1
|
Toho M, Ikeda D, Aikawa S, Misono C, Oura M, Fujii F, Sakuma H, Uehara A, Tabata RI, Narita K, Takeuchi M, Watari T, Otsuka Y, Matsue K. Serum B-cell maturation antigen could be a simple and accurate biomarker to identify and prognosticate monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Haematologica 2025; 110:1207-1210. [PMID: 39781647 PMCID: PMC12050916 DOI: 10.3324/haematol.2024.286842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Masanori Toho
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Daisuke Ikeda
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan; Department of Hematology/Oncology, Department of Medicine, Okayama University, Okayama
| | - Shuichi Aikawa
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa
| | - Chiho Misono
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa
| | - Mitsuaki Oura
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan; Department of Hematology/Oncology, Department of Medicine, the University of Tokyo, Tokyo
| | - Fuminari Fujii
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Hajime Sakuma
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Atsushi Uehara
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - R Ikako Tabata
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Kentaro Narita
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Masami Takeuchi
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa
| | - Tomohisa Watari
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa
| | - Yoshihito Otsuka
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa.
| |
Collapse
|
2
|
Freeman CL, Noble J, Menges M, Villanueva R, Nakashima JY, Figura NB, Tonseth RP, Werner Idiaquez D, Skelson L, Smith E, Abraham-Miranda J, Corallo S, De Avila G, Castaneda Puglianini OA, Liu H, Alsina M, Nishihori T, Shain KH, Baz R, Blue B, Grajales-Cruz A, Koomen JM, Atkins RM, Hansen DK, S Silva A, Kim J, Balagurunathan Y, Locke FL. Tumor burden quantified by soluble B-cell maturation antigen and metabolic tumor volume determines myeloma CAR-T outcomes. Blood 2025; 145:1645-1657. [PMID: 39652773 DOI: 10.1182/blood.2024024965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a breakthrough treatment for relapsed and refractory multiple myeloma (RRMM). However, these products are complex to deliver, and alternative options are now available. Identifying biomarkers that can predict therapeutic outcomes is crucial for optimizing patient selection. There is a paucity of data evaluating the utility of both serum soluble B-cell maturation antigen (sBCMA) levels and metabolic tumor volume (MTV) at baseline in patients with RRMM undergoing CAR-T therapy. We identified a cohort of 183 patients with available serum to measure sBCMA and/or pretreatment MTV, derived from positron emission tomography-computed tomography scans obtained per standard of care. Expectedly, high pretreatment levels of sBCMA correlated with other established markers of tumor burden (eg, bone marrow plasma cells and β2 microglobulin) and inflammation and were highly prognostic for CAR-T-related toxicities and inferior progression-free survival (PFS). High MTV values were also associated with shorter PFS and inferior overall survival. The poor correlation observed between these 2 measures prompted evaluation of those with discordant results, identifying that those with low sBCMA and high MTV frequently had low/absent BCMA expression on plasma cells and suboptimal response. Our findings highlight the potential utility of sBCMA and MTV to facilitate more personalized treatment strategies in the management of RRMM eligible for BCMA-directed CAR-T.
Collapse
Affiliation(s)
- Ciara L Freeman
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jerald Noble
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Meghan Menges
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Justyn Y Nakashima
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Nicholas B Figura
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | - Lawrence Skelson
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Eric Smith
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Julieta Abraham-Miranda
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Salvatore Corallo
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gabriel De Avila
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Omar A Castaneda Puglianini
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Hien Liu
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Melissa Alsina
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Taiga Nishihori
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Brandon Blue
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ariel Grajales-Cruz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Reginald M Atkins
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Doris K Hansen
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Frederick L Locke
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
3
|
Paris J, Tavernier A, Bethegnies S, Descloux S, Fedeli O. Quantification of total sBCMA in human plasma by peptide-level immunocapture LC-MS/MS. J Mass Spectrom Adv Clin Lab 2025; 36:46-51. [PMID: 40331169 PMCID: PMC12051699 DOI: 10.1016/j.jmsacl.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Background B-cell maturation antigen (BCMA) is a membrane protein that is overexpressed in multiple myeloma cells and can be targeted with biotherapeutic agents. BCMA is naturally shed by γ-secretase, leading to the formation of soluble BCMA (sBCMA), which circulates in the blood. sBCMA can affect the efficacy of BCMA-targeted therapies and act as a drug sink. Additionally, sBCMA can interfere with pharmacokinetic measurements when BCMA is directly targeted. Therefore, quantification of this biomarker during clinical trials is essential to assess the effective dose and understand pharmacokinetic results. When quantifying sBCMA using ligand binding assays or hybrid assays, the biotherapeutic can interfere with the capture of sBCMA, leading to an underestimation of its levels. Methods Samples were denatured, reduced, and alkylated prior to trypsin digestion. sBCMA peptide enrichment was performed using anti-peptide polyclonal antibodies. Reversed-phase chromatographic separation was conducted on a biocompatible C18 column with an analysis time of sixteen minutes per sample. The SCIEX QTRAP 5500 mass spectrometer operated in multiple reaction monitoring mode. The calibration curve was prepared by spiking recombinant sBCMA into monkey plasma. Results The parallelism between the authentic and surrogate matrices, as well as between the endogenous and recombinant proteins, was validated. Comparisons were made between protein and peptide level hybrid assays, with the peptide level approach effectively removing the interference of the biotherapeutic. Additionally, the peptide level immunocapture LC-MS/MS demonstrated ligand tolerance. Conclusion The peptide level immunocapture LC-MS/MS analysis eliminated the interference of anti-BCMA biotherapeutics, allowing for the quantification of total sBCMA in clinical samples while achieving a LLOQ of 10 ng/mL.
Collapse
Affiliation(s)
| | | | - Sylvie Bethegnies
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - Sandrine Descloux
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - Olivier Fedeli
- Sanofi, TMU-Labsciences, 371 rue du Professeur Blayac, 34184 Montpellier, France
| |
Collapse
|
4
|
Zhou X, Kortuem KM, Rasche L, Einsele H. Bispecific antibody and chimeric antigen receptor (CAR) modified T-cell in the treatment of multiple myeloma: Where do we stand today? Presse Med 2025; 54:104265. [PMID: 39662761 DOI: 10.1016/j.lpm.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Although the prognosis of patients with multiple myeloma (MM) has been significantly improved by the introduction of proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies, MM is still considered an incurable disease in the vast majority of the patients. In recent years, T-cell based immunotherapy represents a novel treatment strategy for relapsed/refractory (RR) MM. So far, chimeric antigen receptor (CAR) modified T-cells and bispecific T-cell engaging antibodies (bsAb) have shown promising anti-MM efficacy and manageable safety profile within clinical trials, and B-cell maturation antigen (BCMA) is the most commonly used immune target for T-cell based immunotherapies in MM. To date, several CAR T-cell and bsAb products have already been approved for the treatment of RRMM, leading to a paradigm shift in the MM therapy and providing a potential curative option. In this review, we provide a summary of mechanisms of action, immune targets, selected clinical data, resistance mechanisms and therapy sequencing of CAR T-cell and bsAb in MM.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortuem
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Jamroziak K, Zielonka K, Khwaja J, Wechalekar AD. Update on B-cell maturation antigen-directed therapies in AL amyloidosis. Br J Haematol 2025; 206:817-831. [PMID: 39748220 DOI: 10.1111/bjh.19960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Systemic light chain (AL) amyloidosis is a rare clonal plasma cell disorder characterized by the production of amyloidogenic immunoglobulin light chains, which causes the formation and deposition of amyloid fibrils, leading to multi-organ dysfunction. Current treatment is directed at the underlying plasma cell clone to achieve a profound reduction in the monoclonal free light chain production. The standard-of-care first-line therapy is a combination of daratumumab, cyclophosphamide, bortezomib and dexamethasone (D-VCd regimen), resulting in high rates of haematological and organ responses. However, AL amyloidosis remains incurable, and all patients inevitably relapse. Hence, novel treatment options are needed for patients with an inadequate response or relapsed/refractory disease. B-cell maturation antigen (BCMA) is a tumour necrosis factor (TNF receptor superfamily receptor overexpressed on plasma cells in multiple myeloma (MM) and AL amyloidosis. Recently, several novel anti-BCMA immunotherapies have been approved for the treatment of relapsed/refractory MM, including antibody-drug conjugate belantamab mafodotin, bispecific antibodies teclistamab and elranatamab and chimeric antigen receptor T-cell therapies idecabtagene vicleucel and ciltacabtagene autoleucel. Despite lower expression than in MM, BCMA is also a promising target in AL amyloidosis. This review aims to provide up-to-date information on the efficacy and toxicity of anti-BCMA therapy in AL amyloidosis.
Collapse
Affiliation(s)
- Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Zielonka
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jahanzaib Khwaja
- Department of Haematology, University College London Hospital, London, UK
| | | |
Collapse
|
7
|
Li S, Liu J, Peyton M, Lazaro O, McCabe SD, Huang X, Liu Y, Shi Z, Zhang Z, Walker BA, Johnson TS. Multiple Myeloma Insights from Single-Cell Analysis: Clonal Evolution, the Microenvironment, Therapy Evasion, and Clinical Implications. Cancers (Basel) 2025; 17:653. [PMID: 40002248 PMCID: PMC11852428 DOI: 10.3390/cancers17040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Multiple myeloma (MM) is a complex and heterogeneous hematologic malignancy characterized by clonal evolution, genetic instability, and interactions with a supportive tumor microenvironment. These factors contribute to treatment resistance, disease progression, and significant variability in clinical outcomes among patients. This review explores the mechanisms underlying MM progression, including the genetic and epigenetic changes that drive clonal evolution, the role of the bone marrow microenvironment in supporting tumor growth and immune evasion, and the impact of genomic instability. We highlight the critical insights gained from single-cell technologies, such as single-cell transcriptomics, genomics, and multiomics, which have enabled a detailed understanding of MM heterogeneity at the cellular level, facilitating the identification of rare cell populations and mechanisms of drug resistance. Despite the promise of advanced technologies, MM remains an incurable disease and challenges remain in their clinical application, including high costs, data complexity, and the need for standardized bioinformatics and ethical considerations. This review emphasizes the importance of continued research and collaboration to address these challenges, ultimately aiming to enhance personalized treatment strategies and improve patient outcomes in MM.
