This fusion gene is derived from chromosome del(9)(q34.11;q34.13) or t(9;9)(q34;q34) and may have an inhibitory effect on primitive progenitor differentiation. The prognosis of the reported patients is varied, with these patients often show resistance to chemotherapy regimens that include high doses of glucocorticoids. The optional treatment has not been determined, more cases need to be accumulated and evaluated. The scope of this review is to summarize the general features and prognostic significance in leukemia associated with the SET-CAN/NUP214 fusion gene and to discuss the methods of detection and treatment, aiming at providing some useful references for relevant researchers in the field of blood tumor.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huibo Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4171. [PMID: 37627199 PMCID: PMC10452723 DOI: 10.3390/cancers15164171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children. Recent advances in high-resolution genomic profiling techniques have uncovered the mutational landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed countries. This was accomplished by the intensification of conventional chemotherapy, improvement in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in supportive care. However, the principle therapeutic approach for pediatric AML has not changed substantially for decades and improvement in event-free survival is rather modest. Further refinements in risk stratification and the introduction of emerging novel therapies to contemporary therapy, through international collaboration, would be key solutions for further improvements in outcomes.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
16
|
Wilcher KE, Page ERH, Privette Vinnedge LM. The impact of the chromatin binding DEK protein in hematopoiesis and acute myeloid leukemia. Exp Hematol 2023; 123:18-27. [PMID: 37172756 PMCID: PMC10330528 DOI: 10.1016/j.exphem.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Hematopoiesis is an exquisitely regulated process of cellular differentiation to create diverse cell types of the blood. Genetic mutations, or aberrant regulation of gene transcription, can interrupt normal hematopoiesis. This can have dire pathological consequences, including acute myeloid leukemia (AML), in which generation of the myeloid lineage of differentiated cells is interrupted. In this literature review, we discuss how the chromatin remodeling DEK protein can control hematopoietic stem cell quiescence, hematopoietic progenitor cell proliferation, and myelopoiesis. We further discuss the oncogenic consequences of the t(6;9) chromosomal translocation, which creates the DEK-NUP214 (aka: DEK-CAN) fusion gene, during the pathogenesis of AML. Combined, the literature indicates that DEK is crucial for maintaining homeostasis of hematopoietic stem and progenitor cells, including myeloid progenitors.
Collapse
Affiliation(s)
- Katherine E Wilcher
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Current: Wright State University Boonshoft School of Medicine, Fairborn, OH
| | - Evan R H Page
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
17
|
Identification of the Thyrotropin-Releasing Hormone (TRH) as a Novel Biomarker in the Prognosis for Acute Myeloid Leukemia. Biomolecules 2022; 12:biom12101359. [PMID: 36291567 PMCID: PMC9599642 DOI: 10.3390/biom12101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a biologically and genetically heterogeneous hematological malignance with an unsatisfactory risk stratification system. Recently, through the novel single-cell RNA sequencing technology, we revealed heterogeneous leukemia myeloblasts in RUNX1-RUNX1T1 AML. Thyrotropin-releasing hormone (TRH), as biomarkers of CD34+CD117bri myeloblasts, were found to be prognostic in RUNX1-RUNX1T1 AML. However, the clinical and genetic features of TRH in AML patients are poorly understood. Here, with data from TCGA AML, TRH was found to be downregulated in patients older than 60 years old, with DNMT3A and NPM1 mutations, while overexpressed in patients with KIT mutations. This was further validated in three other cohorts of primary AML including Beat AML (n = 223), GSE6891 (n = 461), and GSE17855 (n = 237). Furthermore, we demonstrated that the expression of TRH in AML could be used to improve the ELN 2017 risk stratification system. In conclusion, our preliminary analysis revealed that TRH, a novel biomarker for AML patients, could be used to evaluate the survival of AML.
Collapse
|
18
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
19
|
Chiriches C, Khan D, Wieske M, Guillen N, Rokicki M, Guy C, Wilson M, Heesom KJ, Ottmann OG, Ruthardt M. Activation of signaling pathways in models of t(6;9)-acute myeloid leukemia. Ann Hematol 2022; 101:2179-2193. [PMID: 35941390 PMCID: PMC9463248 DOI: 10.1007/s00277-022-04905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Patients within the WHO-subgroup of t(6;9)-positive acute myeloid leukemia (AML) differ from other AML subgroups as they are characterised by younger age and a grim prognosis. Leukemic transformation can often be attributed to single chromosomal aberrations encoding oncogenes, in the case of t(6;9)-AML to the fusion protein DEK-CAN (also called DEK-NUP214). As being a rare disease there is the urgent need for models of t(6;9)-AML. The only cell line derived from a t(6;9)-AML patient currently available is FKH1. By using phospho-proteomics on FKH1 cells, we found a strongly activated ABL1 kinase. Further investigation revealed the presence of ETV6-ABL1. This finding renders necessary to determine DEK-CAN- and ETV6-ABL1-related features when using FKH1. This can be done as ETV6-ABL1 activity in FKH1 is responsive to imatinib. Nevertheless, we provided evidence that both SFK and mTOR activation in FKH1 are DEK-CAN-related features as they were activated also in other t(6;9) and DEK-CAN-positive models. The activation of STAT5 previously shown to be strong in t(6;9)-AML and activated by DEK-CAN is regulated in FKH1 by both DEK-CAN and ETV6-ABL1. In conclusion, FKH1 cells still represent a model for t(6;9)-AML and could serve as model for ETV6-ABL1-positive AML if the presence of these leukemia-inducing oncogenes is adequately considered.Taken together, all our results provide clear evidence of novel and specific interdependencies between leukemia-inducing oncogenes and cancer signaling pathways which will influence the design of therapeutic strategies to better address the complexity of cancer signaling.
