1
|
Elbaz Younes I, Mroz P, Tashakori M, Hamed A, Sen S. Chronic Neutrophilic Leukemia: Advances in Diagnosis, Genetic Insights, and Management Strategies. Cancers (Basel) 2025; 17:227. [PMID: 39858009 PMCID: PMC11763460 DOI: 10.3390/cancers17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
CNL is a rare subtype of MPNs characterized by persistent neutrophilia, bone marrow hypercellularity, and specific genetic mutations, particularly in the CSF3R gene. Advances in molecular diagnostics have greatly enhanced our understanding of CNL, distinguishing it from other myeloproliferative disorders and refining diagnostic criteria. This review provides an updated overview of CNL, focusing on breakthroughs in genetic profiling, including novel mutations with potential prognostic value and implications for targeted therapy. We discuss current management strategies, emphasizing the role of JAK inhibitors, allogeneic stem cell transplantation, and evolving investigational treatments. Challenges in early diagnosis, therapeutic resistance, and future directions in research are also addressed, underscoring the need for a personalized medicine approach to improve outcomes for patients with CNL.
Collapse
Affiliation(s)
- Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (P.M.); (M.T.); (A.H.); (S.S.)
| | | | | | | | | |
Collapse
|
2
|
Maffei R, Paolini A, Conte B, Riva G, Nasillo V, Cretì F, Martinelli S, Giacobbi F, Corradini G, Pilato F, Bernabei D, Lancellotti C, Debbia G, Morselli M, Potenza L, Giusti D, Colaci E, Bettelli F, Bresciani P, Cuoghi A, Gilioli A, Messerotti A, Pioli V, Maccaferri M, Leonardi G, Manfredini R, Marasca R, Eccher A, Luppi M, Forghieri F, Candoni A, Tagliafico E. Distribution of different classes of CSF3R mutations and co-mutational pattern in 360 myeloid neoplasia. Ann Hematol 2025; 104:263-274. [PMID: 39907800 PMCID: PMC11868254 DOI: 10.1007/s00277-025-06232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The colony-stimulating factor 3 receptor (CSF3R) plays an essential role in differentiation, growth, and survival of granulocytes. Driver mutations in CSF3R gene represent a diagnostic marker of chronic neutrophilic leukemia (CNL). Less commonly, these mutations are observed in other myeloid neoplasms but their pathogenetic and prognostic role is still unclear. Here, we analyzed a large cohort of myeloid neoplasms to evaluate the incidence of CSF3R mutations and co-mutational profile. Mutational analysis was performed using targeted NGS myeloid panel in a consecutive cohort of 360 patients with myeloid neoplasms. Mutations in CSF3R were identified in 20/360 (5.6%) cases. A CSF3R gene mutation was present in 13/179 AML cases (7.3%), in 2/27 (7.4%) CMML cases, in 1/94 (1.1%) MDS cases and in 4/60 (6.7%) other myeloid neoplasms. The frequencies of patients with CSF3R mutations lowered to 2.8% in all cases and 3.4% in AML, excluding cases with variants of uncertain significance (VUS). A total of 23 mutations of CSF3R gene were detected, half localized in the extracellular domain, 5 in the transmembrane region (type I) and 6 mutations in the cytoplasmic domain (type II). In AML, CSF3R mutations were more frequent in patients harboring CBF alterations (25.0%) and CEBPA mutations (11.8%). Two cases with AML harboring pathogenic CSF3R variants were primary refractory to induction therapy. CMML cases with T618I variant showed a myeloproliferative phenotype. Overall, our findings support the notion that CSF3R variants, particularly type I and II pathogenic mutations, may modulate the phenotypic features of leukemic cells in myeloid neoplasia.
Collapse
Affiliation(s)
- Rossana Maffei
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy.