Collapse
Affiliation(s)
- Sihong Li
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jiahui Liu
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Madeline Peyton
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indianapolis, IN 46202, USA
| | - Olivia Lazaro
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
| | - Sean D. McCabe
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Xiaoqing Huang
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Zanyu Shi
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Zhiqi Zhang
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Brian A. Walker
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Travis S. Johnson
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Caponi L, Del Giudice ML, Botti A, Ursino S, Gennari A, Paolicchi A, Galimberti S, Buda G. Predictive Role of Soluble B-Cell Maturation Antigen in Short-Term Monitoring of Differently Treated Multiple Myeloma Patients: A Prospective Study. J Clin Lab Anal 2025; 39:e25151. [PMID: 39817468 PMCID: PMC11848191 DOI: 10.1002/jcla.25151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The management of multiple myeloma is challenging because the disease is incurable and unexpected relapses can threaten a patient's survival. Several assessment systems are currently available, but they often require invasive or costly procedures (e.g., instrumental bone marrow and whole-body examinations) or rely on non-specific markers in blood and urine that may not be sufficient to assess and monitor the disease. AIMS To address some of these limitations, the aim of this study was to evaluate the potential use of soluble B-Cell Maturation Antigen (BCMA), a promising new serum biomarker, as a toll for moniting multiple myeloma patients. MATERIALS & METHODS An unselected cohort of 57 newly diagnosed or relapsed myeloma patients was followed up for 6 months after starting a new therapy. Soluble BCMA levels were measured in peripheral blood using a simple and inexpensive ELISA assay. RESULTS Soluble BCMA was detectable in peripheral blood by a simple and inexpensive assay in all patients, even in non-secretory disease or during BCMA-targeted therapies, and significant changes in its levels were observed over time. The analysis showed that the decrease in sBCMA at 1 and 6 months reflects the quality of the clinical response to anti-myeloma regimens. DISCUSSION & CONCLUSION The data provide interesting insights into the usefulness of sBCMA as a non-invasive tool for early assessment of treatment efficacy. Its simple and cost-effective detection in peripheral blood could provide clinicians with an addiotional resource for monitoring disease progression and tailoring treatment strategies.
Collapse
Affiliation(s)
- Laura Caponi
- Clinical Pathology Laboratory, Pisa University Hospital, Department of Translational Research and New Technologies in MedicineUniversity of PisaPisaItaly
| | - Maria Livia Del Giudice
- Hematology Division, Pisa University Hospital, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Alice Botti
- Clinical Pathology Laboratory, Pisa University Hospital, Department of Translational Research and New Technologies in MedicineUniversity of PisaPisaItaly
| | - Silvia Ursino
- Clinical Pathology Laboratory, Pisa University Hospital, Department of Translational Research and New Technologies in MedicineUniversity of PisaPisaItaly
| | - Alberto Gennari
- Clinical Pathology Laboratory, Pisa University Hospital, Department of Translational Research and New Technologies in MedicineUniversity of PisaPisaItaly
| | - Aldo Paolicchi
- Clinical Pathology Laboratory, Pisa University Hospital, Department of Translational Research and New Technologies in MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Hematology Division, Pisa University Hospital, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Buda
- Hematology Division, Pisa University Hospital, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
9
|
Ikeda D, Aikawa S, Misono C, Oura M, Fujii F, Sakuma H, Toho M, Uehara A, Tabata R, Narita K, Takeuchi M, Watari T, Otsuka Y, Matsue K. Soluble B-cell maturation antigen levels for disease monitoring in oligosecretory and nonsecretory relapsed multiple myeloma. Blood 2025; 145:526-532. [PMID: 39441915 DOI: 10.1182/blood.2024026028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Soluble B-cell maturation antigen (sBCMA) is elevated on multiple myeloma (MM) cells. We investigated whether sBCMA levels correlated with other myeloma tumor volume indicators and its utility in monitoring oligosecretory/nonsecretory (O-S/Non-S) MM. In 115 patients with newly diagnosed MM, sBCMA was compared with M-protein levels, bone marrow plasma cells (BMPCs), circulating tumor cells (CTCs), and total diffusion volume (tDV; estimated by whole-body diffusion-weighted magnetic resonance imaging) at diagnosis. sBCMA levels increased significantly with International Staging System stage, chromosome 1q21 gain/amplification, and CTC levels. sBCMA also correlated strongly with %BMPC (r = 0.65) and moderately with tDV (r = 0.55) and paraprotein levels (involved immunoglobulin in IgG and IgA subtypes, r = 0.44 and 0.4; involved free light-chain levels in light-chain-only MM, r = 0.61, all P < .05). Longitudinal changes in sBCMA were consistent with disease status in both 17 O-S/Non-S and other secretory MM cases. Furthermore, sBCMA levels increased as early as 6 months prerelapse in almost all O-S/Non-S relapsed patients. Thus, sBCMA correlates strongly with total tumor volume in MM, as assessed using different modalities. We suggest that sBCMA is useful, not only for monitoring responses in patients with O-S/Non-S MM but also for early relapse detection and prediction.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Shuichi Aikawa
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Chiho Misono
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Mitsuaki Oura
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Fuminari Fujii
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Hajime Sakuma
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Masanori Toho
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Atsushi Uehara
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Rikako Tabata
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Kentaro Narita
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Masami Takeuchi
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Tomohisa Watari
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Yoshihito Otsuka
- Department of Laboratory Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa, Chiba, Japan
| |
Collapse
|
10
|
Rashid A, Wesson W, Abdallah AO, Snyder J, Venkatesh P, Mushtaq MU, Shune L, Witek MA, McGuirk JP, Soper SA, Cui W, Ahmed N. BCMA-Directed MRD Detection as a Predictor of Relapse after BCMA CAR T in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:52-57. [PMID: 39516088 DOI: 10.1016/j.clml.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Recent approvals of chimeric antigen receptor T-cells (CAR T) and bispecific antibody therapies offer new hope for relapsed refractory multiple myeloma (RRMM) patients, with superior efficacy over standard regimens observed in clinical trials. However, relapse after BCMA-directed therapy is common and requires further investigation. PATIENTS AND METHODS We conducted a retrospective cohort study on 57 RRMM patients treated with BCMA-directed CAR T. Only the patients who had an initial response and lost BCMA-expressing identified PC following CAR T infusion at Day 30 were included in the analysis. Multicolor flow cytometry (MFC) to detect BCMA + plasma cell (PC) re-emergence was performed on bone marrow samples at defined intervals and clinical responses were assessed using International Myeloma Working Group criteria. RESULTS The majority of patients achieved undetectable BCMA on MFC postinfusion, with subsequent BCMA+ PC re-emergence observed in 55% of cases. Notably, 91% of patients experiencing clinical relapse showed BCMA+ PC re-emergence, often preceding relapse. Early relapse (<6 months) was associated with earlier BCMA re-emergence. CONCLUSION Early BCMA+ PC re-emergence may serve as a prognostic marker for clinical relapse post-BCMA CAR T therapy. Monitoring BCMA+ PC levels via MFC offers potential for early relapse detection and informed treatment decisions. Further studies, including novel BCMA-directed minimal residual disease (MRD) detection technologies, are warranted to validate these findings and refine RRMM management strategies.
Collapse
Affiliation(s)
- Aliya Rashid
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS
| | - William Wesson
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS
| | - Al-Ola Abdallah
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS
| | - Jordan Snyder
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS
| | - Priyanka Venkatesh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS
| | - Muhammad U Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS
| | - Leyla Shune
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS
| | - Malgorzata A Witek
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Joseph P McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS
| | - Steven A Soper
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Wei Cui
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS; United States Myeloma Innovations Research Collaborative (USMIRC), Westwood, KS.
| |
Collapse
|
11
|
Almodovar Diaz AA, Alouch SS, Chawla Y, Gonsalves WI. The Antibody Drug Conjugate, Belantamab-Mafodotin, in the Treatment of Multiple Myeloma: A Comprehensive Review. Blood Lymphat Cancer 2024; 14:71-87. [PMID: 39664714 PMCID: PMC11631777 DOI: 10.2147/blctt.s490021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Despite recent advancements in treatments, including proteasome inhibitors, immunomodulators, and anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains mostly incurable with patients frequently experiencing disease relapses due to therapy resistance. Hence there is an urgent need for innovative treatments for patients with relapsed and/or refractory MM (RRMM). This review examines Belantamab mafodotin, the first antibody-drug conjugate (ADC) targeting B-cell maturation antigen (BCMA), which has shown efficacy in pre-clinical and clinical settings for RRMM. BCMA, a type III transmembrane glycoprotein critical for B cell functions, is predominantly expressed in malignant plasma cells making it a promising therapeutic target. ADCs, comprising a monoclonal antibody, a cytotoxic payload, and a linker, offer a targeted and potent therapeutic approach to cancer treatment. Belantamab mafodotin integrates an afucosylated monoclonal antibody and monomethyl auristatin F (MMAF) as its cytotoxic agent. It induces apoptosis in MM cells by disrupting microtubule formation and interfering with important signaling pathways. The series of DREAMM (Driving Excellence in Approaches to MM) studies have extensively evaluated Belantamab mafodotin in various clinical settings. This review provides a comprehensive overview of pre-clinical and clinical data supporting Belantamab mafodotin as a future therapeutic option for RRMM.
Collapse
Affiliation(s)
| | | | - Yogesh Chawla
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
12
|
Swan D, Madduri D, Hocking J. CAR-T cell therapy in Multiple Myeloma: current status and future challenges. Blood Cancer J 2024; 14:206. [PMID: 39592597 PMCID: PMC11599389 DOI: 10.1038/s41408-024-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The treatment of multiple myeloma has changed dramatically in recent years, with huge strides forward made in the field. Chimeric antigen receptor T-cell therapy targeting the B cell maturation antigen (BCMA) is now widely approved in relapsed refractory patients and is moving into earlier treatment lines. In this review, we discuss the evidence underpinning current regulatory approvals and consider mechanisms through which CAR-T cell efficacy could be improved. These include tackling BCMA-loss, harnessing the immunosuppressive tumour microenvironment, manufacturing concerns including the potential role of other cellular sources, safety issues such as cytokine release syndrome and neurotoxicity, and optimal patient selection.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, Austin Health, Melbourne, VIC, Australia.
| | - Deepu Madduri
- Department of Medicine, Blood and Marrow Transplantation, Stanford Hospital, Palo Alto, CA, USA
| | - Jay Hocking
- Department of Haematology, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Tagami N, Yuda J, Goto Y. Current status of BAFF targeting immunotherapy in B-cell neoplasm. Int J Clin Oncol 2024; 29:1676-1683. [PMID: 39222149 PMCID: PMC11511695 DOI: 10.1007/s10147-024-02611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
B-cell activating factor belonging to the TNF family (BAFF), also known as B-lymphocyte stimulator (BLyS), plays a crucial role in B-cell development. It has multiple receptors, including BCMA, TACI, and BAFF-R, with diverse roles in different cell types. BAFF induces B-cell proliferation and immunoglobulin secretion, and acts as a survival factor for immature, naive, and activated B cells. Consequently, BAFF-deficient mice often show suppressed humoral responses, while BAFF-overexpressing mice show the higher number of mature B cells and may develop autoimmune-like manifestations and B-cell lymphoproliferative diseases. Elevated BAFF levels are also associated with various hematological malignancies, and its expression correlates with disease progression in some cases. Therefore, BAFF-targeted therapies, such as belimumab, atacicept, and tabalumab, are being explored in clinical trials for conditions like chronic lymphocytic leukemia (CLL) and multiple myeloma. Belimumab, an anti-BAFF monoclonal antibody, is being investigated in combination with rituximab/venetoclax for CLL. Atacicept, a decoy receptor for BAFF and APRIL, showed tolerability in a phase 1b trial for CLL. Tabalumab, another monoclonal antibody targeting BAFF, did not demonstrate significant efficacy in a phase 2 study for relapsed/refractory multiple myeloma. BAFF ligand-based CAR-T cells are designed to target BAFF receptors and show promise in preclinical studies, particularly for B-cell malignancies. The review emphasizes the importance of understanding the roles of BAFF and its receptors in the microenvironment of hematologic malignancies. Targeting BAFF and its receptors presents potential therapeutic avenues, and ongoing clinical trials provide valuable insights.