Collapse
MESH Headings
- Chromosomal Proteins, Non-Histone/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Poly-ADP-Ribose Binding Proteins/metabolism
- Signal Transduction
- Translocation, Genetic
Collapse
Affiliation(s)
- Claudia Chiriches
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Dilawar Khan
- Department of Hematology, J.W. Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Maria Wieske
- Department of Hematology, J.W. Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nathalie Guillen
- Department of Hematology, J.W. Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Michal Rokicki
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Carol Guy
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Marieangela Wilson
- Biomedical Sciences Building, University of Bristol Proteomics Facility, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Biomedical Sciences Building, University of Bristol Proteomics Facility, Bristol, BS8 1TD, UK
| | - Oliver Gerhard Ottmann
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Martin Ruthardt
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
20
|
Noort S, van Oosterwijk J, Ma J, Garfinkle EA, Nance S, Walsh M, Song G, Reinhardt D, Pigazzi M, Locatelli F, Hasle H, Abrahamsson J, Jarosova M, Kelaidi C, Polychronopoulou S, van den Heuvel-Eibrink MM, Fornerod M, Gruber TA, Zwaan CM. Analysis of rare driving events in pediatric acute myeloid leukemia. Haematologica 2022; 108:48-60. [PMID: 35899387 PMCID: PMC9827169 DOI: 10.3324/haematol.2021.280250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 02/04/2023] Open
Abstract
Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.
Collapse
Affiliation(s)
- Sanne Noort
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dirk Reinhardt
- AML-BFM Study Group, Pediatric Hematology and Oncology, Essen, Germany
| | - Martina Pigazzi
- Women and Child Health Department, Hematology-Oncology Clinic and Lab, University of Padova, Padova, Italy
| | - Franco Locatelli
- Italian Association of Pediatric Hematology and Oncology, University of Pavia, Pavia, Italy
| | - Henrik Hasle
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Abrahamsson
- Nordic Society for Pediatric Hematology and Oncology, Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Jarosova
- Center of Molecular Biology and Gene Therapy, Department of Internal Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Marry M. van den Heuvel-Eibrink
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Tanja A. Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C. Michel Zwaan
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,C. M. Zwaan
| |
Collapse
|
21
|
Tomizawa D, Tsujimoto SI, Tanaka S, Matsubayashi J, Aoki T, Iwamoto S, Hasegawa D, Nagai K, Nakashima K, Kawaguchi K, Deguchi T, Kiyokawa N, Ohki K, Hiramatsu H, Shiba N, Terui K, Saito AM, Kato M, Taga T, Koshinaga T, Adachi S. A phase III clinical trial evaluating efficacy and safety of minimal residual disease-based risk stratification for children with acute myeloid leukemia, incorporating a randomized study of gemtuzumab ozogamicin in combination with post-induction chemotherapy for non-low-risk patients (JPLSG-AML-20). Jpn J Clin Oncol 2022; 52:1225-1231. [PMID: 35809896 DOI: 10.1093/jjco/hyac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study is to establish a treatment with appropriate intensity for children (<16 years old at diagnosis) with de novo acute myeloid leukemia (excluding acute promyelocytic leukemia and myeloid leukemia associated with Down syndrome) according to a risk stratification based on recurrent leukemic cytogenetic abnormalities and flow-cytometric minimal residual disease at end of initial induction chemotherapy and to validate the safety and efficacy of gemtuzumab ozogamicin (GO)-combined post-induction chemotherapy for the non-low-risk (non-LR) patients. The primary endpoint of this phase III study is three-year disease-free survival rate, which will be compared between the GO and non-GO arms of the non-LR (intermediate-risk and high-risk [HR]) patients. All HR patients will be allocated to allogeneic hematopoietic stem cell transplantation in first remission. This trial has been registered at the Japan Registry of Clinical Trials (jRCTs041210015).
