1
|
Chukwuemeka CG, Ndubueze CW, Kolawole AV, Joseph JN, Oladipo IH, Ofoezie EF, Annor-Yeboah SA, Bello ARE, Ganiyu SO. In vitro erythropoiesis: the emerging potential of induced pluripotent stem cells (iPSCs). BLOOD SCIENCE 2025; 7:e00215. [PMID: 39726795 PMCID: PMC11671056 DOI: 10.1097/bs9.0000000000000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Due to global blood shortages and restricted donor blood storage, the focus has switched to the in vitro synthesis of red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) as a potential solution. Many processes are required to synthesize RBCs from iPSCs, including the production of iPSCs from human or animal cells, differentiation of iPSCs into hematopoietic stem cells, culturing, and maturation of the hematopoietic stem cells (HSC) to make functional erythrocytes. Previous investigations on the in vitro production of erythrocytes have shown conflicting results. Some studies have demonstrated substantial yields of functional erythrocytes, whereas others have observed low yields of enucleated cells. Before large-scale in vitro RBC production can be achieved, several challenges which have limited its application in the clinic must be overcome. These issues include optimizing differentiation techniques to manufacture vast amounts of functional RBCs, upscaling the manufacturing process, cost-effectiveness, and assuring the production of RBCs with good manufacturing practices (GMP) before they can be used for therapeutic purposes.
Collapse
Affiliation(s)
| | - Chizaram W. Ndubueze
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Adeola V. Kolawole
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Joshua N. Joseph
- College of Science, University of Massey, Tennent Drive, Massey University, Palmerston North 4410, New Zealand
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre Tennent Drive, Fitzherbert Palmerston North 4410, New Zealand
| | - Ifeoluwa H. Oladipo
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Ezichi F. Ofoezie
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | | | - Abdur-Rahman Eneye Bello
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
- Department of Biochemistry, Confluence University of Science and Technology, Osara, Kogi State, Nigeria
| | - Sodiq O. Ganiyu
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| |
Collapse
|
2
|
Kronstein-Wiedemann R, Thiel J, Sürün D, Teichert M, Künzel SR, Zimmermann S, Wagenführ L, Buchholz F, Tonn T. Characterization of immortalized bone marrow erythroid progenitor adult (imBMEP-A)-The first inducible immortalized red blood cell progenitor cell line derived from bone marrow CD71-positive cells. Cytotherapy 2024; 26:1362-1373. [PMID: 39001769 DOI: 10.1016/j.jcyt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AIMS Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Duran Sürün
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Frank Buchholz
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.
| |
Collapse
|
3
|
Wang X, Cui T, Yan H, Zhao L, Zang R, Li H, Wang H, Zhang B, Zhou J, Liu Y, Yue W, Xi J, Pei X. Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression. Heliyon 2024; 10:e37463. [PMID: 39309892 PMCID: PMC11415673 DOI: 10.1016/j.heliyon.2024.e37463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However, we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis, particularly in the late stage, where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus, we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge, the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this, we generated inducible TRIB3 overexpression hESCs, named TRIB3tet-on OE H9, based on a Tet-On system. Then, we analyzed hemoglobin expression, condensed chromosomes, organelle clearance, and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry, enhanced hemoglobin and related protein expression in Western blot, decreased nuclear area size, promoted enucleation rate, decreased lysosome and mitochondria number, more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 μg/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore, our study delineates the role of TRIB3 in terminal erythropoiesis, and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Lingping Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Ruge Zang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Hongyu Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Haiyang Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Biao Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Junnian Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yiming Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Wen Yue
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jiafei Xi
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xuetao Pei
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| |
Collapse
|
4
|
Volke L, Daya NM, Döring K, Rohm M, Athamneh M, Zaehres H, Roos A, Güttsches AK, Mavrommatis L, Vorgerd M. Generation of two induced pluripotent stem cell lines (HIMRi006-A and HIMRi007-A) from Pompe patients with infantile and late disease onset. Stem Cell Res 2024; 79:103459. [PMID: 38896971 DOI: 10.1016/j.scr.2024.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Here we present the generation of HIMRi006-A and HIMRi007-A Pompe disease (PD) patient derived human induced pluripotent stem cell (hiPSC) lines. HIMRi006-A represents an infantile onset disease (IOPD) phenotype caused by a homozygous c.307 T > G mutation in the GAA gene. HIMRi007-A is characterized by heterozygous mutations c.-32-13 T > G/c.1716C > G and is associated with an adult onset of disease symptoms (LOPD). Both lines are generated via lentiviral expression of OCT4, SOX2, KLF4, and c-MYC. The lines display a typical embryonic stem cell morphology, express pluripotency markers, retain a normal karyotype (46, XX/XY) and have the differentiation capacity in all three germ layers. Altogether, both lines provide a resource tool to the community for future in depth molecular studies of PD pathomechanism.
Collapse
Affiliation(s)
- L Volke
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - N M Daya
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - K Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Athamneh
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - H Zaehres
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - A Roos
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - A K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - L Mavrommatis
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
5
|
Catelli LF, Mendes da Costa PN, Rós FA, Rodrigues ES, Ursoli FF, Santos FLS, Dorigan M, de Castilho LM, Covas DT, Kashima S. Highly Defined Induced Pluripotent Stem Cell Lines Mimic Donor Red Blood Cell Antigen Profiles for Therapeutic and Diagnostic Use. Cell Reprogram 2024; 26:107-115. [PMID: 38917437 DOI: 10.1089/cell.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Our group generated two induced pluripotent stem cell (iPSC) lines for in vitro red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated in vitro and in vivo iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.
Collapse
Affiliation(s)
- Lucas Ferioli Catelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Péricles Natan Mendes da Costa
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Felipe Augusto Rós
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Evandra Strazza Rodrigues
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Ferreira Ursoli
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Flávia Leite Souza Santos
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Mayra Dorigan
- Laboratory of Molecular Immunohematology - Blood Center of Unicamp, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Lílian Maria de Castilho
- Laboratory of Molecular Immunohematology - Blood Center of Unicamp, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Simone Kashima
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
6
|
Ju H, Sohn Y, Nam Y, Rim YA. Progresses in overcoming the limitations of in vitro erythropoiesis using human induced pluripotent stem cells. Stem Cell Res Ther 2024; 15:142. [PMID: 38750578 PMCID: PMC11094930 DOI: 10.1186/s13287-024-03754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.