| | - Ambra Paolini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Benedetta Conte
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Federica Cretì
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Silvia Martinelli
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Francesca Giacobbi
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Giorgia Corradini
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Flora Pilato
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Daniela Bernabei
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
| | - Cesare Lancellotti
- Pathology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giulia Debbia
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Monica Morselli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Leonardo Potenza
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Davide Giusti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Elisabetta Colaci
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Francesca Bettelli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Paola Bresciani
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Angela Cuoghi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Andrea Gilioli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Andrea Messerotti
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Valeria Pioli
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Monica Maccaferri
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Giovanna Leonardi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Rossella Manfredini
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Albino Eccher
- Pathology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Fabio Forghieri
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Anna Candoni
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Ospedaliero-Universitaria, Policlinico, and AUSL Modena, Italy
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico, Modena, Italy
| |
Collapse
|
3
|
Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am J Hematol 2024; 99:1360-1387. [PMID: 38644693 DOI: 10.1002/ajh.27321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare BCR::ABL1-negative myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis and bone marrow granulocyte hyperplasia. Atypical chronic myeloid leukemia (aCML) (myelodysplastic "[MDS]/MPN with neutrophilia" per World Health Organization [WHO]) is a MDS/MPN overlap disorder featuring dysplastic neutrophilia and circulating myeloid precursors. Both manifest with frequent hepatosplenomegaly and less commonly, bleeding, with high rates of leukemic transformation and death. The 2022 revised WHO classification conserved CNL diagnostic criteria of leukocytosis ≥25 × 109/L, neutrophils ≥80% with <10% circulating precursors, absence of dysplasia, and presence of an activating CSF3R mutation. ICC criteria are harmonized with those of other myeloid entities, with a key distinction being lower leukocytosis threshold (≥13 × 109/L) for cases CSF3R-mutated. Criteria for aCML include leukocytosis ≥13 × 109/L, dysgranulopoiesis, circulating myeloid precursors ≥10%, and at least one cytopenia for MDS-thresholds (ICC). In both classifications ASXL1 and SETBP1 (ICC), or SETBP1 ± ETNK1 (WHO) mutations can be used to support the diagnosis. Both diseases show hypercellular bone marrow due to a granulocytic proliferation, aCML distinguished by dysplasia in granulocytes ± other lineages. Absence of monocytosis, rare/no basophilia, or eosinophilia, <20% blasts, and exclusion of other MPN, MDS/MPN, and tyrosine kinase fusions, are mandated. Cytogenetic abnormalities are identified in ~1/3 of CNL and ~15-40% of aCML patients. The molecular signature of CNL is a driver mutation in colony-stimulating factor 3 receptor-classically T618I, documented in >80% of cases. Atypical CML harbors a complex genomic backdrop with high rates of recurrent somatic mutations in ASXL1, SETBP1, TET2, SRSF2, EZH2, and less frequently in ETNK1. Leukemic transformation rates are ~10-25% and 30-40% for CNL and aCML, respectively. Overall survival is poor: 15-31 months in CNL and 12-20 months in aCML. The Mayo Clinic CNL risk model for survival stratifies patients according to platelets <160 × 109/L (2 points), leukocytes >60 × 109/L (1 point), and ASXL1 mutation (1 point); distinguishing low- (0-1 points) versus high-risk (2-4 points) categories. The Mayo Clinic aCML risk model attributes 1 point each for: age >67 years, hemoglobin <10 g/dL, and TET2 mutation, delineating low- (0-1 risk factor) and high-risk (≥2 risk factors) subgroups. Management is risk-driven and symptom-directed, with no current standard of care. Most commonly used agents include hydroxyurea, interferon, Janus kinase inhibitors, and hypomethylating agents, though none are disease-modifying. Hematopoietic stem cell transplant is the only potentially curative modality and should be considered in eligible patients. Recent genetic profiling has disclosed CBL, CEBPA, EZH2, NRAS, TET2, and U2AF1 to represent high-risk mutations in both entities. Actionable mutations (NRAS/KRAS, ETNK1) have also been identified, supporting novel agents targeting involved pathways. Preclinical and clinical studies evaluating new drugs (e.g., fedratinib, phase 2) and combinations are detailed.