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takahiro Aoki
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Kozo Nagai
- Department of Pediatric Hematology/Oncology, Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, University of Occupational and Environmental Health, Kita-Kyushu, Japan
| | - Koji Kawaguchi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Takao Deguchi
- Division of Cancer Immunodiagnostics, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Motohiro Kato
- Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
22
|
Klein K, Beverloo HB, Zimmermann M, Raimondi SC, von Neuhoff C, de Haas V, van Weelderen R, Cloos J, Abrahamsson J, Bertrand Y, Dworzak M, Fynn A, Gibson B, Ha SY, Harrison CJ, Hasle H, Elitzur S, Leverger G, Maschan A, Razzouk B, Reinhardt D, Rizzari C, Smisek P, Creutzig U, Kaspers GJL. Prognostic significance of chromosomal abnormalities at relapse in children with relapsed acute myeloid leukemia: A retrospective cohort study of the Relapsed AML 2001/01 Study. Pediatr Blood Cancer 2022; 69:e29341. [PMID: 34532968 DOI: 10.1002/pbc.29341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND In addition to treatment response, cytogenetic and molecular aberrations are the most important prognostic factors in children with de novo acute myeloid leukemia (AML). However, little is known about cytogenetics at the time of relapse. METHODS This international study analyzed the prognostic value of cytogenetic profiles and karyotypic changes in pediatric relapsed AML in relation to the probability of event-free (pEFS) and overall survival (pOS). For this purpose, cytogenetic reports from all patients registered on the Relapsed AML 2001/01 Study were reviewed and classified. RESULTS Cytogenetic information at relapse was available for 403 (71%) of 569 registered patients. Frequently detected aberrations at relapse were t(8;21)(q22;q22) (n = 60) and inv(16)(p13.1q22)/t(16;16)(p13.1;q22) (n = 24), both associated with relatively good outcome (4-year pOS 59% and 71%, respectively). Monosomy 7/7q-, t(9;11)(p22;q23), t(10;11)(p12;q23), and complex karyotypes were associated with poor outcomes (4-year pOS 17%, 19%, 22%, and 22%, respectively). Of 261 (65%) patients for whom cytogenetic data were reliable at both diagnosis and relapse, pEFS was inferior for patients with karyotypic instability (n = 128, 49%), but pOS was similar. Unstable karyotypes with both gain and loss of aberrations were associated with inferior outcome. Early treatment response, time to relapse, and cytogenetic profile at time of relapse were the most important prognostic factors, both outweighing karytoypic instability per se. CONCLUSION The cytogenetic subgroup at relapse is an independent risk factor for (event-free) survival. Cytogenetic assessment at the time of relapse is of high importance and may contribute to improved risk-adapted treatment for children with relapsed AML.
Collapse
Affiliation(s)
- Kim Klein
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Zimmermann
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Susana C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christine von Neuhoff
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Valérie de Haas
- Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Romy van Weelderen
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jacqueline Cloos
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Yves Bertrand
- Children's Leukemia Cooperative Group/European Organisation for Research and Treatment of Cancer, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Alcira Fynn
- Grupo Argentino de Tratamiento de la Leucemia Aguda, Children's Hospital La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Gibson
- Department of Paediatric Haematology, United Kingdom Childhood Leukaemia Study Group, Royal Hospital for Children, Glasgow, UK
| | - Shau-Yin Ha
- Department of Pediatrics/Pediatric oncology, Hong Kong Children's Hospital, Hong Kong, China
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sarah Elitzur
- Schneider Children's Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Leverger
- Hematopathology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Alexei Maschan
- Oncology and Immunology, Dmitriy Rogachev Federal Center for Pediatric Hematology, Moscow, Russia
| | - Bassem Razzouk
- Children's Center for Cancer and Blood Diseases, Peyton Manning Children's Hospital at St. Vincent, Indianapolis, Indiana, USA
| | - Dirk Reinhardt
- Department of Pediatric Hematology-Oncology, University Hospital Essen, Essen, Germany
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, S. Gerardo Hospital, Monza, Italy
| | - Pter Smisek
- Department of Pediatric Hematology and Oncology, Carles University in Prague/Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ursula Creutzig
- Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Gertjan J L Kaspers
- Pediatric Oncology, Cancer Center Amsterdam, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Clinical laboratory, Dutch Childhood Oncology Group, The Hague, The Netherlands.,Department of Pediatric Hematology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
23
|
Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Cancers (Basel) 2021; 13:6161. [PMID: 34944778 PMCID: PMC8699059 DOI: 10.3390/cancers13246161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023] Open
Abstract
Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Thomas B. Alexander
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel A. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Hannah V. Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Chidiebere Awah
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel A. Weiser
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| |
Collapse
|
24
|
Fornerod M, Ma J, Noort S, Liu Y, Walsh MP, Shi L, Nance S, Liu Y, Wang Y, Song G, Lamprecht T, Easton J, Mulder HL, Yergeau D, Myers J, Kamens JL, Obeng EA, Pigazzi M, Jarosova M, Kelaidi C, Polychronopoulou S, Lamba JK, Baker SD, Rubnitz JE, Reinhardt D, van den Heuvel-Eibrink MM, Locatelli F, Hasle H, Klco JM, Downing JR, Zhang J, Pounds S, Zwaan CM, Gruber TA. Integrative Genomic Analysis of Pediatric Myeloid-Related Acute Leukemias Identifies Novel Subtypes and Prognostic Indicators. Blood Cancer Discov 2021; 2:586-599. [PMID: 34778799 PMCID: PMC8580615 DOI: 10.1158/2643-3230.bcd-21-0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Integrating somatic mutation analysis and gene expression profiling distinguishes pediatric AML subtypes with differential prognoses and clinical risks. Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell–like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification.