Collapse
Affiliation(s)
- Hyeonwoo Ju
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Yeri Alice Rim
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
7
|
Kindler U, Zaehres H, Mavrommatis L. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells. Bio Protoc 2024; 14:e4984. [PMID: 38737507 PMCID: PMC11082787 DOI: 10.21769/bioprotoc.4984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Various protocols have been proven effective in the directed differentiation of mouse and human pluripotent stem cells into skeletal muscles and used to study myogenesis. Current 2D myogenic differentiation protocols can mimic muscle development and its alteration under pathological conditions such as muscular dystrophies. 3D skeletal muscle differentiation approaches can, in addition, model the interaction between the various cell types within the developing organoid. Our protocol ensures the differentiation of human embryonic/induced pluripotent stem cells (hESC/hiPSC) into skeletal muscle organoids (SMO) via cells with paraxial mesoderm and neuromesodermal progenitors' identity and further production of organized structures of the neural plate margin and the dermomyotome. Continuous culturing omits neural lineage differentiation and promotes fetal myogenesis, including the maturation of fibroadipogenic progenitors and PAX7-positive myogenic progenitors. The PAX7 progenitors resemble the late fetal stages of human development and, based on single-cell transcriptomic profiling, cluster close to adult satellite cells of primary muscles. To overcome the limited availability of muscle biopsies from patients with muscular dystrophy during disease progression, we propose to use the SMO system, which delivers a stable population of skeletal muscle progenitors from patient-specific iPSCs to investigate human myogenesis in healthy and diseased conditions. Key features • Development of skeletal muscle organoid differentiation from human pluripotent stem cells, which recapitulates myogenesis. • Analysis of early embryonic and fetal myogenesis. • Provision of skeletal muscle progenitors for in vitro and in vivo analysis for up to 14 weeks of organoid culture. • In vitro myogenesis from patient-specific iPSCs allows to overcome the bottleneck of muscle biopsies of patients with pathological conditions.
Collapse
Affiliation(s)
- Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| | - Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
8
|
Gunawardena N, Chou ST. Generation of red blood cells from induced pluripotent stem cells. Curr Opin Hematol 2024; 31:115-121. [PMID: 38362913 PMCID: PMC10959681 DOI: 10.1097/moh.0000000000000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use. RECENT FINDINGS For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes. SUMMARY Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.
Collapse
Affiliation(s)
- Naomi Gunawardena
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine
- Division of Transfusion Medicine, Department of Pathology, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine
| |
Collapse
|
9
|
Daya NM, Döring K, Zhuge H, Volke L, Stab V, Dietz J, Athamneh M, Roos A, Zaehres H, Güttsches AK, Mavrommatis L, Vorgerd M. Generation of two hiPSCs lines of two patients carrying truncating mutations in the dimerization domain of filamin C. Stem Cell Res 2024; 76:103320. [PMID: 38309149 DOI: 10.1016/j.scr.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Here we introduce the human induced pluripotent stem cell lines (hiPSCs), HIMRi004-A and HIMRi005-A from dermal fibroblasts of a 48-year-old female (HIMRi004-A) carrying missense mutation that translate to the first described filamin C isoform p.W2710X and from a 56-year-old female (HIMRi005-A) carrying a recently described mutation in the same domain p.Y2704X. Both lines are generated via lentiviral expression of OCT4, SOX2, KLF4 and c-MYC. The lines display a typical embryonic stem cell-like morphology, express pluripotency markers, retain a normal karyotype (46, XX) and have the differentiation capacity in all three germ layers. The two lines can be used to elucidate the pathomechanisms of FLNC myofibrillar myopathies and to develop novel therapeutic options.
Collapse
Affiliation(s)
- N M Daya
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - K Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - H Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - L Volke
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - V Stab
- Department of Endocrinology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - J Dietz
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Athamneh
- Department of Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - A Roos
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - H Zaehres
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - A K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - L Mavrommatis
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany.
| |
Collapse
|
10
|
Jiang JH, Ren RT, Cheng YJ, Li XX, Zhang GR. Immune cells and RBCs derived from human induced pluripotent stem cells: method, progress, prospective challenges. Front Cell Dev Biol 2024; 11:1327466. [PMID: 38250324 PMCID: PMC10796611 DOI: 10.3389/fcell.2023.1327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.
Collapse
Affiliation(s)
- Jin-he Jiang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Ru-tong Ren
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Yan-jie Cheng
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xin-xin Li
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Gui-rong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
11
|
Mavrommatis L, Jeong HW, Kindler U, Gomez-Giro G, Kienitz MC, Stehling M, Psathaki OE, Zeuschner D, Bixel MG, Han D, Morosan-Puopolo G, Gerovska D, Yang JH, Kim JB, Arauzo-Bravo MJ, Schwamborn JC, Hahn SA, Adams RH, Schöler HR, Vorgerd M, Brand-Saberi B, Zaehres H. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors. eLife 2023; 12:RP87081. [PMID: 37963071 PMCID: PMC10645425 DOI: 10.7554/elife.87081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Sequencing Core FacilityMünsterGermany
| | - Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Marie-Cecile Kienitz
- Ruhr University Bochum, Medical Faculty, Department of Cellular PhysiologyBochumGermany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Flow Cytometry UnitMünsterGermany
| | - Olympia E Psathaki
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Center for Cellular Nanoanalytics Osnabrück, CellNanOs, University of OsnabrückOsnabrückGermany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Electron Microscopy UnitMünsterGermany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
| | - Dong Han
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Gabriela Morosan-Puopolo
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea UniversitySeoulRepublic of Korea
- R&D Research Center, Next & Bio IncSeoulRepublic of Korea
| | - Jeong Beom Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Marcos J Arauzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Stephan A Hahn
- Ruhr University Bochum, Medical Faculty, Department of Molecular GI OncologyBochumGermany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
- Westphalian Wilhelms University Münster, Medical FacultyMünsterGermany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Matthias Vorgerd
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| |
Collapse
|
12
|
Mavrommatis L, Zaben A, Kindler U, Kienitz MC, Dietz J, Jeong HW, Böhme P, Brand-Saberi B, Vorgerd M, Zaehres H. CRISPR/Cas9 Genome Editing in LGMD2A/R1 Patient-Derived Induced Pluripotent Stem and Skeletal Muscle Progenitor Cells. Stem Cells Int 2023; 2023:9246825. [PMID: 38020204 PMCID: PMC10653971 DOI: 10.1155/2023/9246825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 06/08/2023] [Indexed: 12/01/2023] Open
Abstract
Large numbers of Calpain 3 (CAPN3) mutations cause recessive forms of limb-girdle muscular dystrophy (LGMD2A/LGMDR1) with selective atrophy of the proximal limb muscles. We have generated induced pluripotent stem cells (iPSC) from a patient with two mutations in exon 3 and exon 4 at the calpain 3 locus (W130C, 550delA). Two different strategies to rescue these mutations are devised: (i) on the level of LGMD2A-iPSC, we combined CRISPR/Cas9 genome targeting with a FACS and Tet transactivator-based biallelic selection strategy, which resulted in a new functional chimeric exon 3-4 without the two CAPN3 mutations. (ii) On the level of LGMD2A-iPSC-derived CD82+/Pax7+ myogenic progenitor cells, we demonstrate CRISPR/Cas9 mediated rescue of the highly prevalent exon 4 CAPN3 mutation. The first strategy specifically provides isogenic LGMD2A corrected iPSC for disease modelling, and the second strategy can be further elaborated for potential translational approaches.