Collapse
MESH Headings
- Humans
- B-Cell Activating Factor
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- B-Cell Activation Factor Receptor/metabolism
- Immunotherapy/methods
- Multiple Myeloma/drug therapy
- Multiple Myeloma/therapy
- Multiple Myeloma/immunology
- Mice
- Recombinant Fusion Proteins/therapeutic use
- B-Lymphocytes/immunology
- B-Cell Maturation Antigen/immunology
- Molecular Targeted Therapy
Collapse
Affiliation(s)
- Nami Tagami
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
14
|
Springer AD, Wang R, Wang J, Du Q, Pi W, Nguyen AQ, Li X, Khasanov A, Zhu T, Yan Z, Hong Y, Zhou H, Zhang Y, Kerwin L, Li L, Ji H, Zhang H. Preclinical Evaluation of STI-8811, a Novel Antibody-Drug Conjugate Targeting BCMA for the Treatment of Multiple Myeloma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2660-2672. [PMID: 39292169 PMCID: PMC11467701 DOI: 10.1158/2767-9764.crc-24-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Treatment for patients with multiple myeloma has experienced rapid development and improvement in recent years; however, patients continue to experience relapse, and multiple myeloma remains largely incurable. B-cell maturation antigen (BCMA) has been widely recognized as a promising target for treatment of multiple myeloma due to its exclusive expression in B-cell linage cells and its critical role in the growth and survival of malignant plasma cells. Here, we introduce STI-8811, a BCMA-targeting antibody-drug conjugate (ADC) linked to an auristatin-derived duostatin payload via an enzymatically cleavable peptide linker, using our proprietary C-lock technology. STI-8811 exhibits target-specific binding activity and rapid internalization, leading to G2/M cell-cycle arrest, caspase 3/7 activation, and apoptosis in BCMA-expressing tumor cells in vitro. Soluble BCMA (sBCMA) is shed by multiple myeloma cells into the blood and increases with disease progression, competing for ADC binding and reducing its efficacy. We report enhanced cytotoxic activity in the presence of high levels of sBCMA compared with a belantamab mafodotin biosimilar (J6M0-mcMMAF). STI-8811 demonstrated greater in vivo activity than J6M0-mcMMAF in solid and disseminated multiple myeloma models, including tumor models with low BCMA expression and/or in large solid tumors representing soft-tissue plasmacytomas. In cynomolgus monkeys, STI-8811 was well tolerated, with toxicities consistent with other BCMA-targeting ADCs with auristatin payloads in clinical studies. STI-8811 has the potential to outperform current clinical candidates with lower toxicity and higher activity under conditions found in patients with advanced disease. Significance: STI-8811 is a BCMA-targeting ADC carrying a potent auristatin derivative. We report unique binding properties which maintain potent cytotoxic activity under sBCMA-high conditions that hinder the clinical efficacy of current BCMA-targeting ADC candidates. Beyond disseminated models of multiple myeloma, we observed efficacy in solid tumor models of plasmacytomas with low and heterogenous BCMA expressions at a magnitude and duration of response exceeding that of clinical comparators.
Collapse
Affiliation(s)
| | | | | | - Qinyi Du
- Levena BioPharma, San Diego, California.
| | - Willie Pi
- Levena BioPharma, San Diego, California.
| | | | - Xiaoqing Li
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| | | | - Tong Zhu
- Levena BioPharma, San Diego, California.
| | - Zheng Yan
- Levena BioPharma, San Diego, California.
| | | | - Heyue Zhou
- Sorrento Therapeutics Inc., San Diego, California.
| | | | - Lisa Kerwin
- Sorrento Therapeutics Inc., San Diego, California.
| | - Lingna Li
- Levena BioPharma, San Diego, California.
| | - Henry Ji
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| | - Hong Zhang
- Levena BioPharma, San Diego, California.
- Sorrento Therapeutics Inc., San Diego, California.
| |
Collapse
|
15
|
Yashar D, Regidor B, Goldwater MS, Bujarski S, Del Dosso A, Berenson JR. Targeting B-cell maturation antigen for treatment and monitoring of relapsed/refractory multiple myeloma patients: a comprehensive review. Ther Adv Hematol 2024; 15:20406207241275797. [PMID: 39290982 PMCID: PMC11406639 DOI: 10.1177/20406207241275797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Despite major therapeutic advancements in recent years, multiple myeloma (MM) remains an incurable disease with nearly all patients experiencing relapsed and refractory disease over the course of treatment. Extending the duration and durability of clinical responses will necessitate the development of therapeutics with novel targets that are capable of robustly and specifically eliminating myeloma cells. B-cell maturation antigen (BCMA) is a membrane-bound protein expressed predominantly on malignant plasma cells and has recently been the target of several novel therapeutics to treat MM patients. This review will focus on recently approved and currently in development agents that target this protein, including bispecific antibodies, antibody-drug conjugates, and chimeric antigen receptor T-cell therapies. In addition, this protein also serves as a novel serum biomarker to predict outcomes and monitor disease status for MM patients; the studies demonstrating this use of BCMA will be discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | | | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, 9201 Sunset Blvd., West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
- ONCOtherapeutics, West Hollywood, CA, USA
| |
Collapse
|
16
|
Devasia AJ, Chari A, Lancman G. Bispecific antibodies in the treatment of multiple myeloma. Blood Cancer J 2024; 14:158. [PMID: 39266530 PMCID: PMC11393350 DOI: 10.1038/s41408-024-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
The treatment paradigm in myeloma is constantly changing. Upfront use of monoclonal antibodies like daratumumab along with proteasome inhibitors (PI)s, and immune modulators (IMiD)s have significantly improved survival and outcomes, but also cause unique challenges at the time of relapse. Engaging immune T cells for tumour cell kill with chimeric antigenic T-cell (CAR T-cell) therapy and bispecific antibodies have become important therapeutic options in relapsed multiple myeloma. Bispecific antibodies are dual antigen targeting constructs that engage the T cells to plasma cells through various target antigens like B-cell membrane antigen (BCMA), G-protein-coupled receptor family C group 5 member D (GPRC5D), and Fc receptor-homolog 5 (FcRH5). These agents have proven to induce deep and durable responses in heavily pre-treated myeloma patients with a predictable safety profile and the ease of off-the-shelf availability. Significant research is ongoing to overcome resistance mechanisms like T cell exhaustion, target antigen mutation or loss and high disease burden. Various trials are also studying these agents as first line options in the newly diagnosed setting. These agents play an important role in the relapsed setting, and efforts are underway to optimize their sequencing in the myeloma treatment algorithm.
Collapse
Affiliation(s)
| | - Ajai Chari
- University of California, San Francisco, San Francisco, CA, USA
| | - Guido Lancman
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
17
|
Nasiri F, Asaadi Y, Mirzadeh F, Abdolahi S, Molaei S, Gavgani SP, Rahbarizadeh F. Updates on CAR T cell therapy in multiple myeloma. Biomark Res 2024; 12:102. [PMID: 39261906 PMCID: PMC11391811 DOI: 10.1186/s40364-024-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by the abnormal proliferation of plasma cells. Initial treatments often include immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and monoclonal antibodies (mAbs). Despite salient progress in diagnosis and treatment, most MM patients typically have a median life expectancy of only four to five years after starting treatment. In recent developments, the success of chimeric antigen receptor (CAR) T-cells in treating B-cell malignancies exemplifies a new paradigm shift in advanced immunotherapy techniques with promising therapeutic outcomes. Ide-cel and cilta-cel stand as the only two FDA-approved BCMA-targeted CAR T-cells for MM patients, a recognition achieved despite extensive preclinical and clinical research efforts in this domain. Challenges remain regarding certain aspects of CAR T-cell manufacturing and administration processes, including the lack of accessibility and durability due to T-cell characteristics, along with expensive and time-consuming processes limiting health plan coverage. Moreover, MM features, such as tumor antigen heterogeneity, antigen presentation alterations, complex tumor microenvironments, and challenges in CAR-T trafficking, contribute to CAR T-cell exhaustion and subsequent therapy relapse or refractory status. Additionally, the occurrence of adverse events such as cytokine release syndrome, neurotoxicity, and on-target, off-tumor toxicities present obstacles to CAR T-cell therapies. Consequently, ongoing CAR T-cell trials are diligently addressing these challenges and barriers. In this review, we provide an overview of the effectiveness of currently available CAR T-cell treatments for MM, explore the primary resistance mechanisms to these treatments, suggest strategies for improving long-lasting remissions, and investigate the potential for combination therapies involving CAR T-cells.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Molaei
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Piri Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Guo P, Wang Y, He H, Chen D, Liu J, Qiang W, Lu J, Liang Y, Du J. Elevated serum levels of soluble B-cell maturation antigen as a prognostic biomarker for multiple myeloma. Clin Exp Immunol 2024; 217:221-232. [PMID: 38743453 PMCID: PMC11310710 DOI: 10.1093/cei/uxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Indexed: 05/16/2024] Open
Abstract
Serum B-cell maturation antigen (sBCMA) levels can serve as a sensitive biomarker in multiple myeloma (MM). In the research setting, sBCMA levels can be accurately detected by enzyme-linked immunosorbent assay (ELISA), but the approach has not been approved for clinical use. Here, we used a novel chemiluminescence method to assess sBCMA levels in 759 serum samples from 17 healthy donors and 443 patients with plasma cell (PC) diseases including AL amyloidosis, POEMS syndrome, and MM. Serum BCMA levels were elevated 16.1-fold in patients with newly diagnosed MM compared to healthy donors and rare PC diseases patients. Specifically, the sBCMA levels in patients with progressive disease were 64.6-fold higher than those who showed partial response or above to treatment. The sBCMA level also correlated negatively with the response depth of MM patients. In newly diagnosed and relapsed MM patients, survival was significantly longer among those subjects whose sBCMA levels are below the median levels compared with those above the median value. We optimized the accuracy of the survival prediction further by integrating sBCMA level into the Second Revised International Staging System (R2-ISS). Our findings provide evidence that the novel chemiluminescence method is sensitive and practical for measuring sBCMA levels in clinical samples and confirm that sBCMA might serve as an independent prognostic biomarker for MM.