Collapse
Affiliation(s)
- Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanne Noort
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Wang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martina Pigazzi
- Department of Women's and Children's Health, Hematology Oncology Clinic and Lab, University of Padova, IRP, Padova, Italy.,Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology Center of Molecular Biology and Gene Therapy, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Sharyn D Baker
- Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dirk Reinhardt
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Marry M van den Heuvel-Eibrink
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University, Aarhus, Denmark
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - C Michel Zwaan
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
26
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
27
|
Abstract
The genetic basis for pediatric acute myeloid leukemia (AML) is highly heterogeneous, often involving the cooperative action of characteristic chromosomal rearrangements and somatic mutations in progrowth and antidifferentiation pathways that drive oncogenesis. Although some driver mutations are shared with adult AML, many genetic lesions are unique to pediatric patients, and their appropriate identification is essential for patient care. The increased understanding of these malignancies through broad genomic studies has begun to risk-stratify patients based on their combinations of genomic alterations, a trend that will enable precision medicine in this population.
Collapse
Affiliation(s)
- Bryan Krock
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ, USA
| | | |
Collapse
|
28
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
29
|
Fang H, Yabe M, Zhang X, Kim Y, Wu X, Wei P, Chi S, Zheng L, Garcia-Manero G, Shao L, Yuan J, Shen Y, Zheng G, Tang G, Wang W, Loghavi S, Shen Q, Yuan Y, He R, Chen D, Medeiros LJ, Hu S. Myelodysplastic syndrome with t(6;9)(p22;q34.1)/DEK-NUP214 better classified as acute myeloid leukemia? A multicenter study of 107 cases. Mod Pathol 2021; 34:1143-1152. [PMID: 33558656 DOI: 10.1038/s41379-021-00741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/09/2022]
Abstract
t(6;9)(p22;q34.1)/DEK-NUP214 is a recurrent genetic abnormality that occurs in 1-2% of patients with acute myeloid leukemia (AML), and rarely in myelodysplastic syndrome (MDS). It has been suggested by others that all myeloid neoplasms with t(6;9)/DEK-NUP214 may be considered as AML, even when blast count is <20%. In this study, we compared the clinicopathologic features of 107 patients with myeloid neoplasms harboring t(6;9)/DEK-NUP214: 33 MDS and 74 AML. Compared with patients with AML, patients with MDS were older (p = 0.10), had a lower white blood cell count (p = 0.0017), a lower blast count in the peripheral blood (p < 0.0001) and bone marrow (p < 0.0001), a higher platelet count (p = 0.022), and a lower frequency of FLT3-ITD mutation (p = 0.01). In addition, basophilia was not a common feature in the patients of this cohort. Although there was no difference in overall survival between MDS and AML patients (p = 0.18) in the entire cohort, the survival curves did show a trend toward favorable survival in MDS patients. Multivariate analyses showed that initial diagnosis of MDS vs. AML and allogeneic hematopoietic stem cell transplantation were prognostic factors for survival of patients with t(6;9)/DEK-NUP214 (p = 0.008 and p < 0.0001, respectively). Our data suggest that MDS with t(6;9)/DEK-NUP214 is prognostically not equivalent to AML with t(6;9)/DEK-NUP214. These data also show that stem cell transplantation greatly improves the survival of MDS and AML patients with myeloid neoplasms associated with t(6;9)/DEK-NUP214.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Child
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- Female
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Nuclear Pore Complex Proteins/genetics
- Oncogene Fusion
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion
- Poly-ADP-Ribose Binding Proteins/genetics
- Translocation, Genetic
- Young Adult
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariko Yabe
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Young Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiaojun Wu
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunyi Chi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative Sciences Program, The University of Texas MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lan Zheng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lina Shao
- Department of Pathology, The University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ji Yuan
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yulei Shen
- Department of Pathology, The University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Gang Zheng
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Guiling Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Shen
- Department of Pathology, Advent Health-Orlando, Orlando, FL, USA
| | - Yongzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dong Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers (Basel) 2021; 13:cancers13091995. [PMID: 33919131 PMCID: PMC8122278 DOI: 10.3390/cancers13091995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Despite improvements in therapeutic protocols and in risk stratification, acute myeloid leukemia (AML) remains the leading cause of childhood leukemic mortality. Indeed, the overall survival accounts for ~70% but still ~30% of pediatric patients experience relapse, with poor response to conventional chemotherapy. Thus, there is an urgent need to improve diagnosis and treatment efficacy prediction in the context of this disease. Nowadays, in the era of high throughput techniques, AML has emerged as an extremely heterogeneous disease from a genetic point of view. Different subclones characterized by specific molecular profiles display different degrees of susceptibility to conventional treatments. In this review, we describe in detail this genetic heterogeneity of pediatric AML and how it is linked to relapse in terms of clonal evolution. We highlight some innovative tools to characterize minor subclones that could help to enhance diagnosis and a preclinical model suitable for drugs screening. The final ambition of research is represented by targeted therapy, which could improve the prognosis of pediatric AML patients, as well as to limit the side toxicity of current treatments.