Collapse
Affiliation(s)
- Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, 44789 Bochum, Germany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, 48149 Münster, Germany
| | - Abdul Zaben
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
| | - Marie-Cécile Kienitz
- Ruhr University Bochum, Medical Faculty, Department of Cellular Physiology, 44801 Bochum, Germany
| | - Julienne Dietz
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, 44789 Bochum, Germany
- Witten/Herdecke University, Institute of Virology and Microbiology, Department of Human Medicine, Faculty of Health, 58453 Witten, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, 48149 Münster, Germany
| | - Pierre Böhme
- Ruhr University Bochum, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
| | - Matthias Vorgerd
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, 48149 Münster, Germany
| |
Collapse
|
13
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
14
|
Kim HK, Cho S, Choi YS, Lee BS, Kim S, Kim HO, Park JH. Human Endometrium Derived Induced Pluripotent Stem Cells Are Amenable to Directed Erythroid Differentiation. Tissue Eng Regen Med 2023; 20:939-950. [PMID: 37452918 PMCID: PMC10519893 DOI: 10.1007/s13770-023-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 05/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND A protocol for using human endometrium derived induced pluripotent stem cells (iPSCs) to derive hematopoietic and erythroid lineages will be elaborated, through a two-phase culture system. METHODS Discarded endometrial tissues were obtained from women receiving hysterectomy in their 4th to 5th decade due to benign uterine conditions. pCE-Sox2, Oct4, Klf4, L-Myc and Lin28 episomal vectors were used to electrotransfect the endometrial stromal cells. The first 8 days involves commitment to hematopoietic stem cells through embryoid body with robust expansion on murine bone marrow stromal cells. The second phase involves feeder free conditions with hydrocortisone, stem cell factor, interleukin-3, and recombinant EPO. After 22 days of feeder free culture, the expression profiles of CD235a+, CD34+, CD43+ and CD 71+ were analyzed by flow cytometry and Wright-Giemsa staining for differential counting. The oxygen carrying capacity of cultured RBCs was measured using a hemoxanalyser. RESULTS As a result of inducing these cells via co-culture with murine stromal fibroblasts, all endometrium derived iPSCs were differentiated into erythroblasts with a stable yield of approximately 80% for polychromatic and orthochromatic normoblasts. The protocol for complete induction of erythroid lineage cells starting from human endometrial tissue via iPS cells has been optimized. CONCLUSION Successful directed erythroid differentiation has occurred from human endometrium-derived iPS cells. A comprehensive process of actually deriving iPS cells using discarded surgical hysterectomy specimens to the erythroid fate has significance in that the scope of using human iPSC cell lines for tissue regeneration could be expanded in the future.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-Daero, Giheung, Yongin, 16995, Gyeonggi-Do, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joo Hyun Park
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-Daero, Giheung, Yongin, 16995, Gyeonggi-Do, Republic of Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Boeing A, Mavrommatis L, Daya NM, Zhuge H, Volke L, Kocabas A, Kneifel M, Athamneh M, Krause K, Südkamp N, Döring K, Theiss C, Roos A, Zaehres H, Güttsches AK, Vorgerd M. Generation of two human iPSC lines (HIMRi002-A and HIMRi003-A) derived from Caveolinopathy patients with rippling muscle disease. Stem Cell Res 2023; 72:103220. [PMID: 37839261 DOI: 10.1016/j.scr.2023.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Here we introduce the human induced pluripotent stem cell lines (hiPSCs), HIMRi002-A and HIMRi003-A, generated from cultured dermal fibroblasts of 61-year-old (HIMRi002-A) and 38-year-old (HIMRi003-A) female patients, carrying a known heterozygous pathogenic variant (p.A46T) in the Caveolin 3 (CAV3) gene, via lentiviral expression of OCT4, SOX2, KLF4 and c-MYC. HIMRi002-A and HIMRi003-A display typical embryonic stem cell-like morphology, carry the p.A46T CAV3 gene mutation, express several pluripotent stem cell markers, retain normal karyotype (46, XX) and can differentiate in all three germ layers. We postulate that the HIMRi002-A and HIMRi003-A iPSC lines can be used for the characterization of CAV3-associated pathomechanisms and for developing new therapeutic options.
Collapse
Affiliation(s)
- A Boeing
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - L Mavrommatis
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - N M Daya
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - H Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - L Volke
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - A Kocabas
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Kneifel
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Athamneh
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - K Krause
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - N Südkamp
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - K Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - C Theiss
- Department of Cytology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - A Roos
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - H Zaehres
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - A K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany.
| |
Collapse
|
16
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
17
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
18
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
19
|
Cho YK, Kim HK, Kwon SS, Jeon SH, Cheong JW, Nam KT, Kim HS, Kim S, Kim HO. In vitro erythrocyte production using human-induced pluripotent stem cells: determining the best hematopoietic stem cell sources. Stem Cell Res Ther 2023; 14:106. [PMID: 37101221 PMCID: PMC10132444 DOI: 10.1186/s13287-023-03305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Blood transfusion is an essential part of medicine. However, many countries have been facing a national blood crisis. To address this ongoing blood shortage issue, there have been efforts to generate red blood cells (RBCs) in vitro, especially from human-induced pluripotent stem cells (hiPSCs). However, the best source of hiPSCs for this purpose is yet to be determined. METHODS In this study, hiPSCs were established from three different hematopoietic stem cell sources-peripheral blood (PB), cord blood (CB) and bone marrow (BM) aspirates (n = 3 for each source)-using episomal reprogramming vectors and differentiated into functional RBCs. Various time-course studies including immunofluorescence assay, quantitative real-time PCR, flow cytometry, karyotyping, morphological analysis, oxygen binding capacity analysis, and RNA sequencing were performed to examine and compare the characteristics of hiPSCs and hiPSC-differentiated erythroid cells. RESULTS hiPSC lines were established from each of the three sources and were found to be pluripotent and have comparable characteristics. All hiPSCs differentiated into erythroid cells, but there were discrepancies in differentiation and maturation efficiencies: CB-derived hiPSCs matured into erythroid cells the fastest while PB-derived hiPSCs required a longer time for maturation but showed the highest degree of reproducibility. BM-derived hiPSCs gave rise to diverse types of cells and exhibited poor differentiation efficiency. Nonetheless, erythroid cells differentiated from all hiPSC lines mainly expressed fetal and/or embryonic hemoglobin, indicating that primitive erythropoiesis occurred. Their oxygen equilibrium curves were all left-shifted. CONCLUSIONS Collectively, both PB- and CB-derived hiPSCs were favorably reliable sources for the clinical production of RBCs in vitro, despite several challenges that need to be overcome. However, owing to the limited availability and the large amount of CB required to produce hiPSCs, and the results of this study, the advantages of using PB-derived hiPSCs for RBC production in vitro may outweigh those of using CB-derived hiPSCs. We believe that our findings will facilitate the selection of optimal hiPSC lines for RBC production in vitro in the near future.