Collapse
Affiliation(s)
- Pei Guo
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haiyan He
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dongjian Chen
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Liu
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanting Qiang
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Lu
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Du
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Firestone RS, Socci ND, Shekarkhand T, Zhu M, Qin WG, Hultcrantz M, Mailankody S, Tan CR, Korde N, Lesokhin AM, Hassoun H, Shah U, Maclachlan KH, Rajeeve S, Landau HJ, Scordo M, Shah GL, Lahoud OB, Giralt S, Murata K, Usmani SZ, Chung DJ. Antigen escape as a shared mechanism of resistance to BCMA-directed therapies in multiple myeloma. Blood 2024; 144:402-407. [PMID: 38728378 PMCID: PMC11302451 DOI: 10.1182/blood.2023023557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT B-cell maturation antigen (BCMA)-targeting therapeutics have dramatically improved outcomes in relapsed/refractory multiple myeloma (RRMM). However, whether the mechanisms of resistance between these therapies are shared and how the identification of such mechanisms before therapy initiation could refine clinical decision-making remains undefined. We analyzed outcomes for 72 RRMM patients treated with teclistamab, a CD3 × BCMA bispecific antibody, 42% (30/72) of whom had prior BCMA-directed therapy exposure. Malignant plasma cell BCMA expression was present in all BCMA therapy-naïve patients. Prior therapy-mediated loss of plasma cell BCMA expression before teclistamab treatment, measured by immunohistochemistry, was observed in 3 patients, none of whom responded to teclistamab, and 1 of whom also did not respond to ciltacabtagene autoleucel. Whole exome sequencing of tumor DNA from 1 patient revealed biallelic loss of TNFRSF17 following treatment with belantamab mafodotin. Low-to-undetectable peripheral blood soluble BCMA levels correlated with the absence of BCMA expression by bone marrow plasma cells. Thus, although rare, loss of BCMA expression following TNFRSF17 gene deletions can occur following any BCMA-directed therapy and prevents response to subsequent anti-BCMA-directed treatments, underscoring the importance of verifying the presence of a target antigen.
Collapse
Affiliation(s)
- Ross S. Firestone
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Department of Engineering and Bioinformatics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tala Shekarkhand
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Ge Qin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlyn Rose Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Alexander M. Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Urvi Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sridevi Rajeeve
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heather J. Landau
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Scordo
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan L. Shah
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oscar B. Lahoud
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kazunori Murata
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saad Z. Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
20
|
Edwards JP, Swers JS, Buonato JM, Zaritskaya L, Mu CJ, Gupta A, Shachar S, LaFleur DW, Richman LK, Tice DA, Hilbert DM. Controlling CAR-T cell activity and specificity with synthetic SparX adapters. Mol Ther 2024; 32:1835-1848. [PMID: 38659225 PMCID: PMC11184337 DOI: 10.1016/j.ymthe.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein. The interaction is mediated through an epitope on the TAG that is occluded in the native alpha-fetoprotein molecule. In vitro and in vivo data demonstrate that the activation and cytolytic activity of ARC-T cells is dependent on the dose of SparX protein and only occurs when ARC-T cells are engaged with SparX proteins bound to antigen-positive cells. ARC-T cell specificity was also redirected in vivo by changing SparX proteins that recognized different tumor antigens to combat inherent or acquired tumor heterogeneity. The ARC-SparX platform is designed to expand patient and physician access to cell therapy by controlling potential toxicities through SparX dosing regimens and enhancing tumor elimination through sequential or simultaneous administration of SparX proteins engineered to bind different tumor antigens.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Immunotherapy, Adoptive/methods
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Protein Binding
Collapse
|
21
|
Parrondo RD, Ailawadhi S, Cerchione C. Bispecific antibodies for the treatment of relapsed/refractory multiple myeloma: updates and future perspectives. Front Oncol 2024; 14:1394048. [PMID: 38660139 PMCID: PMC11039948 DOI: 10.3389/fonc.2024.1394048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Patients with relapsed/refractory multiple myeloma (RRMM) that are refractory to the five most active anti-MM drugs, so-called penta-refractory MM, have historically had dismal outcomes with subsequent therapies. Progressive immune dysfunction, particularly of the T-cell repertoire, is implicated in the development of disease progression and refractory disease. However, the advent of novel immunotherapies such as bispecific antibodies are rapidly changing the treatment landscape and improving the survival outcomes of patients with RRMM. Bispecific antibodies are antibodies that are engineered to simultaneously engage cytotoxic immune effector cells (T cells or NK cells) and malignant plasma cells via binding to immune effector cell antigens and extracellular plasma cell antigens leading to immune effector cell activation and malignant plasma cell destruction. Currently, bispecific antibodies that bind CD3 on T cells and plasma cell epitopes such as B-cell maturation antigen (BCMA), G-protein coupled receptor family C group 5 member D (GPRC5d), and Fc receptor homologue 5 (FcRH5) are the most advanced in clinical development and are showing unprecedented response rates in patients with RRMM, including patients with penta-refractory disease. In this review article, we explore the available clinical data of bispecific antibodies in RRMM and summarize the efficacy, safety, toxicity, clinical outcomes, mechanisms of resistance, and future directions of these therapies in patients with RRMM.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, and Cellular Therapies, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, United States
| | - Sikander Ailawadhi
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, and Cellular Therapies, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, United States
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
22
|
Firestone RS, McAvoy D, Shekarkhand T, Serrano E, Hamadeh I, Wang A, Zhu M, Qin WG, Patel D, Tan CR, Hultcrantz M, Mailankody S, Hassoun H, Shah US, Korde N, Maclachlan KH, Landau HJ, Scordo M, Shah GL, Lahoud OB, Giralt S, Murata K, Hosszu KK, Chung DJ, Lesokhin AM, Usmani SZ. CD8 effector T cells enhance teclistamab response in BCMA-exposed and -naïve multiple myeloma. Blood Adv 2024; 8:1600-1611. [PMID: 37878808 PMCID: PMC10987849 DOI: 10.1182/bloodadvances.2023011225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT Teclistamab, a B-cell maturation antigen (BCMA)- and CD3-targeting bispecific antibody, is an effective novel treatment for relapsed/refractory multiple myeloma (R/RMM), but efficacy in patients exposed to BCMA-directed therapies and mechanisms of resistance have yet to be fully delineated. We conducted a real-world retrospective study of commercial teclistamab, capturing both clinical outcomes and immune correlates of treatment response in a cohort of patients (n = 52) with advanced R/RMM. Teclistamab was highly effective with an overall response rate (ORR) of 64%, including an ORR of 50% for patients with prior anti-BCMA therapy. Pretreatment plasma cell BCMA expression levels had no bearing on response. However, comprehensive pretreatment immune profiling identified that effector CD8+ T-cell populations were associated with response to therapy and a regulatory T-cell population associated with nonresponse, indicating a contribution of immune status in outcomes with potential utility as a biomarker signature to guide patient management.
Collapse
Affiliation(s)
- Ross S. Firestone
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Devin McAvoy
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tala Shekarkhand
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edith Serrano
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Issam Hamadeh
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Wang
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Ge Qin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dhwani Patel
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlyn R. Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Urvi S. Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heather J. Landau
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan L. Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oscar B. Lahoud
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kazunori Murata
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kinga K. Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander M. Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saad Z. Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
23
|
Costa BA, Ortiz RJ, Lesokhin AM, Richter J. Soluble B-cell maturation antigen in multiple myeloma. Am J Hematol 2024; 99:727-738. [PMID: 38270277 DOI: 10.1002/ajh.27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
B-cell maturation antigen (BCMA) has emerged as a promising immunotherapeutic target in multiple myeloma (MM) management, with the successive approval of antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T-cell therapies directed to this membrane receptor. Soluble BCMA (sBCMA), a truncated version produced through gamma-secretase cleavage, can be quantified in serum/plasma samples from patients with MM via electrochemiluminescence, fluorescence, or enzyme-linked immunosorbent assays, as well as through mass spectrometry-based proteomics. Besides its short serum half-life and independence from kidney function, sBCMA represents a reliable and convenient tool for MM monitoring in patients with nonsecretory or oligosecretory disease. Numerous studies have suggested a potential utility of this bioanalyte in the risk stratification of premalignant plasma cell disorders, diagnosis and prognostication of MM, and response evaluation following anti-myeloma therapies. In short, sBCMA might be the "Swiss army knife" of MM laboratory testing, but is it ready for prime time?
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo J Ortiz
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander M Lesokhin
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Hughes CFM, Shah GL, Paul BA. Autologous hematopoietic stem cell transplantation for multiple myeloma in the age of CAR T cell therapy. Front Oncol 2024; 14:1373548. [PMID: 38601770 PMCID: PMC11004402 DOI: 10.3389/fonc.2024.1373548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the management of relapsed and refractory myeloma, with excellent outcomes and a tolerable safety profile. High dose chemotherapy with autologous hematopoietic stem cell transplantation (AHCT) is established as a mainstream of newly diagnosed multiple myeloma (NDMM) management in patients who are young and fit enough to tolerate such intensity. This standard was developed based on randomized trials comparing AHCT to chemotherapy in the era prior to novel agents. More recently, larger studies have primarily shown a progression free survival (PFS) benefit of upfront AHCT, rather than overall survival (OS) benefit. There is debate about the significance of this lack of OS, acknowledging the potential confounders of the chronic nature of the disease, study design and competing harms and benefits of exposure to AHCT. Indeed upfront AHCT may not be as uniquely beneficial as we once thought, and is not without risk. New quadruple-agent regimens are highly active and effective in achieving a deep response as quantified by measurable residual disease (MRD). The high dose chemotherapy administered with AHCT imposes a burden of short and long-term adverse effects, which may alter the disease course and patient's ability to tolerate future therapies. Some high-risk subgroups may have a more valuable benefit from AHCT, though still ultimately suffer poor outcomes. When compared to the outcomes of CAR T cell therapy, the question of whether AHCT can or indeed should be deferred has become an important topic in the field. Deferring AHCT may be a personalized decision in patients who achieve MRD negativity, which is now well established as a key prognostic factor for PFS and OS. Reserving or re-administering AHCT at relapse is feasible in many cases and holds the promise of resetting the T cell compartment and opening up options for immune reengagement. It is likely that personalized MRD-guided decision making will shape how we sequence in the future, though more studies are required to delineate when this is safe and appropriate.
Collapse
Affiliation(s)
- Charlotte F. M. Hughes
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gunjan L. Shah
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Barry A. Paul
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health/Wake Forest Baptist, Charlotte, NC, United States
| |
Collapse
|
25
|
Rees MJ, Kumar S. BCMA-directed therapy, new treatments in the myeloma toolbox, and how to use them. Leuk Lymphoma 2024; 65:287-300. [PMID: 38354090 DOI: 10.1080/10428194.2023.2284088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024]
Abstract
To address the dearth of therapeutic options available for relapsed-refractory multiple myeloma (RRMM), attention has shifted to immunotherapeutic strategies, with most products in development targeting the B-cell maturation antigen (BCMA). BCMA is a transmembrane receptor of the tumor necrosis factor receptor superfamily, essential for plasma cell survival and minimally expressed on non-hematopoietic tissues; it represents an ideal therapeutic target. Three categories of BCMA-directed therapies exist, with distinct strengths and weaknesses. Antibody-drug conjugates (ADCs) are immediately available with modest single-agent efficacy in RRMM, but deliverability is hampered by corneal toxicity. CAR T-cells are the most effective class but face significant logistical and financial barriers. Bispecific antibodies offer superior efficacy and tolerability compared to ADCs, but prolonged exposure causes significant cumulative infectious risk. In this review, we will examine the role of BCMA in MM biology, the approved and emerging therapies targeting this antigen, and how these agents can be optimally sequenced.