Collapse
MESH Headings
- Humans
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Mutation
- Risk Assessment
- Receptors, Colony-Stimulating Factor/genetics
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Sun H, Zhu Y, Li J, Zhao L, Yan Z, Zhang S. CSF3R P733T is a deleterious germline variant in acute leukaemia showing gain-of-function-like T618I mutation. Br J Haematol 2024; 204:e31-e33. [PMID: 38262633 DOI: 10.1111/bjh.19315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Haimin Sun
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- National Research Center for Translational Medicine at Shanghai, Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- National Research Center for Translational Medicine at Shanghai, Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Zhao
- National Research Center for Translational Medicine at Shanghai, Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeying Yan
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujiang Zhang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Research Center for Translational Medicine at Shanghai, Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Liu L, Song X, Dong W, Li Z, Guo D. Case report: Safety and efficacy of synergistic treatment using selinexor and azacitidine in patients with atypical chronic myeloid leukemia with resistance to decitabine. Front Oncol 2024; 14:1353818. [PMID: 38384813 PMCID: PMC10879427 DOI: 10.3389/fonc.2024.1353818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Atypical chronic myeloid leukemia (aCML) is a BCR::ABL1 negative myelodysplastic/myeloproliferative neoplasm with poor overall survival. Some patients can be treated by allogeneic hematopoietic stem cell transplantation (allo-HSCT) from suitable donors. The effectiveness of decitabine or azacitidine (AZA) has recently been reported; however, their combined efficacy with selinexor has not yet been reported. Case description In this study, we report the case of a patient with aCML who was successfully treated with selinexor combined with AZA. A 67-year-old man with a history of gastric mucosa-associated lymphoid tissue (MALT) lymphoma was admitted to the hospital with fatigue and emaciation. He was diagnosed with aCML and no longer responded to decitabine treatment after undergoing seven cycles. The patient was subsequently administered hydroxyurea (HU), selinexor, and AZA. After four courses of combination therapy, his blood cell counts improved; he no longer required transfusions and was able to discontinue HU. The patient continued receiving selinexor and AZA without severe complications. This case is the first to show that combinatorial selinexor and AZA therapy can effectively treat aCML. Conclusion Our case sheds light on the importance of selinexor and AZA combined therapy in the exploration of new treatment strategies for aCML. Moreover, this treatment approach offers the possibility of bridging with allo-HSCT.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Wenhao Dong
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Zhao Li
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Dongmei Guo
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
6
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Kirito K. Recent progress of JAK inhibitors for hematological disorders. Immunol Med 2023; 46:131-142. [PMID: 36305377 DOI: 10.1080/25785826.2022.2139317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2022] Open
Abstract
JAK inhibitors are important therapeutic options for hematological disorders, especially myeloproliferative neoplasms. Ruxolitinib, the first JAK inhibitor approved for clinical use, improves splenomegaly and ameliorates constitutional symptoms in both myelofibrosis and polycythemia vera patients. Ruxolitinib is also useful for controlling hematocrit levels in polycythemia vera patients who were inadequately controlled by conventional therapies. Furthermore, pretransplantation use of ruxolitinib may improve the outcome of allo-hematopoietic stem cell transplantation in myelofibrosis. In contrast to these clinical merits, evidence of the disease-modifying action of ruxolitinib, i.e., reduction of malignant clones or improvement of bone marrow pathological findings, is limited, and many myelofibrosis patients discontinued ruxolitinib due to adverse events or disease progression. To overcome these limitations of ruxolitinib, several new types of JAK inhibitors have been developed. Among them, fedratinib was proven to provide clinical merits even in patients who were resistant or intolerant to ruxolitinib. Pacritinib and momelotinib have shown merits for myelofibrosis patients with thrombocytopenia or anemia, respectively. In addition to treatment for myeloproliferative neoplasms, recent studies have demonstrated that JAK inhibitors are novel and attractive therapeutic options for corticosteroid-refractory acute as well as chronic graft versus host disease.