Collapse
Affiliation(s)
- Youn Keong Cho
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hee Jeon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medical Convergence, Gangneung-si, Gangwon-do, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Martins GLS, Nonaka CKV, Rossi EA, de Lima AVR, Adanho CSA, Oliveira MS, Yahouedehou SCMA, de Souza CLEM, Gonçalves MDS, Paredes BD, Souza BSDF. Evaluation of 2D and 3D Erythroid Differentiation Protocols Using Sickle Cell Disease and Healthy Donor Induced Pluripotent Stem Cells. Cells 2023; 12:cells12081121. [PMID: 37190030 DOI: 10.3390/cells12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a highly prevalent genetic disease caused by a point mutation in the HBB gene, which can lead to chronic hemolytic anemia and vaso-occlusive events. Patient-derived induced pluripotent stem cells (iPSCs) hold promise for the development of novel predictive methods for screening drugs with anti-sickling activity. In this study, we evaluated and compared the efficiency of 2D and 3D erythroid differentiation protocols using a healthy control and SCD-iPSCs. METHODS iPSCs were subjected to hematopoietic progenitor cell (HSPC) induction, erythroid progenitor cell induction, and terminal erythroid maturation. Differentiation efficiency was confirmed by flow cytometry analysis, colony-forming unit (CFU) assay, morphological analyses, and qPCR-based gene expression analyses of HBB and HBG2. RESULTS Both 2D and 3D differentiation protocols led to the induction of CD34+/CD43+ HSPCs. The 3D protocol showed good efficiency (>50%) and high productivity (45-fold) for HSPC induction and increased the frequency of BFU-E, CFU-E, CFU-GM, and CFU-GEMM colonies. We also produced CD71+/CD235a+ cells (>65%) with a 630-fold cell expansion relative to that at the beginning of the 3D protocol. After erythroid maturation, we observed 95% CD235a+/DRAQ5- enucleated cells, orthochromatic erythroblasts, and increased expression of fetal HBG2 compared to adult HBB. CONCLUSION A robust 3D protocol for erythroid differentiation was identified using SCD-iPSCs and comparative analyses; however, the maturation step remains challenging and requires further development.
Collapse
Affiliation(s)
- Gabriele Louise Soares Martins
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Adne Vitória Rocha de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Corynne Stephanie Ahouefa Adanho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Moisés Santana Oliveira
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | | | | | | | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| |
Collapse
|
21
|
Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum Cell 2023; 36:894-907. [PMID: 36754940 PMCID: PMC9908308 DOI: 10.1007/s13577-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics such as COVID-19 have prompted us to search for alternative therapeutics to replace this resource. Originally, RBC production was attempted via the ex vivo differentiation of stem cells. However, a more approachable and effective cell source is now required for broader applications. As a viable alternative, pluripotent stem cells have been actively used in recent research. In this review, we discuss the basic concepts related to erythropoiesis, as well as early research using hematopoietic stem cells ex vivo, and discuss the current trend of in vitro erythropoiesis using human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Heeju Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, , Seoul, Republic of Korea ,Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Araúzo-Bravo MJ, Erichsen L, Ott P, Beermann A, Sheikh J, Gerovska D, Thimm C, Bendhack ML, Santourlidis S. Consistent DNA Hypomethylations in Prostate Cancer. Int J Mol Sci 2022; 24:ijms24010386. [PMID: 36613831 PMCID: PMC9820221 DOI: 10.3390/ijms24010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
With approximately 1.4 million men annually diagnosed with prostate cancer (PCa) worldwide, PCa remains a dreaded threat to life and source of devastating morbidity. In recent decades, a significant decrease in age-specific PCa mortality has been achieved by increasing prostate-specific antigen (PSA) screening and improving treatments. Nevertheless, upcoming, augmented recommendations against PSA screening underline an escalating disproportion between the benefit and harm of current diagnosis/prognosis and application of radical treatment standards. Undoubtedly, new potent diagnostic and prognostic tools are urgently needed to alleviate this tensed situation. They should allow a more reliable early assessment of the upcoming threat, in order to enable applying timely adjusted and personalized therapy and monitoring. Here, we present a basic study on an epigenetic screening approach by Methylated DNA Immunoprecipitation (MeDIP). We identified genes associated with hypomethylated CpG islands in three PCa sample cohorts. By adjusting our computational biology analyses to focus on single CpG-enriched 60-nucleotide-long DNA probes, we revealed numerous consistently differential methylated DNA segments in PCa. They were associated among other genes with NOTCH3, CDK2AP1, KLK4, and ADAM15. These can be used for early discrimination, and might contribute to a new epigenetic tumor classification system of PCa. Our analysis shows that we can dissect short, differential methylated CpG-rich DNA fragments and combinations of them that are consistently present in all tumors. We name them tumor cell-specific differential methylated CpG dinucleotide signatures (TUMS).
Collapse
Affiliation(s)
- Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lars Erichsen
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pauline Ott
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Agnes Beermann
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jamal Sheikh
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Chantelle Thimm
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80420-011, Brazil
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
23
|
Lu Z, Xu G, Li Y, Lu C, Shen Y, Zhao B. Discovery of N-arylcinnamamides as novel erythroblast enucleation inducers. Bioorg Chem 2022; 128:106105. [PMID: 36031698 DOI: 10.1016/j.bioorg.2022.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Derivation of mature red blood cells (RBCs) from stem cells in vitro is a promising solution to the current shortage of blood supply, in which terminal enucleation is the rate-limiting step. Here we discovered two cinnamamides B8 and B16 showed potential activities of enhancing the enucleation of erythroblasts through the screening of "in-house" compound library. Subsequently, twenty-four N-arylcinnamamides were rationally designed and synthesized on the basis of the structure of B8 and B16, in which N-(9H-carbazol-2-yl)cinnamamide (KS-2) significantly elevated the percentage of reticulocytes in the cultured mouse fetal liver cells in vitro (relative enucleation = 2.43). The underlying mechanism of KS-2 in promoting mouse erythroid enucleation is accelerating the process of cell cycle exit via p53 activation in late stage erythrocytes. These results strongly suggest that compound KS-2 is worthy of further study as a potential erythrocyte enucleation inducer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanxia Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Bernecker C, Matzhold EM, Kolb D, Avdili A, Rohrhofer L, Lampl A, Trötzmüller M, Singer H, Oldenburg J, Schlenke P, Dorn I. Membrane Properties of Human Induced Pluripotent Stem Cell-Derived Cultured Red Blood Cells. Cells 2022; 11:cells11162473. [PMID: 36010549 PMCID: PMC9406338 DOI: 10.3390/cells11162473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Cultured red blood cells from human induced pluripotent stem cells (cRBC_iPSCs) are a promising source for future concepts in transfusion medicine. Before cRBC_iPSCs will have entrance into clinical or laboratory use, their functional properties and safety have to be carefully validated. Due to the limitations of established culture systems, such studies are still missing. Improved erythropoiesis in a recently established culture system, closer simulating the physiological niche, enabled us to conduct functional characterization of enucleated cRBC_iPSCs with a focus on membrane properties. Morphology and maturation stage of cRBC_iPSCs were closer to native reticulocytes (nRETs) than to native red blood cells (nRBCs). Whereas osmotic resistance of cRBC_iPSCs was similar to nRETs, their deformability was slightly impaired. Since no obvious alterations in membrane morphology, lipid composition, and major membrane associated protein patterns were observed, reduced deformability might be caused by a more primitive nature of cRBC_iPSCs comparable to human embryonic- or fetal liver erythropoiesis. Blood group phenotyping of cRBC_iPSCs further confirmed the potency of cRBC_iPSCs as a prospective device in pre-transfusional routine diagnostics. Therefore, RBC membrane analyses obtained in this study underscore the overall prospects of cRBC_iPSCs for their future application in the field of transfusion medicine.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Eva Maria Matzhold