Collapse
|
31
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
33
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Masetti R, Bertuccio SN, Guidi V, Cerasi S, Lonetti A, Pession A. Uncommon cytogenetic abnormalities identifying high-risk acute myeloid leukemia in children. Future Oncol 2020; 16:2747-2762. [DOI: 10.2217/fon-2020-0505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents an aggressive disease and is the leading cause of childhood leukemic mortality. The genomic landscape of pediatric AML has been recently mapped and redefined thanks to large-scale sequencing efforts. Today, understanding how to incorporate the growing list of genetic lesions into a risk stratification algorithm for pediatric AML is increasingly challenging given the uncertainty regarding the prognostic impact of rare lesions. Here we review some uncommon cytogenetic lesions to be considered for inclusion in the high-risk groups of the next pediatric AML treatment protocols. We describe their main clinical characteristics, biological background and outcome. We also provide some suggestions for the management of these rare but challenging patients and some novel targeted therapeutic options.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Vanessa Guidi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Sara Cerasi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
35
|
Mendes A, Jühlen R, Martinelli V, Fahrenkrog B. Targeted CRM1-inhibition perturbs leukemogenic NUP214 fusion proteins and exerts anti-cancer effects in leukemia cell lines with NUP214 rearrangements. Oncotarget 2020; 11:3371-3386. [PMID: 32934780 PMCID: PMC7486696 DOI: 10.18632/oncotarget.27711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/01/2020] [Indexed: 11/25/2022] Open
Abstract
Chromosomal translocations fusing the locus of nucleoporin NUP214 each with the proto-oncogenes SET and DEK are recurrent in, largely intractable, acute leukemias. The molecular basis underlying the pathogenesis of SET-NUP214 and DEK-NUP214 are still poorly understood, but both chimeras inhibit protein nuclear export mediated by the β-karyopherin CRM1. In this report, we show that SET-NUP214 and DEK-NUP214 both disturb the localization of proteins essential for nucleocytoplasmic transport, in particular for CRM1-mediated protein export. Endogenous and exogenous SET-NUP214 and DEK-NUP214 form nuclear bodies. These nuclear bodies disperse upon targeted inhibition of CRM1 and the two fusion proteins re-localize throughout the nucleoplasm. Moreover, SET-NUP214 and DEK-NUP214 nuclear bodies reestablish shortly after removal of CRM1 inhibitors. Likewise, cell viability, metabolism, and proliferation of leukemia cell lines harboring SET-NUP214 and DEK-NUP214 are compromised by CRM1 inhibition, which is even sustained after clearance from CRM1 antagonists. Our results indicate CRM1 as a possible therapeutic target in NUP214-related leukemia. This is especially important, since no specific or targeted treatment options for NUP214 driven leukemia are available yet.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium.,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen 52074, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| |
Collapse
|
36
|
Díaz-Beyá M, Labopin M, Maertens J, Aljurf M, Passweg J, Dietrich B, Schouten H, Socié G, Schaap N, Schwerdtfeger R, Volin L, Michallet M, Polge E, Sierra J, Mohty M, Esteve J, Nagler A. Allogeneic stem cell transplantation in AML with t(6;9)(p23;q34);DEK-NUP214 shows a favourable outcome when performed in first complete remission. Br J Haematol 2020; 189:920-925. [PMID: 32020596 DOI: 10.1111/bjh.16433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is a poor-risk entity, commonly associated with FLT3-ITD (internal tandem duplication). Allogeneic stem-cell tranplantation (allo-SCT) is recommended, although studies analysing the outcome of allo-SCT in this setting are lacking. We selected 195 patients with t(6;9) AML, who received a first allo-SCT between 2000 and 2016 from the EBMT (European Society for Blood and Marrow Transplantation) registry. Disease status at time of allo-SCT was the strongest independent prognostic factor, with a two-year leukaemia-free survival and relapse incidence of 57% and 19% in patients in CR1 (first complete remission), 34% and 33% in CR2 (second complete remission), and 24% and 49% in patients not in remission, respectively (P < 0·001). This study, which represents the largest one available in t(6;9) AML, supports the recommendation to submit these patients to allo-SCT in CR1.
Collapse
MESH Headings
- Adult
- Allografts
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 6/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- Cord Blood Stem Cell Transplantation
- Disease-Free Survival
- Female
- Gene Duplication
- Graft vs Host Disease/etiology
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Peripheral Blood Stem Cell Transplantation
- Poly-ADP-Ribose Binding Proteins/genetics
- Proportional Hazards Models
- Remission Induction
- Translocation, Genetic
- Treatment Outcome
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Marina Díaz-Beyá
- Hematology Department, Hospital Clínic of Barcelona, Barcelona, Spain
- IDIBAPS, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Myriam Labopin
- EBMT Paris Study Office, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
| | | | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Centre Oncology, Riyadh, Saudi Arabia
| | | | - Beelen Dietrich
- Department of Bone Marrow Transplantation, University Hospital, Essen, Germany
| | - Harry Schouten
- Department of Internal Medicine, Hematology/Oncology, University Hospital, Maastricht, The Netherlands
| | - Gerard Socié
- Division of Hematology, Hospital Saint Louis & University Paris, Paris, France
| | | | - Rainer Schwerdtfeger
- Center for Hematopoietic Cell Transplantation, Deutsche Klinik für Diagnostik Helios Klinik, Wiesbaden, Germany
| | - Liisa Volin
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Emmanuelle Polge
- EBMT Paris Study Office, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
| | - Jorge Sierra
- Hematology Department, Hospital de la Santa Creu i Sant Pau, IIB-Santpau and Josep Carreras Leukemia Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Mohamad Mohty
- EBMT Paris Study Office, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
- Department of Hematology, Hospital Saint Antoine, Paris, France
| | - Jordi Esteve
- Hematology Department, Hospital Clínic of Barcelona, Barcelona, Spain
- IDIBAPS, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
| | - Arnon Nagler
- EBMT Paris Study Office, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Despite advances in therapy over the past decades, overall survival for children with acute myeloid leukemia (AML) has not exceeded 70%. In this review, we highlight recent insights into risk stratification for patients with pediatric AML and discuss data driving current and developing therapeutic approaches. RECENT FINDINGS Advances in cytogenetics and molecular profiling, as well as improvements in detection of minimal residual disease after induction therapy, have informed risk stratification, which now relies heavily on these elements. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. However, recent trials focus on limiting treatment-related toxicity through the identification of low-risk subsets who can safely receive fewer cycles of chemotherapy, allocation of hematopoietic stem-cell transplant to only high-risk patients and optimization of infectious and cardioprotective supportive care. SUMMARY Further incorporation of genomic and molecular data in pediatric AML will allow for additional refinements in risk stratification to enable the tailoring of treatment intensity. These data will also dictate the incorporation of molecularly targeted therapeutics into frontline treatment in the hope of improving survival while decreasing treatment-related toxicity.