Collapse
Affiliation(s)
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Shen X, Dong X, Shi J, Chen H, Lan Y, Lim AC, Xie F, Ang A, Kratzer A, Rock DA, Rock BM. Deciphering the Exact Sequence of Endogenous Soluble B Cell Maturation Antigen and Unbiased Quantitation in Multiple Myeloma Patient Samples by LC-MS. Clin Chem 2024; 70:339-349. [PMID: 38175591 DOI: 10.1093/clinchem/hvad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Xue Dong
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Jianxia Shi
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hao Chen
- Protein Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Yun Lan
- Clinical Biomarkers, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Ai Ching Lim
- Protein Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Fang Xie
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Agnes Ang
- Clinical Biomarkers, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Andrea Kratzer
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., München, Germany
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
27
|
Guo Y, Quijano Cardé NA, Kang L, Verona R, Banerjee A, Kobos R, Chastain K, Uhlar C, Pillarisetti K, Doyle M, Smit J, Haddish‐Berhane N, Ouellet D. Teclistamab: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13717. [PMID: 38266057 PMCID: PMC10784707 DOI: 10.1111/cts.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Multiple myeloma (MM) remains incurable despite improvements in treatment options. B-cell maturation antigen (BCMA) is predominantly expressed in B-lineage cells and represents a promising new target for MM. Teclistamab (TECVAYLITM ) is the first T-cell redirecting bispecific antibody approved for patients with MM. Targeting both CD3 receptor complex on T cells and BCMA on myeloma cells, teclistamab leads to T-cell activation and subsequent lysis of BCMA+ cells. The recommended dose of teclistamab is 1.5 mg/kg subcutaneous weekly after two step-up doses of 0.06 and 0.3 mg/kg, which was selected after review of safety, efficacy, pharmacokinetic, and pharmacodynamic data. Exposure-response analyses of efficacy and safety data were also used to confirm the teclistamab dose. Teclistamab resulted in a high rate of deep and durable responses (63% overall response, 45.5% complete response or better, with 22 months median duration of response) in patients with triple-exposed relapsed/refractory MM. Common adverse reactions included cytokine release syndrome, hematologic abnormalities, and infections. Teclistamab is currently being investigated as monotherapy as well as combination therapy across different MM indications.
Collapse
Affiliation(s)
- Yue Guo
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | | | - Lijuan Kang
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | - Raluca Verona
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | - Arnob Banerjee
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | - Rachel Kobos
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | | | - Clarissa Uhlar
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | | | | | - Jennifer Smit
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | | | | |
Collapse
|
28
|
Kirchhoff DC, Zhang W, Chandras A, Mendu DR. Analytical assessment and validation of the ProteinSimple ELLA serum B-cell maturation antigen assay. Pract Lab Med 2024; 38:e00354. [PMID: 38283321 PMCID: PMC10821622 DOI: 10.1016/j.plabm.2023.e00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Objectives Soluble B-Cell Maturation Antigen (sBCMA) is a degradation product of plasma cell-bound BCMA found in serum. Serum sBCMA concentrations correlate with bone marrow plasma cellularity, making it an attractive biomarker for monitoring plasma cell disorders, such as multiple myeloma. Here we evaluated the automated BCMA immunoassay for the ProteinSimple ELLA, for the analysis of sBCMA. Design & methods Inter and intra-run precision was assessed through replicate sBCMA measurements at 3 different concentration levels. Linearity was determined through serial dilution of a high sBMCA patient sample. Accuracy was assessed through split specimen analysis on two separate lots of reagents. Stability was assessed at 3 temperature levels over 14 days. Cross-reactivity was assessed on BCMA targeting and non-targeting chemotherapeutics. A reference range was established through the analysis of 146 healthy donor samples. The effect of endogenous interferents was assessed through spiking and recovery studies. Results Inter and intra-run precision studies afforded CVs of <10% at all three concentration levels. Analytical measurement range was confirmed from 0.1 to 7 ng/mL. Accuracy studies afforded a slope of 0.976, intercept of 1.22, R2 of 0.996. Assayed sBCMA values were unaffected by endogenous interferents and non-BMCA targeting antibodies. BCMA targeting therapeutics negatively affected assayed sBCMA concentrations. The reference range was established at 19-58 ng/mL sBCMA is analytically stable. Conclusions The ProteinSimple ELLA sBCMA assay shows acceptable performance for the clinical assessment of sBCMA. The assay was highly affected by BCMA targeting therapeutics, thereby patients undergoing this therapy should not have their sBCMA levels assessed by this method.
Collapse
Affiliation(s)
- Daniel Conrad Kirchhoff
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Wei Zhang
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Athanasia Chandras
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Damodara Rao Mendu
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
29
|
Li C, Xu J, Luo W, Liao D, Xie W, Wei Q, Zhang Y, Wang X, Wu Z, Kang Y, Zheng J, Xiong W, Deng J, Hu Y, Mei H. Bispecific CS1-BCMA CAR-T cells are clinically active in relapsed or refractory multiple myeloma. Leukemia 2024; 38:149-159. [PMID: 37848634 PMCID: PMC10776387 DOI: 10.1038/s41375-023-02065-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Multiple myeloma (MM) bears heterogeneous cells that poses a challenge for single-target immunotherapies. Here we constructed bispecific CS1-BCMA CAR-T cells aiming to augment BCMA targeting with CS1. Sixteen patients with relapsed or refractory (RR) MM received CS1-BCMA CAR-T infusion. Six patients (38%) had cytokine release syndrome, which was of grade 1-2 in 31%. No neurological toxicities were observed. The most common severe adverse events were hematological, including leukopenia (100%), neutropenia (94%), lymphopenia (100%) and thrombocytopenia (31%). Three patients with solitary extramedullary disease (sEMD) did not respond. At a median follow-up of 246 days, 13 patients (81%) had an overall response and attained minimal residual disease-negativity, and six (38%) reached a stringent complete response (sCR). Among the 13 responders, 1-year overall survival and progression-free survival were 72.73% and 56.26%, respectively. Four patients maintained sCR with a median duration of 17 months. Four patients experienced BCMA+ and CS1+ relapse or progression. One patient responded after anti-BCMA CAR-T treatment failure. Lenalidomide maintenance after CAR-T infusion and the resistance mechanism of sEMD were preliminarily explored in three patients. CAR-T cells persisted at a median of 406 days. Soluble BCMA could serve as an ideal biomarker for efficacy monitoring. CS1-BCMA CAR-T cells were clinically active with good safety profiles in patients with RRMM. Clinical trial registration: This study was registered on ClinicalTrials.gov, number NCT04662099.
Collapse
Affiliation(s)
- Chenggong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jia Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Wenjing Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Danying Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Qiuzhe Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Xindi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Zhuolin Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yun Kang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jin'e Zheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiong
- Wuhan Sian Medical Technology Co., Ltd Wuhan, Wuhan, 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| |
Collapse
|
30
|
Danis R, Regidor B, Bujarski S, Jew S, Goldwater MS, Swift R, Eades BM, Emamy-Sadr M, Del Dosso A, Berenson J. Serum B-Cell Maturation Antigen Reflects Disease Status in a Patient Who Developed Nonsecretory Multiple Myeloma: A Case Report. Case Rep Oncol 2024; 17:747-752. [PMID: 39015635 PMCID: PMC11250115 DOI: 10.1159/000539814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Multiple myeloma (MM) is an incurable bone marrow (BM)-based cancer involving clonal plasma cells. Most patients show elevated levels of serum monoclonal protein (sMP) and kappa or lambda serum free light chains (sFLCs) at diagnosis. However, around 1-2% of patients, termed nonsecretory, do not produce these biomarkers. As the disease progresses, more patients may become unevaluable using conventional markers, requiring invasive and expensive procedures like BM biopsies and positron emission tomography-computed tomography (PET-CT) scans for assessment and highlighting the need for alternative methods to monitor disease progression. Case Presentation We present a case report of an MM patient who developed nonsecretory disease during his second line of treatment when he complained of new rib pain; progressive disease was then confirmed on a PET-CT scan. The patient showed an increase in his serum B-cell maturation antigen (sBCMA) levels whereas his conventional myeloma markers did not detect disease activity (sMP remained undetectable and involved sFLC level was normal). After starting a new treatment regimen, his rib pain disappeared, PET-CT scan improved, and sBCMA levels decreased. Upon relapse, he developed increased rib pain with a rising sBCMA level; his conventional myeloma markers did not detect disease activity. After changing to a new regimen, his rib pain improved, and this was accompanied by a decrease in his sBCMA levels. Conclusion Thus, this case exemplifies the potential for sBCMA to provide a non-invasive method for monitoring MM patients who develop nonsecretory disease.
Collapse
Affiliation(s)
- Ryan Danis
- Berenson Cancer Center, West Hollywood, CA, USA
| | | | - Sean Bujarski
- Berenson Cancer Center, West Hollywood, CA, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, USA
| | - Scott Jew
- Berenson Cancer Center, West Hollywood, CA, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, USA
| | - Marissa-Skye Goldwater
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
| | | | | | | | | | - James Berenson
- Berenson Cancer Center, West Hollywood, CA, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
- ONCOtherapeutics, West Hollywood, CA, USA
| |
Collapse
|
31
|
Springer C, Krauter J, Trummer A. Plasma levels of BCMA-positive extracellular vesicles correlate to response and side effects in myeloma patients treated with belantamab-mafodotin. Oncotarget 2023; 14:949-956. [PMID: 38039414 PMCID: PMC10691812 DOI: 10.18632/oncotarget.28538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In myeloma patients, high levels of soluble BCMA (sBCMA) can limit the efficacy of BCMA-directed therapies. Belantamab-mafodotin is a BCMA antibody-drug conjugate and shows good overall response rates in heavily pretreated patients but progression-free survival data are poor. As the drug induces apoptosis, we hypothesized that sBCMA includes extracellular vesicles (EV) and thus evaluated numbers of BCMA-EV before and during belantamab therapy in 10 myeloma patients. BCMA-EV were significantly higher in patients prior to Belantamab (median: 3227/μl; p = .013) than in other myeloma patients before therapy (n = 10; 1082/μl) or healthy volunteers (n = 10; 980/μl). During therapy, BCMA-EV showed a significant increase to a maximum of 8292/μl (p = .028). Maximal changes in BCMA-EV (Δmax = BCMA-EV at C1/maximal BCMA-EV) showed a strong inverse, logarithmic correlation (r = -.950; p < .001) with FLC ratio changes (Δmax = FLC ratio at C1/minimal FLC ratio) and BCMA-EV peaks often preceded FLC progression. Correlating increase of LDH and BCMA-EV levels, together with clinical symptoms, point to a mafodotin-induced eryptosis. In summary, BCMA-EV are a part of sBCMA, peak levels precede progression, and their measurement might be helpful in identifying resistance mechanisms and side effects of BCMA targeted therapies.