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Afrim Avdili
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Annika Lampl
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
25
|
Roh J, Kim S, Cheong JW, Jeon SH, Kim HK, Kim MJ, Kim HO. Erythroid Differentiation of Induced Pluripotent Stem Cells Co-cultured with OP9 Cells for Diagnostic Purposes. Ann Lab Med 2022; 42:457-466. [PMID: 35177566 PMCID: PMC8859560 DOI: 10.3343/alm.2022.42.4.457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Reagent red blood cells (RBCs) are prepared from donated whole blood, resulting in various combinations of blood group antigens. This inconsistency can be resolved by producing RBCs with uniform antigen expression. Induced pluripotent stem cells (iPSCs) generated directly from mature cells constitute an unlimited source for RBC production. We aimed to produce erythroid cells from iPSCs for diagnostic purposes. We hypothesized that cultured erythroid cells express surface antigens that can be recognized by blood group antibodies. Methods iPSCs were co-cultured with OP9 stromal cells to stimulate differentiation into the erythroid lineage. Cell differentiation was examined using microscopy and flow cytometry. Hemoglobin electrophoresis and oxygen-binding capacity testing were performed to verify that the cultured erythroid cells functioned normally. The agglutination reactions of the cultured erythroid cells to antibodies were investigated to confirm that the cells expressed blood group antigens. Results The generated iPSCs showed stemness characteristics and could differentiate into the erythroid lineage. As differentiation progressed, the proportion of nucleated RBCs increased. Hemoglobin electrophoresis revealed a sharp peak in the hemoglobin F region. The oxygen-binding capacity test results were similar between normal RBCs and cultured nucleated RBCs. ABO and Rh-Hr blood grouping confirmed similar antigen expression between the donor RBCs and cultured nucleated RBCs. Conclusions We generated blood group antigen-expressing nucleated RBCs from iPSCs co-cultured with OP9 cells that can be used for diagnostic purposes. iPSCs from rare blood group donors could serve as an unlimited source for reagent production.
Collapse
Affiliation(s)
- Juhye Roh
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Hee Jeon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Kyung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Goyang, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Metzler E, Escobar H, Sunaga-Franze DY, Sauer S, Diecke S, Spuler S. Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs. Biomedicines 2022; 10:1204. [PMID: 35625941 PMCID: PMC9138862 DOI: 10.3390/biomedicines10051204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sascha Sauer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
27
|
Stegmann KM, Dickmanns A, Heinen N, Blaurock C, Karrasch T, Breithaupt A, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Herrmann ST, Schreieck A, Peelen E, Kohlhof H, Sadeghi B, Riek A, Speakman JR, Groß U, Görlich D, Vitt D, Müller T, Grunwald T, Pfaender S, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase cooperate with Molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication. iScience 2022; 25:104293. [PMID: 35492218 PMCID: PMC9035612 DOI: 10.1016/j.isci.2022.104293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19. Molnupiravir and DHODH inhibitors are approved drugs, facilitating clinical testing The combination may allow lower drug doses to decrease possible toxic effects Inhibitors of nucleotide biosynthesis may boost antiviral nucleoside analogs
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Claudia Blaurock
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Tim Karrasch
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Angele Breithaupt
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | | | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Simon T Herrmann
- Department of Molecular Biochemistry, Ruhr University Bochum, Germany
| | | | | | | | - Balal Sadeghi
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Alexander Riek
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Uwe Groß
- Institute of Medical Microbiology and Virology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Thorsten Müller
- Department of Molecular Biochemistry, Ruhr University Bochum, Germany.,Institute of Psychiatric Phenomics and Genomics (IPPG), Organoid laboratory, University Hospital, LMU Munich, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Yu S, Vassilev S, Lim ZR, Sivalingam J, Lam ATL, Ho V, Renia L, Malleret B, Reuveny S, Oh SKW. Selection of O-negative induced pluripotent stem cell clones for high-density red blood cell production in a scalable perfusion bioreactor system. Cell Prolif 2022; 55:e13218. [PMID: 35289971 PMCID: PMC9357363 DOI: 10.1111/cpr.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Large‐scale generation of universal red blood cells (RBCs) from O‐negative (O‐ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year‐round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high‐density culture platform for large‐scale generation of RBCs in vitro. Materials and Methods We generated 10 O‐ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high‐density cultures of erythroblasts in vitro. Results Based on their tri‐lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small‐scale generation of high‐density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. Conclusions This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume‐controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.
Collapse
Affiliation(s)
- SuE Yu
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Svetlan Vassilev
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Alan Tin Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Valerie Ho
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| |
Collapse
|
29
|
Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells 2021; 10:cells10113250. [PMID: 34831472 PMCID: PMC8623953 DOI: 10.3390/cells10113250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The breakthrough in human induced pluripotent stem cells (hiPSCs) has revolutionized the field of biomedical and pharmaceutical research and opened up vast opportunities for drug discovery and regenerative medicine, especially when combined with gene-editing technology. Numerous healthy and patient-derived hiPSCs for human disease modeling have been established, enabling mechanistic studies of pathogenesis, platforms for preclinical drug screening, and the development of novel therapeutic targets/approaches. Additionally, hiPSCs hold great promise for cell-based therapy, serving as an attractive cell source for generating stem/progenitor cells or functional differentiated cells for degenerative diseases, due to their unlimited proliferative capacity, pluripotency, and ethical acceptability. In this review, we provide an overview of hiPSCs and their utility in the study of hematologic disorders through hematopoietic differentiation. We highlight recent hereditary and acquired genetic hematologic disease modeling with patient-specific iPSCs, and discuss their applications as instrumental drug screening tools. The clinical applications of hiPSCs in cell-based therapy, including the next-generation cancer immunotherapy, are provided. Lastly, we discuss the current challenges that need to be addressed to fulfill the validity of hiPSC-based disease modeling and future perspectives of hiPSCs in the field of hematology.
Collapse
|
30
|
Mall EM, Lecanda A, Drexler HCA, Raz E, Schöler HR, Schlatt S. Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. PLoS One 2021; 16:e0258427. [PMID: 34653201 PMCID: PMC8519482 DOI: 10.1371/journal.pone.0258427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.
Collapse
Affiliation(s)
- Eva M. Mall
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| | - Aaron Lecanda
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, Münster, Germany
| | - Hans R. Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| |
Collapse
|
31
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
32
|
Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy. Stem Cells Int 2021; 2021:9919422. [PMID: 34434242 PMCID: PMC8380505 DOI: 10.1155/2021/9919422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Widely known for self-renewal and multilineage differentiation, stem cells can be differentiated into all specialized tissues and cells in the body. In the past few years, a number of researchers have focused on deriving hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) as alternative sources for clinic. Existing findings demonstrated that it is feasible to obtain HSCs and certain mature blood lineages from PSCs, except for several issues to be addressed. This short review outlines the technologies used for hematopoietic differentiation in recent years. In addition, the therapeutic value of PSCs as a potential source of various blood cells is also discussed as well as its challenges and directions in future clinical applications.