Collapse
|
38
|
Kayser S, Hills RK, Luskin MR, Brunner AM, Terré C, Westermann J, Menghrajani K, Shaw C, Baer MR, Elliott MA, Perl AE, Ráčil Z, Mayer J, Zak P, Szotkowski T, de Botton S, Grimwade D, Mayer K, Walter RB, Krämer A, Burnett AK, Ho AD, Platzbecker U, Thiede C, Ehninger G, Stone RM, Röllig C, Tallman MS, Estey EH, Müller-Tidow C, Russell NH, Schlenk RF, Levis MJ. Allogeneic hematopoietic cell transplantation improves outcome of adults with t(6;9) acute myeloid leukemia: results from an international collaborative study. Haematologica 2020; 105:161-169. [PMID: 31004014 PMCID: PMC6939530 DOI: 10.3324/haematol.2018.208678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) with t(6;9)(p22;q34) is a distinct entity accounting for 1-2% of AML cases. A substantial proportion of these patients have a concomitant FLT3-ITD. While outcomes are dismal with intensive chemotherapy, limited evidence suggests allogeneic hematopoietic cell transplantation (allo-HCT) may improve survival if performed early during first complete remission. We report on a cohort of 178 patients with t(6;9)(p22;q34) within an international, multicenter collaboration. Median age was 46 years (range: 16-76), AML was de novo in 88%, FLT3-ITD was present in 62%, and additional cytogenetic abnormalities in 21%. Complete remission was achieved in 81% (n=144), including 14 patients who received high-dose cytarabine after initial induction failure. With a median follow up of 5.43 years, estimated overall survival at five years was 38% (95%CI: 31-47%). Allo-HCT was performed in 117 (66%) patients, including 89 in first complete remission. Allo-HCT in first complete remission was associated with higher 5-year relapse-free and overall survival as compared to consolidation chemotherapy: 45% (95%CI: 35-59%) and 53% (95%CI: 42-66%) versus 7% (95%CI: 3-19%) and 23% (95%CI: 13-38%), respectively. For patients undergoing allo-HCT, there was no difference in overall survival rates at five years according to whether it was performed in first [53% (95%CI: 42-66%)], or second [58% (95%CI: 31-100%); n=10] complete remission or with active disease/relapse [54% (95%CI: 34-84%); n=18] (P=0.67). Neither FLT3-ITD nor additional chromosomal abnormalities impacted survival. In conclusion, outcomes of t(6;9)(p22;q34) AML are poor with chemotherapy, and can be substantially improved with allo-HCT.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Christine Terré
- Laboratory of Hematology, André Mignot Hospital, Le Chesnay, France
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité-University Medical Center, Campus Virchow Clinic, Berlin, Germany
| | - Kamal Menghrajani
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Carole Shaw
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle A Elliott
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexander E Perl
- Division of Hematology and Oncology, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zdeněk Ráčil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Pavel Zak
- 4 Department of Internal Medicine-Hematology, Faculty of Medicine, Charles University and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Tomas Szotkowski
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | | | - David Grimwade
- Department of Medical & Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Karin Mayer
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alwin Krämer
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Anthony D Ho
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Richard F Schlenk
- NCT Trial Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
39
|
Lamble AJ, Tasian SK. Opportunities for immunotherapy in childhood acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:218-225. [PMID: 31808843 PMCID: PMC6913480 DOI: 10.1182/hematology.2019000357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical outcomes for children with acute myeloid leukemia (AML) have improved minimally during the past 4 decades despite maximally intensive chemotherapy, hematopoietic stem cell transplantation, and optimized supportive care. Chemoresistance and relapse remain major sources of childhood cancer-associated mortality and highlight the need for alternative treatment approaches. The remarkable recent success of humoral and cellular immunotherapies in children and adults with relapsed/refractory B-acute lymphoblastic leukemia has inspired hope for similar accomplishments in patients with AML. However, unique challenges exist, including the biologic and immunophenotypic heterogeneity of childhood AML and the significant potential for on-target/off-tumor immunotherapeutic toxicity due to target antigen expression on nonmalignant cells. This article reviews the current landscape of antibody-based and cellular immunotherapies under current clinical evaluation with an emphasis on active or soon-to-open phase 1 trials for children with relapsed/refractory AML.