Collapse
Affiliation(s)
- Carsten Springer
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Jürgen Krauter
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Arne Trummer
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
- Department of Hematology, Oncology and Palliative Care, Heidekreis-Klinikum, Walsrode, Germany
| |
Collapse
|
32
|
Collins J, van Noort M, Rathi C, Post TM, Struemper H, Jewell RC, Ferron‐Brady G. Longitudinal efficacy and safety modeling and simulation framework to aid dose selection of belantamab mafodotin for patients with multiple myeloma. CPT Pharmacometrics Syst Pharmacol 2023; 12:1411-1424. [PMID: 37465991 PMCID: PMC10583243 DOI: 10.1002/psp4.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Belantamab mafodotin, a monomethyl auristatin F (MMAF)-containing monoclonal antibody-drug conjugate (ADC), demonstrated deep and durable responses in the DRiving Excellence in Approaches to Multiple Myeloma (DREAMM)-1 and pivotal DREAMM-2 studies in patients with relapsed/refractory multiple myeloma. As with other MMAF-containing ADCs, ocular adverse events were observed. To predict the effects of belantamab mafodotin dosing regimens and dose-modification strategies on efficacy and ocular safety end points, DREAMM-1 and DREAMM-2 data across a range of doses were used to develop an integrated simulation framework incorporating two separate longitudinal models and the published population pharmacokinetic model. A concentration-driven tumor growth inhibition model described the time course of serum M-protein concentration, a measure of treatment response, whereas a discrete time Markov model described the time course of ocular events graded with the GSK Keratopathy and Visual Acuity scale. Significant covariates included baseline β2 -microglobulin on growth rate, baseline M-protein on kill rate, extramedullary disease on the effect compartment rate constant, and baseline soluble B cell maturation antigen on maximal effect. Efficacy and safety end points were simulated for various doses with dosing intervals of 1, 3, 6, and 9 weeks and various event-driven dose-modification strategies. Simulations predicted that lower doses and longer dosing intervals were associated with lower probability and lower overall time with Grade 3+ and Grade 2+ ocular events compared with the reference regimen (2.5 mg/kg every 3 weeks), with a less-than-proportional reduction in efficacy. The predicted improved benefit-risk profiles of certain dosing schedules and dose modifications from this integrated framework has informed trial designs for belantamab mafodotin, supporting dose-optimization strategies.
Collapse
Affiliation(s)
| | - Martijn van Noort
- Leiden Experts on Advanced Pharmacokinetics and PharmacodynamicsLeidenThe Netherlands
| | | | - Teun M. Post
- Leiden Experts on Advanced Pharmacokinetics and PharmacodynamicsLeidenThe Netherlands
| | | | | | | |
Collapse
|
33
|
Hussain M, Yellapragada S, Al Hadidi S. Differential Diagnosis and Therapeutic Advances in Multiple Myeloma: A Review Article. Blood Lymphat Cancer 2023; 13:33-57. [PMID: 37731771 PMCID: PMC10508231 DOI: 10.2147/blctt.s272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the abnormal clonal proliferation of plasma cells that may result in focal bone lesions, renal failure, anemia, and/or hypercalcemia. Recently, the diagnosis and treatment of MM have evolved due to a better understanding of disease pathophysiology, improved risk stratification, and new treatments. The incorporation of new drugs, including proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies and high-dose chemotherapy followed by hematopoietic stem cell transplantation, has resulted in a significant improvement in patient outcomes and QoL. In this review, we summarize differential diagnoses and therapeutic advances in MM.
Collapse
Affiliation(s)
- Munawwar Hussain
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarvari Yellapragada
- Michael E. DeBakey VA Medical Center and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023; 15:4550. [PMID: 37760519 PMCID: PMC10526328 DOI: 10.3390/cancers15184550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized the treatment landscape of hematological malignancies. By directing T cells towards specific tumor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive development of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin's lymphoma, acute myelogenous leukemia, and acute lymphoblastic leukemia. However, despite their generally favorable safety profiles, particular toxicities such as infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Additionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining practical applications and strategies to overcome these limitations.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Moussab Damlaj
- Department of Hematology & Oncology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
- College of Medicine, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
35
|
O'Neill C, van de Donk NWCJ. T-cell redirecting bispecific antibodies in multiple myeloma: Current landscape and future directions. EJHAEM 2023; 4:811-822. [PMID: 37601851 PMCID: PMC10435697 DOI: 10.1002/jha2.729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023]
Abstract
T-cell engaging bispecific antibodies (BsAbs) have substantial activity in heavily pretreated patients with multiple myeloma (MM). The overall response rate obtained with B-cell maturation antigen (BCMA)-targeting BsAbs is approximately 60%-70%, including a high proportion of patients achieving very good partial response or complete response. Comparable efficacy is seen with BsAbs targeting GPRC5D or FcRH5. Cytokine release syndrome is frequently observed with BsAb treatment, but mostly during the step-up doses and the first full dose. Early intervention with IL-6 receptor blocking antibodies (e.g., tocilizumab) prevents escalation to severe manifestations. Infections are also common during treatment and related to the extent of exposure to immune suppressive anti-MM agents, as well as development of hypogammaglobulinemia due to elimination of normal plasma cells, and probably because of T-cell exhaustion resulting from continuous BsAb-mediated T-cell activation. Adequate monitoring for infections and institution of infectious prophylaxis are essential. Patients treated with GPRC5D-targteing BsAbs often develop skin and nail disorders and loss of taste, which is likely related to GPRC5D expression in cells that produce hard keratin. Currently ongoing studies are aiming at further improving these results by evaluating BsAbs in combination with other drugs, such as immunomodulatory agents and anti-CD38 antibodies, as well as the application of BsAbs in earlier lines of therapy, including patients with newly diagnosed disease. We expect that the outcomes of patients with MM will further improve by the introduction of this novel type of T-cell immunotherapy.
Collapse
Affiliation(s)
- Chloe O'Neill
- Amsterdam UMC, Vrije Universiteit AmsterdamDepartment of HematologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer Biology and ImmunologyAmsterdamThe Netherlands
| | - Niels W. C. J. van de Donk
- Amsterdam UMC, Vrije Universiteit AmsterdamDepartment of HematologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer Biology and ImmunologyAmsterdamThe Netherlands
| |
Collapse
|
36
|
Asherie N, Kfir-Erenfeld S, Avni B, Assayag M, Dubnikov T, Zalcman N, Lebel E, Zimran E, Shaulov A, Pick M, Cohen Y, Avivi I, Cohen C, Gatt ME, Grisariu S, Stepensky P. Development and manufacture of novel locally produced anti-BCMA CAR T cells for the treatment of relapsed/refractory multiple myeloma: results from a phase I clinical trial. Haematologica 2023; 108:1827-1839. [PMID: 36200421 PMCID: PMC10316256 DOI: 10.3324/haematol.2022.281628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T-cell (CAR T) therapy shows remarkable efficacy in patients with relapsed and/or refractory (R/R) multiple myeloma (MM). HBI0101, a novel second generation optimized anti- BCMA CAR T-cell therapy, was developed in an academic setting. We conducted a phase I dose-escalation study of HBI0101 (cohort 1: 150x106 CAR T cells, n=6; cohort 2: 450x106 CAR T cells, n=7; cohort 3: 800x106 CAR T cells, n=7) in 20 heavily pre-treated R/R MM patients. Grade 1-2 cytokine release syndrome (CRS) was reported in 18 patients (90%). Neither grade 3-4 CRS nor neurotoxicity of any grade were observed. No dose-limiting toxicities were observed in any cohort. The overall response rate (ORR), (stringent) complete response (CR/sCR), and very good partial response rates were 75%, 50%, and 25%, respectively. Response rates were dose-dependent with 85% ORR, 71% CR, and 57% minimal residual disease negativity in the high-dose cohort 3. Across all cohorts, the median overall survival (OS) was 308 days (range 25-466+), with an estimated OS of 55% as of June 27th (data cut-off). The median progression-free survival was 160 days, with 6 subjects remaining progression free at the time of data cut-off. Our findings demonstrate the manageable safety profile and efficacy of HBI0101. These encouraging data support the decentralization of CAR T production in an academic setting, ensuring sufficient CAR T supply to satisfy the increasing local demand. Clinicaltrials.gov NCT04720313.
Collapse
Affiliation(s)
- Nathalie Asherie
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem.
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Miri Assayag
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Tatyana Dubnikov
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Nomi Zalcman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Eyal Lebel
- Department of Hematology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Eran Zimran
- Department of Hematology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Adir Shaulov
- Department of Hematology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Marjorie Pick
- Department of Hematology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Yael Cohen
- Department of Hematology, Aviv Medical Center, Sackler faculty of medicine, Aviv University
| | - Irit Avivi
- Department of Hematology, Aviv Medical Center, Sackler faculty of medicine, Aviv University
| | - Cyrille Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900-02, Israel
| | - Moshe E Gatt
- Department of Hematology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Sigal Grisariu
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem.
| |
Collapse
|
37
|
Shrivastava T, Van Rhee F, Al Hadidi S. Targeting B Cell Maturation Antigen in Patients with Multiple Myeloma: Current Perspectives. Onco Targets Ther 2023; 16:441-464. [PMID: 37359353 PMCID: PMC10290473 DOI: 10.2147/ott.s370880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Relapsed/refractory multiple myeloma remains a challenging disease necessitating the development of more effective treatment options. In the past decade, myeloma therapies have made significant advancements with the introduction of new treatment modalities. One of the new major targets for these novel therapeutics has been B-cell maturation antigen (BCMA), which is expressed on mature B-lymphocytes and plasma cells. There are three main categories of BCMA-targeted therapies currently available, including bispecific antibodies (BsAbs), antibody drug conjugates (ADCs), and chimeric antigen receptor (CAR) T-cell therapies. In this review, we discuss the existing BCMA-targeted therapies and provide insights into currently available treatment and future developments, with a particular focus on clinical efficacy and common drug-related adverse events.