Collapse
|
33
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
34
|
Sivalingam J, SuE Y, Lim ZR, Lam ATL, Lee AP, Lim HL, Chen HY, Tan HK, Warrier T, Hang JW, Nazir NB, Tan AHM, Renia L, Loh YH, Reuveny S, Malleret B, Oh SKW. A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2020; 16:182-197. [PMID: 33306988 PMCID: PMC7897557 DOI: 10.1016/j.stemcr.2020.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks. Differentiation of the best-performing hiPSCs generated 0.85 billion erythroblasts in 50 mL cultures with cell densities approaching 1.7 × 107 cells/mL. Functional (oxygen binding, hemoglobin characterization, membrane integrity, and fluctuations) and transcriptomics evaluations showed minimal differences between hiPSC-derived and adult-derived RBCs. The scalable agitation suspension culture differentiation process we describe here could find applications in future large-scale production of RBCs in controlled bioreactors. Scalable process for differentiating hiPSC-microcarrier aggregates into RBCs Erythroid differentiation potential of multiple hiPSC lines was evaluated hiPSC RBCs and adult RBCs revealed minor differences functionally and transcriptionally Co-culture of hiPSC RBCs with OP9 cells (2D and 3D) promoted improved enucleation
Collapse
Affiliation(s)
- Jaichandran Sivalingam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Yu SuE
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Zhong Ri Lim
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alan T L Lam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alison P Lee
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hsueh Lee Lim
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Yu Chen
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Kee Tan
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Tushar Warrier
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Jing Wen Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Nazmi B Nazir
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Andy H M Tan
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore; Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shaul Reuveny
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Benoit Malleret
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Steve K W Oh
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore.
| |
Collapse
|
35
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
36
|
Mall EM, Rotte N, Yoon J, Sandhowe-Klaverkamp R, Röpke A, Wistuba J, Hübner K, Schöler HR, Schlatt S. A novel xeno-organoid approach: exploring the crosstalk between human iPSC-derived PGC-like and rat testicular cells. Mol Hum Reprod 2020; 26:879-893. [PMID: 33049038 DOI: 10.1093/molehr/gaaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Specification of germ cell-like cells from induced pluripotent stem cells has become a clinically relevant tool for research. Research on initial embryonic processes is often limited by the access to foetal tissue, and in humans, the molecular events resulting in primordial germ cell (PGC) specification and sex determination remain to be elucidated. A deeper understanding of the underlying processes is crucial to describe pathomechanisms leading to impaired reproductive function. Several protocols have been established for the specification of human pluripotent stem cell towards early PGC-like cells (PGCLC), currently representing the best model to mimic early human germline developmental processes in vitro. Further sex determination towards the male lineage depends on somatic gonadal cells providing the necessary molecular cues. By establishing a culture system characterized by the re-organization of somatic cells from postnatal rat testes into cord-like structures and optimizing efficient PGCLC specification protocols, we facilitated the co-culture of human germ cell-like cells within a surrogate testicular microenvironment. Specified conditions allowed the survival of rat somatic testicular and human PGCLCs for 14 days. Human cells maintained the characteristic expression of octamer-binding transcription factor 4, SRY-box transcription factor 17, and transcription factor AP-2 gamma and were recovered from the xeno-organoids by cell sorting. This novel xeno-organoid approach will allow the in vitro exploration of early sex determination of human PGCLCs.
Collapse
Affiliation(s)
- E M Mall
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - N Rotte
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany.,Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - R Sandhowe-Klaverkamp
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - A Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - K Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - H R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
37
|
Generation of an immortalised erythroid cell line from haematopoietic stem cells of a haemoglobin E/β-thalassemia patient. Sci Rep 2020; 10:16798. [PMID: 33033327 PMCID: PMC7546635 DOI: 10.1038/s41598-020-73991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/11/2023] Open
Abstract
The β-thalassemia syndromes are the most prevalent genetic disorder globally, characterised by reduced or absent β-globin chain synthesis. HbE/β-thalassemia is a subtype of β-thalassemia with extremely high frequency in Asia. Studying molecular defects behind β-thalassemia is severely impeded by paucity of material from patients and lack of suitable cell lines. Approaches to derive erythroid cells from induced pluripotent stem cells (iPSCs) created from patients are confounded by poor levels of erythroid cell expansion, aberrant or incomplete erythroid differentiation and foetal/embryonic rather than adult globin expression. In this study we generate an immortalised erythroid cell line from peripheral blood stem cells of a HbE/β-thalassemia patient. Morphological analysis shows the cells are proerythroblasts with some early basophilic erythroblasts, with no change in morphology over time in culture. The line differentiates along the erythroid pathway to orthochromatic erythroblasts and reticulocytes. Importantly, unlike iPSCs, the line maintains the haemoglobin profile of the patient's red blood cells. This is the first human cellular model for β-thalassemia providing a sustainable source of disease cells for studying underlying disease mechanisms and for use as drug screening platform, particularly for reagents designed to increase foetal haemoglobin expression as we have additionally demonstrated with hydroxyurea.
Collapse
|
38
|
Ferguson DCJ, Mokim JH, Meinders M, Moody ERR, Williams TA, Cooke S, Trakarnsanga K, Daniels DE, Ferrer-Vicens I, Shoemark D, Tipgomut C, Macinnes KA, Wilson MC, Singleton BK, Frayne J. Characterization and evolutionary origin of novel C 2H 2 zinc finger protein (ZNF648) required for both erythroid and megakaryocyte differentiation in humans. Haematologica 2020; 106:2859-2873. [PMID: 33054117 PMCID: PMC8561289 DOI: 10.3324/haematol.2020.256347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Human ZNF648 is a novel poly C-terminal C2H2 zinc finger protein identified amongst the most dysregulated proteins in erythroid cells differentiated from iPSC. Its nuclear localisation and structure indicate it is likely a DNA-binding protein. Using a combination of ZNF648 overexpression in an iPSC line and primary adult erythroid cells, ZNF648 knockdown in primary adult erythroid cells and megakaryocytes, comparative proteomics and transcriptomics we show that ZNF648 is required for both erythroid and megakaryocyte differentiation. Orthologues of ZNF648 were detected across Mammals, Reptilia, Actinopterygii, in some Aves, Amphibia and Coelacanthiformes suggesting the gene originated in the common ancestor of Osteichthyes (Euteleostomi or bony fish). Conservation of the C-terminal zinc finger domain is higher, with some variation in zinc finger number but a core of at least six zinc fingers conserved across all groups, with the N-terminus recognisably similar within but not between major lineages. This suggests the N-terminus of ZNF648 evolves faster than the C-terminus, however this is not due to exon-shuffling as the entire coding region of ZNF648 is within a single exon. As for other such transcription factors, the N-terminus likely carries out regulatory functions, but showed no sequence similarity to any known domains. The greater functional constraint on the zinc finger domain suggests ZNF648 binds at least some similar regions of DNA in the different organisms. However, divergence of the N-terminal region may enable differential expression, allowing adaptation of function in the different organisms.