Collapse
Affiliation(s)
- Adam J Lamble
- Division of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA
- University of Washington School of Medicine, Seattle, WA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
40
|
Lamble AJ, Tasian SK. Opportunities for immunotherapy in childhood acute myeloid leukemia. Blood Adv 2019; 3:3750-3758. [PMID: 31770440 PMCID: PMC6880897 DOI: 10.1182/bloodadvances.2019000357] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
Clinical outcomes for children with acute myeloid leukemia (AML) have improved minimally during the past 4 decades despite maximally intensive chemotherapy, hematopoietic stem cell transplantation, and optimized supportive care. Chemoresistance and relapse remain major sources of childhood cancer-associated mortality and highlight the need for alternative treatment approaches. The remarkable recent success of humoral and cellular immunotherapies in children and adults with relapsed/refractory B-acute lymphoblastic leukemia has inspired hope for similar accomplishments in patients with AML. However, unique challenges exist, including the biologic and immunophenotypic heterogeneity of childhood AML and the significant potential for on-target/off-tumor immunotherapeutic toxicity due to target antigen expression on nonmalignant cells. This article reviews the current landscape of antibody-based and cellular immunotherapies under current clinical evaluation with an emphasis on active or soon-to-open phase 1 trials for children with relapsed/refractory AML.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Cell Cycle Checkpoints/drug effects
- Child
- Child, Preschool
- Disease Susceptibility
- Drug Resistance, Neoplasm/genetics
- Female
- Genetic Predisposition to Disease
- Genetic Testing
- Humans
- Immunomodulation/drug effects
- Infant
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/mortality
- Male
- Molecular Targeted Therapy/adverse effects
- Molecular Targeted Therapy/methods
- Recurrence
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Adam J Lamble
- Division of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA
- University of Washington School of Medicine, Seattle, WA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
41
|
Mendes A, Fahrenkrog B. NUP214 in Leukemia: It's More than Transport. Cells 2019; 8:cells8010076. [PMID: 30669574 PMCID: PMC6356203 DOI: 10.3390/cells8010076] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
42
|
Kayser S, Levis MJ. Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol 2018; 102:20-35. [PMID: 30203623 DOI: 10.1111/ejh.13172] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The recently updated World Health Organization (WHO) Classification of myeloid neoplasms and leukemia reflects the fact that research in the underlying pathogenic mechanisms of acute myeloid leukemia (AML) has led to remarkable advances in our understanding of the disease. Gene mutations now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, particularly the large subset of cytogenetically normal AML. Despite the progress in unraveling the tumor genome, only a small number of recurrent mutations have been incorporated into risk-stratification schemes and have been proven to be clinically relevant, targetable lesions. We here discuss the utility of molecular markers in AML in prognostication and treatment decision making, specifically highlighting the aberrations included in the current WHO classification.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
43
|
Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 2018; 132:1584-1592. [PMID: 30150206 DOI: 10.1182/blood-2018-05-849059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16;21), international collaboration is required. Two different types of t(16;21) translocations can be distinguished: t(16;21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16;21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16;21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Münster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 × 109/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk.
Collapse
|
44
|
Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, Wiseman DH, Duy C, Melnick A, Willekens C, Ortega A, Martinell M, Valls N, Kurz G, Fyfe M, Castro-Palomino JC, Buesa C. ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer Cell 2018; 33:495-511.e12. [PMID: 29502954 DOI: 10.1016/j.ccell.2018.02.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain.