Collapse
Affiliation(s)
- Trilok Shrivastava
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frits Van Rhee
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
38
|
Raab MS, Cohen YC, Schjesvold F, Aardalen K, Oka A, Spencer A, Wermke M, Souza AD, Kaufman JL, Cafro AM, Ocio EM, Doki N, Henson K, Trabucco G, Carrion A, Bender FC, Juif PE, Fessehatsion A, Fan L, Stonehouse JP, Blankenship JW, Granda B, De Vita S, Lu H. Preclinical discovery and initial clinical data of WVT078, a BCMA × CD3 bispecific antibody. Leukemia 2023; 37:1349-1360. [PMID: 37024520 DOI: 10.1038/s41375-023-01883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023]
Abstract
B-cell maturation antigen (BCMA) is an ideal target in multiple myeloma (MM) due to highly specific expression in malignant plasma cells. BCMA-directed therapies including antibody drug conjugates, chimeric antigen receptor-T cells and bispecific antibodies (BsAbs) have shown high response rates in MM. WVT078 is an anti-BCMA× anti-CD3 BsAb that binds to BCMA with subnanomolar-affinity. It was selected based on potent T cell activation and anti-MM activity in preclinical models with favorable tolerability in cynomolgus monkey. In the ongoing first-in-human phase I dose-escalation study (NCT04123418), 33 patients received intravenous WVT078 once weekly at escalated dosing. At the active doses of 48-250 µg/kg tested to date (n = 26), the overall response rate (ORR) was 38.5% (90% CI: 22.6-56.4%) and the complete response rate (CRR, stringent complete response + complete response) was 11.5%, (90% CI: 3.2-27.2%). At the highest dose level tested, the ORR was 75% (3 of 4 patients). 26 (78.8%) patients reported at least one Grade ≥3 AE and 16 of these AEs were suspected to be drug related. 20 patients (60.6%) experienced cytokine release syndrome. WVT078 has an acceptable safety profile and shows preliminary evidence of clinical activity at doses tested to date.
Collapse
Affiliation(s)
- Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Yael C Cohen
- Department of Hematology, Tel-Aviv Sourasky (Ichilov) Medical Center, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | - Adwait Oka
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Andrew Spencer
- Department of Malignant Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Martin Wermke
- NCT/UCC Early Clinical Trial Unit, Universitätsklinikum Carl Gustav Carus an der Technische Universität, Dresden, Germany
| | - Anita D Souza
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Anna Maria Cafro
- Department of Hematology, Niguarda Hospital, Niguarda, Milan, Italy
| | - Enrique M Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kristin Henson
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gina Trabucco
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Ana Carrion
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Liqiong Fan
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | - Brian Granda
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Serena De Vita
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Haihui Lu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
39
|
Xing L, Liu Y, Liu J. Targeting BCMA in Multiple Myeloma: Advances in Antibody-Drug Conjugate Therapy. Cancers (Basel) 2023; 15:cancers15082240. [PMID: 37190168 DOI: 10.3390/cancers15082240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple myeloma (MM) is an incurable cancer of the plasma cells. In the last twenty years, treatment strategies have evolved toward targeting MM cells-from the shotgun chemotherapy approach to the slightly more targeted approach of disrupting important MM molecular pathways to the immunotherapy approach that specifically targets MM cells based on protein expression. Antibody-drug conjugates (ADCs) are introduced as immunotherapeutic drugs which utilize an antibody to deliver cytotoxic agents to cancer cells distinctively. Recent investigations of ADCs for MM treatment focus on targeting B cell maturation antigen (BCMA), which regulates B cell proliferation, survival, maturation, and differentiation into plasma cells (PCs). Given its selective expression in malignant PCs, BCMA is one of the most promising targets in MM immunotherapy. Compared to other BCMA-targeting immunotherapies, ADCs have several benefits, such as lower price, shorter production period, fewer infusions, less dependence on the patient's immune system, and they are less likely to over-activate the immune system. In clinical trials, anti-BCMA ADCs have shown safety and remarkable response rates in patients with relapsed and refractory MM. Here, we review the properties and clinical applications of anti-BCMA ADC therapies and discuss the potential mechanisms of resistance and ways to overcome them.
Collapse
Affiliation(s)
- Lijie Xing
- Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
40
|
Swan D, Murphy P, Glavey S, Quinn J. Bispecific Antibodies in Multiple Myeloma: Opportunities to Enhance Efficacy and Improve Safety. Cancers (Basel) 2023; 15:cancers15061819. [PMID: 36980705 PMCID: PMC10046900 DOI: 10.3390/cancers15061819] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple myeloma (MM) is the second most common haematological neoplasm of adults in the Western world. Overall survival has doubled since the advent of proteosome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. However, patients with adverse cytogenetics or high-risk disease as determined by the Revised International Staging System (R-ISS) continue to have poorer outcomes, and triple-refractory patients have a median survival of less than 1 year. Bispecific antibodies (BsAbs) commonly bind to a tumour epitope along with CD3 on T-cells, leading to T-cell activation and tumour cell killing. These treatments show great promise in MM patients, with the first agent, teclistamab, receiving regulatory approval in 2022. Their potential utility is hampered by the immunosuppressive tumour microenvironment (TME), a hallmark of MM, which may limit efficacy, and by undesirable adverse events, including cytokine release syndrome (CRS) and infections, some of which may be fatal. In this review, we first consider the means of enhancing the efficacy of BsAbs in MM. These include combining BsAbs with other drugs that ameliorate the effect of the immunosuppressive TME, improving target availability, the use of BsAbs directed against multiple target antigens, and the optimal time in the treatment pathway to employ BsAbs. We then discuss methods to improve safety, focusing on reducing infection rates associated with treatment-induced hypogammaglobulinaemia, and decreasing the frequency and severity of CRS. BsAbs offer a highly-active therapeutic option in MM. Improving the efficacy and safety profiles of these agents may enable more patients to benefit from these novel therapies and improve outcomes for patients with high-risk disease.
Collapse
Affiliation(s)
- Dawn Swan
- Correspondence: ; Tel.: +353-1-809-3000
| | | | | | | |
Collapse
|
41
|
The BAFF-APRIL System in Cancer. Cancers (Basel) 2023; 15:cancers15061791. [PMID: 36980677 PMCID: PMC10046288 DOI: 10.3390/cancers15061791] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Collapse
|
42
|
Lin Z, Yu N, Cheng C, Jin B, Zhang Q, Zhuang H, Jiang X. Serum levels and significance of soluble B-cell maturation antigen in childhood-onset systemic lupus erythematosus with renal involvement. Lupus 2023; 32:680-687. [PMID: 36914971 DOI: 10.1177/09612033231164633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The aim of this study was to investigate serum levels of soluble B-cell maturation antigen (sBCMA) in childhood-onset systemic lupus erythematous (cSLE) patients with renal involvement, and to elucidate their association with clinical characteristics. METHODS 116 cases of cSLE patients with renal involvement (84 females and 32 males; median age 11.6 (10.1, 12.9) years) hospitalized in Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University and 31 healthy controls (HCs) were enrolled. Serum concentrations of sBCMA were determined using enzyme-linked immunosorbent assay (ELISA). Clinical and laboratory information of cSLE patients were retrospectively analyzed. RESULTS Serum sBCMA levels were significantly increased in primary cSLE when compared with treated cSLE patients and HCs, whereas there was no significant difference between treated cSLE patients and HCs. Patients with high disease activity displayed higher serum sBCMA levels compared with those with no or mild to moderate disease activity. Positive correlation was observed between serum sBCMA levels and systemic lupus erythematosus disease activity index-2K (SLEDAI-2K), antinuclear antibody titers, anti-double-stranded DNA titers, erythrocyte sedimentation rate, and immunoglobulin G levels, while sBCMA levels were negatively correlated with blood white blood cell count, hemoglobin, platelet count, complement C3 and C4 levels. Serum sBCMA levels decreased as disease ameliorated after treatments among 11 cases with follow-up examinations. CONCLUSIONS In cSLE patients with renal involvement, serum sBCMA levels correlated significantly with disease activity, immunological, and hematological parameters, but not with renal parameters. Our results suggest the potential and significance of serum sBCMA as a biomarker in cSLE patients.
Collapse
Affiliation(s)
- Zhilang Lin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Nannan Yu
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Bei Jin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qiufang Zhang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hongjie Zhuang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
43
|
The levels of serum soluble CD86 are correlated with the expression of CD86 variant 3 gene and are prognostic indicators in patients with myeloma. Exp Hematol 2023; 121:38-47.e2. [PMID: 36796620 DOI: 10.1016/j.exphem.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/10/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
We previously showed that cell-surface CD86 expressed on multiple myeloma (MM) cells contributed to not only tumor growth but also antitumor cytotoxic T-lymphocyte responses mediated by induction of IL-10-producing CD4+ T cells. The soluble form of CD86 (sCD86) was also detected in serum from patients with MM. Thus, to determine whether sCD86 levels are a useful prognostic factor, we investigated the association of serum sCD86 levels with disease progression and prognosis in 103 newly diagnosed patients with MM. Serum sCD86 was detected in 71% of the patients with MM but was only rarely detected in patients with monoclonal gammopathy of undetermined significance and healthy controls, and the level was significantly increased in patients with advanced-stage MM. When we examined differences in clinical characteristics according to the level of serum sCD86, those in the high (≥2.18 ng/mL, n = 38) group exhibited more aggressive clinical characteristics, with shorter overall survival times compared with those in the low (<2.18 ng/mL, n = 65) group. On the other hand, it was difficult to stratify the patients with MM into different risk groups based on the expression levels of cell-surface CD86. The levels of serum sCD86 were significantly correlated with the expression levels of the messenger RNA (mRNA) transcripts of CD86 variant 3, which lack exon 6, resulting in a truncated transmembrane region, and its variant transcripts were upregulated in the high group. Thus, our findings suggest that sCD86 can be easily measured in peripheral blood samples and is a useful prognostic marker in patients with MM.
Collapse
|
44
|
Alomari M, Kunacheewa C, Manasanch EE. The role of soluble B cell maturation antigen as a biomarker in multiple myeloma. Leuk Lymphoma 2023; 64:261-272. [PMID: 36282671 DOI: 10.1080/10428194.2022.2133540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Currently used stratification models in myeloma precursor disease as well as staging systems and response criteria in myeloma have limitations including failure to identify functionally high-risk myeloma patients. B-cell maturation antigen, a transmembrane glycoprotein required for long-lived plasma cells, is specific and expressed by myeloma cells. When it sheds from the surface of myeloma cells it can be measured in the blood as serum (sBCMA) and correlated with clinical outcomes in myeloma precursor disease as well as in active myeloma. We performed a literature review using PubMed and found 825 articles since 1992 of which any articles related to sBCMA were reviewed. These studies show the potential of sBCMA to become an important biomarker in myeloma. Here, we describe the potential advantages of sBCMA in the biology, diagnosis, prognosis, and surveillance of myeloma, while also reviewing the challenges that lie ahead before it can be implemented as a clinical tool.