Collapse
Affiliation(s)
- Daniel C. J. Ferguson
- School of Biochemistry, University of Bristol, Bristol, UK,*DCJF and JHM contributed equally as co-first authors
| | - Juraidah Haji Mokim
- School of Biochemistry, University of Bristol, Bristol, UK,*DCJF and JHM contributed equally as co-first authors
| | | | | | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Sarah Cooke
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Deborah E. Daniels
- School of Biochemistry, University of Bristol, Bristol, UK,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | | | | | - Chartsiam Tipgomut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Katherine A. Macinnes
- School of Biochemistry, University of Bristol, Bristol, UK,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | | | - Belinda K. Singleton
- NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, UK,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, BS8 1TD, UK.; NIHR Blood and Transplant Research Unit in Red blood cell products, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
39
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
40
|
Luckhaus C, Roosterman D, Juckel G. [Biobanking in Psychiatry]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:722-729. [PMID: 32542622 DOI: 10.1055/a-0832-8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Medical biobanking is concerned with establishing and maintaining large-scale repositories of biological specimens combined with comprehensive archives of clinical and biographical information on donors. This aims for controlled high and consistent quality of specimens for future biomedical research. One major objective is to assemble multiple blood components for various types of biochemical analysis and experimentation including different isolated cell types. With proper cryo-conservation, blood-derived cells can be conserved and revitalized after thawing and employed as in-vitro cell models carrying specific biological traits of donors. Optimizing pre-analytical methods can reduce pre-analytical variance thereby reducing imprecision of analytical data. This is particularly valuable for multivariate analyses of biological systems ("omics") and biomarker research. Introducing biobanking to psychiatry carries the challenge of making diagnostic allocation more compatible with biological entities than is achieved with current diagnostic categories of ICD-10 or DSM-V. Diagnostic or transdiagnostic subgroups can be stratified using biologically anchored clinical criteria. An important ethical issue of biobanking is the need for broad consent by the donors for specimen use in not yet defined future research projects. The organizational, logistic and financial costs of establishing and maintaining a biobank are considerable, but seem well warranted in view of the gainable advances in biomedical research quality, translations and clinical applications.
Collapse
|
41
|
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2020; 117:712-726. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Rhein-Main, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
42
|
Choi NY, Bang JS, Park YS, Lee M, Hwang HS, Ko K, Myung SC, Tapia N, Schöler HR, Kim GJ, Ko K. Generation of human androgenetic induced pluripotent stem cells. Sci Rep 2020; 10:3614. [PMID: 32109236 PMCID: PMC7046633 DOI: 10.1038/s41598-020-60363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.
Collapse
Affiliation(s)
- Na Young Choi
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yo Seph Park
- Department of Stem Cell Research, TJC Life Research and Development Center, TJC Life, Seoul, 06698, Republic of Korea
| | - Minseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010, Valencia, Spain
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Medical Faculty, University of Münster, 48149, Münster, Germany
| | - Gwang Jun Kim
- Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
43
|
Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, van den Akker E, Schlenke P, Dorn I. Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells Dev 2019; 28:1540-1551. [PMID: 31595840 PMCID: PMC6882453 DOI: 10.1089/scd.2019.0132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a “hematopoietic cell forming complex (HCFC).” From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Mania Ackermann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Holm Zaehres
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
44
|
Hansen M, von Lindern M, van den Akker E, Varga E. Human‐induced pluripotent stem cell‐derived blood products: state of the art and future directions. FEBS Lett 2019; 593:3288-3303. [DOI: 10.1002/1873-3468.13599] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Marten Hansen
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| |
Collapse
|
45
|
Liu LP, Zheng YW. Predicting differentiation potential of human pluripotent stem cells: Possibilities and challenges. World J Stem Cells 2019; 11:375-382. [PMID: 31396366 PMCID: PMC6682503 DOI: 10.4252/wjsc.v11.i7.375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
The capability of human pluripotent stem cell (hPSC) lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine. However, variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost. To screen the qualified cell lines and exclude problematic cell lines, their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by high-throughput gene expression profiling assay. Additionally, their differentiation potential, particularly the lineage-specific differentiation propensities of hPSC lines, should be predicted in an early stage. As a complement to the teratoma assay, RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo. Moreover, multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation. For clinical application of hPSCs, the malignant potential of the cells must also be evaluated. A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas, malignancy marker expression, and other parameters. Although various prediction methods are available, distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost, restricting their wide applications in routine studies. Therefore, simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| |
Collapse
|
46
|
Trakarnsanga K, Ferguson D, Daniels DE, Griffiths RE, Wilson MC, Mordue KE, Gartner A, Andrienko TN, Calvert A, Condie A, McCahill A, Mountford JC, Toye AM, Anstee DJ, Frayne J. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation. Stem Cell Res Ther 2019; 10:130. [PMID: 31036072 PMCID: PMC6489253 DOI: 10.1186/s13287-019-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 05/16/2023] Open
Abstract
Background Pluripotent stem cells are attractive progenitor cells for the generation of erythroid cells in vitro as have expansive proliferative potential. However, although embryonic (ESC) and induced pluripotent (iPSC) stem cells can be induced to undergo erythroid differentiation, the majority of cells fail to enucleate and the molecular basis of this defect is unknown. One protein that has been associated with the initial phase of erythroid cell enucleation is the intermediate filament vimentin, with loss of vimentin potentially required for the process to proceed. Methods In this study, we used our established erythroid culture system along with western blot, PCR and interegation of comparative proteomic data sets to analyse the temporal expression profile of vimentin in erythroid cells differentiated from adult peripheral blood stem cells, iPSC and ESC throughout erythropoiesis. Confocal microscopy was also used to examine the intracellular localisation of vimentin. Results We show that expression of vimentin is turned off early during normal adult erythroid cell differentiation, with vimentin protein lost by the polychromatic erythroblast stage, just prior to enucleation. In contrast, in erythroid cells differentiated from iPSC and ESC, expression of vimentin persists, with high levels of both mRNA and protein even in orthochromatic erythroblasts. In the vimentin-positive iPSC orthochromatic erythroblasts, F-actin was localized around the cell periphery; however, in those rare cells captured undergoing enucleation, vimentin was absent and F-actin was re-localized to the enucleosome as found in normal adult orthrochromatic erythroblasts. Conclusion As both embryonic and adult erythroid cells loose vimentin and enucleate, retention of vimentin by iPSC and ESC erythroid cells indicates an intrinsic defect. By analogy with avian erythrocytes which naturally retain vimentin and remain nucleated, retention in iPSC- and ESC-derived erythroid cells may impede enucleation. Our data also provide the first evidence that dysregulation of processes in these cells occurs from the early stages of differentiation, facilitating targeting of future studies. Electronic supplementary material The online version of this article (10.1186/s13287-019-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kongtana Trakarnsanga
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Daniel Ferguson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Rebecca E Griffiths