| | - Cristina Mascaró
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Iñigo Tirapu
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Angels Estiarte
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Filippo Ciceri
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Serena Lunardi
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nathalie Guibourt
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Alvaro Perdones
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Michele M P Lufino
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Dan H Wiseman
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Christophe Willekens
- Drug Development Department (DITEP) and Hematology Department, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Alberto Ortega
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Marc Martinell
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nuria Valls
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Guido Kurz
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | | | - Carlos Buesa
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
45
|
Klein K, de Haas V, Kaspers GJL. Clinical challenges in de novo pediatric acute myeloid leukemia. Expert Rev Anticancer Ther 2018; 18:277-293. [DOI: 10.1080/14737140.2018.1428091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kim Klein
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Valérie de Haas
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
46
|
Panagopoulos I, Gorunova L, Torkildsen S, Tjønnfjord GE, Micci F, Heim S. DEK-NUP214-Fusion Identified by RNA-Sequencing of an Acute Myeloid Leukemia with t(9;12)(q34;q15). Cancer Genomics Proteomics 2017; 14:437-443. [PMID: 29109093 PMCID: PMC6070322 DOI: 10.21873/cgp.20053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Given the diagnostic, prognostic, biologic, and even therapeutic impact of leukemia-associated translocations and fusion genes, it is important to detect cryptic genomic rearrangements that may exist in hematological malignancies. CASE REPORT RNA-sequencing was performed on an acute myeloid leukemia case with the bone marrow karyotype 45,X,-Y,t(9;12) (q34;q15)[16]. RESULTS The DEK-NUP214 and PRRC2B-DEK fusion genes were found. Reverse transcriptase polymerase chain reaction together with direct sequencing verified the presence of both. Fluorescence in situ hybridization showed that the DEK-NUP214 fusion gene was located on the 6p22 band of a seemingly normal chromosome 6. CONCLUSION RNA-sequencing proved to be a valuable tool for the detection of a fusion of genes DEK and NUP214 in a leukemia that showed cryptic cytogenetic rearrangement of chromosome band 9q34.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Synne Torkildsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Hao Q, Zhang Q, Li C, Wei S, Li Q, Song Y, Mi Y. A novel variant translocation (1;9)(p22;q34) resulting in a DEK/NUP214 fusion gene in a patient with acute myeloid leukemia: A case report. Oncol Lett 2017; 14:7021-7024. [PMID: 29344131 PMCID: PMC5754883 DOI: 10.3892/ol.2017.7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
The present case report describes a 46-year-old female patient diagnosed with M4 acute myeloid leukemia (AML), accompanied with a t(1;9)(p22;q34) chromosomal abnormality. Transcriptome sequencing identified a DEK proto-oncogene (DEK)/nucleoporin (NUP)214 fusion gene, which results from the t(6;9)(p23;q34) chromosomal translocation. Polymerase chain reaction analysis and fluorescence in situ hybridization were used to verify the existence of the DEK/NUP214 fusion gene. Few patients with AML with the t(6;9)(p23;q34) chromosomal translocation have been reported to have other chromosomal or karyotype changes. To our knowledge, no AML patient with the DEK/NUP214fusion gene but without the classic t(6;9)(p23;q34) translocations had been reported until now. The prognosis of AML cases with the DEK/NUP214 fusion gene is poor. The rate of complete remission is ~65% (71% in children, 58% in adult patients), while the estimated 5-year survival rate is 28% for children and 9% for adults. The 2008 revision of World Health Organization classification have defined the DEK/NUP214 mutation as a recurrent genetic abnormality of AML. The overall survival of the patient in the current report was ~29 months, and they relapsed twice. To the best of our knowledge, this is the first report of at(1;9)(p22;q34) variant translocation that results in expression of the DEK/NUP214 fusion gene.
Collapse
Affiliation(s)
- Qishan Hao
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Qi Zhang
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Chengwen Li
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Shuning Wei
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Qinghua Li
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Yang Song
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Yingchang Mi
- Department of Leukemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| |
Collapse
|
48
|
The functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol 2017; 68:2-9. [DOI: 10.1016/j.semcdb.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
|
49
|
Visconte V, Shetty S, Przychodzen B, Hirsch C, Bodo J, Maciejewski JP, Hsi ED, Rogers HJ. Clinicopathologic and molecular characterization of myeloid neoplasms with isolated t(6;9)(p23;q34). Int J Lab Hematol 2017; 39:409-417. [PMID: 28318095 DOI: 10.1111/ijlh.12641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The t(6;9)(p23;q34);DEK-NUP214 [t(6;9)] abnormality is found in 0.7-1.8% of patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). FLT3-ITD mutations are detected in t(6;9) patients. The t(6;9) abnormality is associated with poor outcomes. We studied the clinicopathologic and molecular profiles of patients with AML/MDS carrying t(6;9). METHODS We collected clinical data of nine patients with AML/MDS with isolated t(6;9) (median age = 41 years; male/female = 4/5) and genotyped DNAs using whole exome, Sanger, and targeted sequencing. RESULTS Our cohort was characterized by frequent multilineage dysplasia (56%), absence of phospho-STAT3/STAT5 expression, presence of myeloid markers (CD13, CD33, CD34, CD117, HLA-DR) with an aberrant expression of CD7, and poor outcome (median survival of 20 months). Although basophilia has been described in association with t(6;9), we observed lack of marrow basophilia in our cohort. Molecularly, 83% (5/6) of patients with AML/MDS with t(6;9) were characterized by at least one somatic mutation. Among them, four patients showed multiple mutations. FLT3-ITD mutations were detected in 33% of patients (2/6); 80% (4/5) of mutant patients died even after hematopoietic stem cell transplantation. CONCLUSION Our data demonstrated that AML/MDS patients with t(6;9) have diverse molecular mutations regardless of the presence of FLT3 mutations, which may contribute to their poor survival outcomes.
Collapse
Affiliation(s)
- V Visconte
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - S Shetty
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - B Przychodzen
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - C Hirsch
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - J Bodo
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - H J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
50
|
Abstract
The outcome for children with acute myeloid leukemia (AML) has improved significantly over the past 30 years, with complete remission and overall survival rates exceeding 90 and 60%, respectively, in recent clinical trials. However, these improvements have not been achieved by the introduction of new agents. Instead, intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy have all contributed to this success. Nevertheless, novel therapies are needed, as the cure rates for many subtypes of childhood AML remain unacceptably low. Here, we briefly review advances in our understanding of the biology and genetics of AML, the results of recent clinical trials, and current recommendations for the treatment of children with AML.
Collapse
Affiliation(s)
- Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA. .,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA.
| |
Collapse
|