Collapse
Affiliation(s)
- Mohammed Alomari
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elisabet E Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Yang J, Zhou W, Li D, Niu T, Wang W. BCMA-targeting chimeric antigen receptor T-cell therapy for multiple myeloma. Cancer Lett 2023; 553:215949. [PMID: 36216149 DOI: 10.1016/j.canlet.2022.215949] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy, despite the development of numerous innovative therapies during the past two decades. Immunotherapies are changing the treatment paradigm of MM and have improved the overall response and survival of patients with relapsed/refractory (RR) MM. B cell maturation antigen (BCMA), selectively expressed in normal and malignant plasma cells, has been targeted by several immunotherapeutic modalities. Chimeric antigen receptor (CAR) T cells, the breakthrough in cancer immunotherapy, have revolutionized the treatment of B cell malignancies and remarkably improved the prognosis of RRMM. BCMA-targeting CAR T cell therapy is the most developed CAR T cell therapy for MM, and the US Food and Drug Administration has already approved idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel) for MM. However, the development of novel BCMA-targeting CAR T cell therapies remains in progress. This review focuses on BCMA-targeting CAR T cell therapy, covering all stages of investigational progress, including the innovative preclinical studies, the initial phase I clinical trials, and the more developed phase II clinical trials. It also discusses possible measures to improve the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Jinrong Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Weilin Zhou
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Dan Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Wei Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
46
|
Zhang M, Gray F, Cushman I, Wurmser A, Chan H, Couto S, Wang M, Nakayama Y, Hagner P, Al-Masri H, Williams S, Hersey S. A Novel BCMA Immunohistochemistry Assay Reveals a Heterogenous and Dynamic BCMA Expression Profile in Multiple Myeloma. Mod Pathol 2023; 36:100050. [PMID: 36788077 DOI: 10.1016/j.modpat.2022.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
B-cell maturation antigen (BCMA) is a promising target for the treatment of multiple myeloma (MM) because the expression of this protein is largely limited to B-cell sets, plasma cells, MM, and other B-cell malignancies. Early studies assessing BCMA protein expression and localization have used insufficiently qualified immunohistochemistry assays, which have reported broad ranges of BCMA expression. As a result, our understanding of BCMA tissue expression derived from these data is limited, specifically the prevalence of BCMA expression on the cell surface/membrane, which has mechanistic relevance to the antimyeloma activity of several novel biotherapeutics. Here, we report on the qualification and application of a novel anti-BCMA immunohistochemistry antibody, 805G12. This antibody shows robust detection of BCMA in formalin-fixed, decalcified bone marrow tissue and provides key insights into membrane BCMA expression. The clone 805G12, which was raised against an intracellular C-terminal domain peptide of membrane BCMA, exhibited increased sensitivity and superior specificity across healthy and diseased tissue compared with the frequently referenced commercial reagent AF193. The new clone also demonstrated a broad range of expression of BCMA in MM and diffuse large B-cell lymphoma specimens. Additionally, cross-reactivity with closely related tumor necrosis factor receptor family members was observed with AF193 but not with 805G12. Furthermore, via established 805G12 and other independent BCMA assays, it was concluded that proteolytic processing by γ-secretase contributes to the levels of BCMA localized to the plasma membrane. As BCMA-directed therapeutics emerge to address the need for more effective treatment in the relapsed or refractory MM disease setting, the implementation of a qualified assay would ensure that reliable and consistent data on BCMA surface expression are used to inform clinical trial decisions and patient responses.
Collapse
Affiliation(s)
| | - Falon Gray
- Bristol Myers Squibb, Princeton, New Jersey.
| | | | | | - Henry Chan
- Bristol Myers Squibb, Princeton, New Jersey
| | - Suzana Couto
- Formerly Celgene Corporation, a Bristol Myers Squibb Company, Princeton, New Jersey
| | - Maria Wang
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | | | | | | | |
Collapse
|
47
|
Parikh RH, Lonial S. Chimeric antigen receptor T-cell therapy in multiple myeloma: A comprehensive review of current data and implications for clinical practice. CA Cancer J Clin 2023; 73:275-285. [PMID: 36627265 DOI: 10.3322/caac.21771] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy defined by the clonal proliferation of transformed plasma cells. Despite tremendous advances in the treatment paradigm of MM, a cure remains elusive for most patients. Although long-term disease control can be achieved in a very large number of patients, the acquisition of tumor resistance leads to disease relapse, especially in patients with triple-class refractory MM (defined as resistance to immunomodulatory agents, proteosome inhibitors, and monoclonal antibodies). There is an unmet need for effective treatment options in these patients. Chimeric antigen receptor (CAR) T-cell therapy is a novel approach that has demonstrated promising efficacy in the treatment of relapsed, refractory MM (RRMM). These genetically modified cellular therapies have demonstrated deep and durable remissions in other B-cell malignancies, and current efforts aim to achieve similar results in patients with RRMM. Early studies have demonstrated remarkable response rates with CAR T-cell therapy in RRMM; however, durable responses with CAR T-cell therapies in myeloma have yet to be realized. In this comprehensive review, the authors describe the development of CAR T-cell therapies in myeloma, the outcomes of notable clinical trials, the toxicities and limitations of CAR T-cell therapies, and the strategies to overcome therapeutic challenges of CAR T cells in the hope of achieving a cure for multiple myeloma.
Collapse
Affiliation(s)
- Rujul H Parikh
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Wiedemann Á, Szita VR, Horváth R, Szederjesi A, Sebő A, Tóth AD, Masszi T, Varga G. Soluble B-cell maturation antigen as a monitoring marker for multiple myeloma. Pathol Oncol Res 2023; 29:1611171. [PMID: 37188125 PMCID: PMC10178067 DOI: 10.3389/pore.2023.1611171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Objective: Response to treatment in multiple myeloma (MM) is routinely measured by serum and urine M-protein and free light chain (FLC), as described by the International Myeloma Working Group (IMWG) consensus statement. A non-negligible subgroup of patients however present without measurable biomarkers, others become oligo or non-secretory during recurrent relapses. The aim of our research was to evaluate soluble B-cell maturation antigen (sBCMA) as a monitoring marker measured concurrent with the standard monitoring in MM patients at diagnosis, at relapse and during follow up, in order to establish its potential usefulness in oligo and non-secretory disease. Method: sBCMA levels were measured in 149 patients treated for plasma cell dyscrasia (3 monoclonal gammopathy of unknown significance, 5 smoldering myeloma, 7 plasmacytoma, 8 AL amyloidosis and 126 MM) and 16 control subjects using a commercial ELISA kit. In 43 newly diagnosed patients sBCMA levels were measured at multiple timepoints during treatment, and compared to conventional IMWG response and progression free survival (PFS). Results: sBCMA levels among control subjects were significantly lower than among newly diagnosed or relapsed MM patients [20.8 (14.7-38.7) ng/mL vs. 676 (89.5-1,650) and 264 (20.7-1,603) ng/mL, respectively]. Significant correlations were found between sBCMA and the degree of bone marrow plasma cell infiltration. Out of the 37 newly diagnosed patients who have reached partial response or better per IMWG criteria, 33 (89%) have had at least a 50% drop in sBCMA level by therapy week 4. Cohorts made similarly to IMWG response criteria-achieving a 50% or 90% drop in sBCMA levels compared to level at diagnosis-had statistically significant differences in PFS. Conclusion: Our results confirmed that sBCMA levels are prognostic at important decision points in myeloma, and the percentage of BCMA change is predictive for PFS. This highlights the great potential use of sBCMA in oligo- and non-secretory myeloma.
Collapse
|
49
|
Wang Z, Chen C, Wang L, Jia Y, Qin Y. Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol 2022; 13:1050522. [PMID: 36618390 PMCID: PMC9814974 DOI: 10.3389/fimmu.2022.1050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that remains incurable for most patients, as persistent clonal evolution drives new mutations which confer MM high-risk signatures and resistance to standard care. The past two decades have significantly refashioned the therapeutic options for MM, especially adoptive T cell therapy contributing to impressive response rate and clinical efficacy. Despite great promises achieved from chimeric antigen receptor T-cell (CAR-T) therapy, the poor durability and severe toxicity (cytokine release syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/refractory multiple myeloma (RRMM), characterized by the nature of clinicopathologic and molecular heterogeneity, is frequently associated with poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target for CAR-T therapy, and other potential targets either for single-target or dual-target CAR-T are actively being studied in numerous clinical trials. Moreover, mechanisms driving resistance or relapse after CAR-T therapy remain uncharacterized, which might refer to T-cell clearance, antigen escape, and immunosuppressive tumor microenvironment. Engineering CAR T-cell to improve both efficacy and safety continues to be a promising area for investigation. In this review, we aim to describe novel tumor-associated neoantigens for MM, summarize the data from current MM CAR-T clinical trials, introduce the mechanism of disease resistance/relapse after CAR-T infusion, highlight innovations capable of enhanced efficacy and reduced toxicity, and provide potential directions to optimize manufacturing processes.
Collapse
Affiliation(s)
| | | | | | - Yongxu Jia
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| | - Yanru Qin
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| |
Collapse
|
50
|
Sriram H, Kunjachan F, Khanka T, Gawai S, Ghogale S, Deshpande N, Girase K, Patil J, Chatterjee G, Rajpal S, Patkar NV, Bagal B, Jain H, Sengar M, Hasan SK, Khattry N, Subramanian PG, Gujral S, Tembhare PR. Expression levels and patterns of B-cell maturation antigen in newly diagnosed and relapsed multiple myeloma patients from Indian subcontinent. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:462-470. [PMID: 36346307 DOI: 10.1002/cyto.b.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many novel therapies are being evaluated for the treatment of Multiple myeloma (MM). The cell-surface protein B-cell maturation antigen (BCMA, CD269) has recently emerged as a promising target for CAR-T cell and monoclonal-antibody therapies in MM. However, the knowledge of the BCMA expression-pattern in myeloma patients from the Indian subcontinent is still not available. We present an in-depth study of BCMA expression-pattern on abnormal plasma cells (aPC) in Indian MM patients. METHODS We studied BM samples from 217 MM patients (211-new and 6-relapsed) with a median age of 56 years (range, 30-78 years & M:F-2.29) and 20 control samples. Expression levels/patterns of CD269 (clone-19f2) were evaluated in aPCs from MM patients and in normal PCs (nPC) from uninvolved staging bone marrow samples (controls) using multicolor flow cytometry (MFC). Expression-level of CD269 was determined as a ratio of mean fluorescent intensity (MFI-R) of CD269 in PCs to that of non-B-lymphocytes and expression-pattern (homogenous/heterogeneous) as coefficient-of-variation of immunofluorescence (CVIF). RESULTS Median (range) percentage of CD269-positive abnormal-PCs in total PCs was 71.6% (0.49-99.29%). The MFI-R (median, range) of CD269 was significantly higher in aPCs (4.13, 1.12-26.88) than nPCs (3.33, 1.23-12.87), p < .0001. Median (range) MFI of CD269 at diagnosis and relapse were 2.39 (0.77-9.57) and 2.66 (2.15-3.23) respectively. CD269 levels were similar at diagnosis and relapse, p = .5529. CONCLUSIONS We demonstrated that BCMA/CD269 is highly expressed in aPCs from a majority of MM patients, both at diagnosis and relapse. Thus, BCMA is a valuable target for therapy for Indian MM patients.
Collapse
Affiliation(s)
- Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Florence Kunjachan
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sangamitra Gawai
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|