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Abi Gartner
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Tatyana N Andrienko
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Annabel Calvert
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Angela McCahill
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Joanne C Mountford
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK. .,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
47
|
Cypris O, Frobel J, Rai S, Franzen J, Sontag S, Goetzke R, Szymanski de Toledo MA, Zenke M, Wagner W. Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clin Epigenetics 2019; 11:19. [PMID: 30717806 PMCID: PMC6360658 DOI: 10.1186/s13148-019-0617-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Differentiation of induced pluripotent stem cells (iPSCs) toward hematopoietic progenitor cells (HPCs) raises high hopes for disease modeling, drug screening, and cellular therapy. Various differentiation protocols have been established to generate iPSC-derived HPCs (iHPCs) that resemble their primary counterparts in morphology and immunophenotype, whereas a systematic epigenetic comparison was yet elusive. Results In this study, we compared genome-wide DNA methylation (DNAm) patterns of iHPCs with various different hematopoietic subsets. After 20 days of in vitro differentiation, cells revealed typical hematopoietic morphology, CD45 expression, and colony-forming unit (CFU) potential. DNAm changes were particularly observed in genes that are associated with hematopoietic differentiation. On the other hand, the epigenetic profiles of iHPCs remained overall distinct from natural HPCs. Furthermore, we analyzed if additional co-culture for 2 weeks with syngenic primary mesenchymal stromal cells (MSCs) or iPSC-derived MSCs (iMSCs) further supports epigenetic maturation toward the hematopoietic lineage. Proliferation of iHPCs and maintenance of CFU potential was enhanced upon co-culture. However, DNAm profiles support the notion that additional culture expansion with stromal support did not increase epigenetic maturation of iHPCs toward natural HPCs. Conclusion Differentiation of iPSCs toward the hematopoietic lineage remains epigenetically incomplete. These results substantiate the need to elaborate advanced differentiation regimen while DNAm profiles provide a suitable measure to track this process. Electronic supplementary material The online version of this article (10.1186/s13148-019-0617-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Shivam Rai
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Stephanie Sontag
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Marcelo A Szymanski de Toledo
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
48
|
Dolatshad H, Tatwavedi D, Ahmed D, Tegethoff JF, Boultwood J, Pellagatti A. Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Adv Biol Regul 2019; 71:19-33. [PMID: 30341008 DOI: 10.1016/j.jbior.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Induced pluripotent stem cells (iPSCs) were first described over a decade ago and are currently used in various basic biology and clinical research fields. Recent advances in the field of human iPSCs have opened the way to a better understanding of the biology of human diseases. Disease-specific iPSCs provide an unparalleled opportunity to establish novel human cell-based disease models, with the potential to enhance our understanding of the molecular mechanisms underlying human malignancies, and to accelerate the identification of effective new drugs. When combined with genome editing technologies, iPSCs represent a new approach to study single or multiple disease-causing mutations and model specific diseases in vitro. In addition, genetically corrected patient-specific iPSCs could potentially be used for stem cell based therapy. Furthermore, the reprogrammed cells share patient-specific genetic background, offering a new platform to develop personalized therapy/medicine for patients. In this review we discuss the recent advances in iPSC research technology and their potential applications in hematological diseases. Somatic cell reprogramming has presented new routes for generating patient-derived iPSCs, which can be differentiated to hematopoietic stem cells and the various downstream hematopoietic lineages. iPSC technology shows promise in the modeling of both inherited and acquired hematological disorders. A direct reprogramming and differentiation strategy is able to recapitulate hematological disorder progression and capture the earliest molecular alterations that underlie the initiation of hematological malignancies.
Collapse
Affiliation(s)
- Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Dharamveer Tatwavedi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Doaa Ahmed
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK; Clinical Pathology Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | - Jana F Tegethoff
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
49
|
Galat Y, Elcheva I, Dambaeva S, Katukurundage D, Beaman K, Iannaccone PM, Galat V. Application of small molecule CHIR99021 leads to the loss of hemangioblast progenitor and increased hematopoiesis of human pluripotent stem cells. Exp Hematol 2018; 65:38-48.e1. [PMID: 29879440 DOI: 10.1016/j.exphem.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/05/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023]
Abstract
Improving our understanding of the intricacies of hematopoietic specification of induced or embryonic human pluripotent stem cells is beneficial for many areas of research and translational medicine. Currently, it is not clear whether, during human pluripotent stem cells hematopoietic differentiation in vitro, the maturation of definitive progenitors proceeds through a primitive progenitor (hemangioblast) intermediate or if it develops independently. The objective of this study was to investigate the early stages of hematopoietic specification of pluripotent stem cells in vitro. By implementing an adherent culture, serum-free differentiation system that utilizes a small molecule, CHIR99021, to induce human pluripotent stem cells toward various hematopoietic lineages, we established that, compared with the OP9 coculture hematopoietic induction system, the application of CHIR99021 alters the early steps of hematopoiesis such as hemangioblasts, angiogenic hematopoietic progenitors, and hemogenic endothelium. Importantly, it is associated with the loss of hemangioblast progenitors, loss of CD43+ (primitive hematopoietic marker) expression, and predominant development of blast-forming unit erythroid colonies in semisolid medium. These data support the hypothesis that the divergence of primitive and definitive programs during human pluripotent stem cells differentiation precedes the hemangioblast stage. Furthermore, we have shown that the inhibition of primitive hematopoiesis is associated with an increase in hematopoietic potential, which is a fruitful finding due to the growing need for lymphoid and myeloid cells in translational applications.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, Russian Federation
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Svetlana Dambaeva
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Dimantha Katukurundage
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Philip M Iannaccone
- Department of Pediatrics, Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, Russian Federation; Department of Pathology, Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
50
|
Efficient production of erythroid, megakaryocytic and myeloid cells, using single cell-derived iPSC colony differentiation. Stem Cell Res 2018; 29:232-244. [PMID: 29751281 DOI: 10.1016/j.scr.2018.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic differentiation of human induced pluripotent stem cells (iPSCs) provide opportunities not only for fundamental research and disease modelling/drug testing but also for large-scale production of blood effector cells for future clinical application. Although there are multiple ways to differentiate human iPSCs towards hematopoietic lineages, there is a need to develop reproducible and robust protocols. Here we introduce an efficient way to produce three major blood cell types using a standardized differentiation protocol that starts with a single hematopoietic initiation step. This system is feeder-free, avoids EB-formation, starts with a hematopoietic initiation step based on a novel single cell-derived iPSC colony differentiation and produces multi-potential progenitors within 8-10 days. Followed by lineage-specific growth factor supplementation these cells can be matured into well characterized erythroid, megakaryocytic and myeloid cells with high-purity, without transcription factor overexpression or any kind of pre-purification step. This standardized differentiation system provides a simple platform to produce specific blood cells in a reproducible manner for hematopoietic development studies, disease modelling, drug testing and the potential for future therapeutic applications.
Collapse
|