Collapse
Affiliation(s)
- Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
8
|
Carreño-Tarragona G, Álvarez-Larrán A, Harrison C, Martínez-Ávila JC, Hernández-Boluda JC, Ferrer-Marín F, Radia DH, Mora E, Francis S, González-Martínez T, Goddard K, Pérez-Encinas M, Narayanan S, Raya JM, Singh V, Gutiérrez X, Toth P, Amat-Martínez P, Mcilwaine L, Alobaidi M, Mayani K, McGregor A, Stuckey R, Psaila B, Segura A, Alvares C, Davidson K, Osorio S, Cutting R, Sweeney CP, Rufián L, Moreno L, Cuenca I, Smith J, Morales ML, Gil-Manso R, Koutsavlis I, Wang L, Mead AJ, Rozman M, Martínez-López J, Ayala R, Cross NCP. CNL and aCML should be considered as a single entity based on molecular profiles and outcomes. Blood Adv 2023; 7:1672-1681. [PMID: 36375042 PMCID: PMC10182308 DOI: 10.1182/bloodadvances.2022008204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) are rare myeloid disorders that are challenging with regard to diagnosis and clinical management. To study the similarities and differences between these disorders, we undertook a multicenter international study of one of the largest case series (CNL, n = 24; aCML, n = 37 cases, respectively), focusing on the clinical and mutational profiles (n = 53 with molecular data) of these diseases. We found no differences in clinical presentations or outcomes of both entities. As previously described, both CNL and aCML share a complex mutational profile with mutations in genes involved in epigenetic regulation, splicing, and signaling pathways. Apart from CSF3R, only EZH2 and TET2 were differentially mutated between them. The molecular profiles support the notion of CNL and aCML being a continuum of the same disease that may fit best within the myelodysplastic/myeloproliferative neoplasms. We identified 4 high-risk mutated genes, specifically CEBPA (β = 2.26, hazard ratio [HR] = 9.54, P = .003), EZH2 (β = 1.12, HR = 3.062, P = .009), NRAS (β = 1.29, HR = 3.63, P = .048), and U2AF1 (β = 1.75, HR = 5.74, P = .013) using multivariate analysis. Our findings underscore the relevance of molecular-risk classification in CNL/aCML as well as the importance of CSF3R mutations in these diseases.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/genetics
- Epigenesis, Genetic
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Mutation
Collapse
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | | | - Claire Harrison
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - José Carlos Martínez-Ávila
- Agricultural Economics, Statistics and Business Management Department, Escuela Técnica Superior de Ingeniería Agrónomica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Meseguer, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Deepti H. Radia
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Elvira Mora
- Hematology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Sebastian Francis
- Hematology Department, Sheffield Hospital, Sheffield, United Kingdom
| | | | - Kathryn Goddard
- Hematology Department, Rotherham Hospital, Rotherham, United Kingdom
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Srinivasan Narayanan
- Hematology Department, University Hospital Southampton, Southampton, United Kingdom
| | - José María Raya
- Hematology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Vikram Singh
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Xabier Gutiérrez
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Peter Toth
- Hematology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Louisa Mcilwaine
- Hematology Department, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Magda Alobaidi
- Department of Haematology, Chelsea and Westminster NHS Trust West Middlesex Hospital, London, United Kingdom
| | - Karan Mayani
- Hematology Department, Hospital General de La Palma, Santa Cruz de Tenerife, Spain
| | - Andrew McGregor
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Adrián Segura
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Caroline Alvares
- Hematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Kerri Davidson
- Hematology Department, Kirkcaldy Hospital, Fife, Scotland
| | - Santiago Osorio
- Hematology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Robert Cutting
- Hematology Department, Doncaster Hospital, Doncaster, Yorkshire, England
| | - Caroline P. Sweeney
- Hematology Department, Vale of Leven Hospital, Alexandria, West Dunbartonshire, Scotland
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Laura Moreno
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Isabel Cuenca
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Jeffery Smith
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - María Luz Morales
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rodrigo Gil-Manso
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Ioannis Koutsavlis
- Hematology Department, Western General Hospital, Edinburgh, United Kingdom
| | - Lihui Wang
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool University Hospital, Liverpool, United Kingdom
| | - Adam J. Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - María Rozman
- Hemopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Nicholas C. P. Cross
- Wessex Regional Genetics Laboratory, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Thomopoulos TP, Symeonidis A, Kourakli A, Papageorgiou SG, Pappa V. Chronic Neutrophilic Leukemia: A Comprehensive Review of Clinical Characteristics, Genetic Landscape and Management. Front Oncol 2022; 12:891961. [PMID: 35494007 PMCID: PMC9048254 DOI: 10.3389/fonc.2022.891961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) represents a rare disease, that has been classified among the BCR/ABL-negative myeloproliferative neoplasms. The disease is characterized by marked leukocytosis with absolute neutrophilia and its clinical presentation may vary from asymptomatic to highly symptomatic with massive splenomegaly and constitutional symptoms. CNL prognosis remains relatively poor, as most patients succumb to disease complications or transform to acute myeloid leukemia. Recent studies have demonstrated that CSF3R mutations drive the disease, albeit the presence of other secondary mutations perplex the genetic landscape of the disease. Notably, the presence of CSF3R mutations has been adopted as a criterion for diagnosis of CNL. Despite the vigorous research, the management of the disease remains suboptimal. Allogeneic stem cell transplantation represents the only treatment that could lead to cure; however, it is accompanied by high rates of treatment-related mortality. Recently, ruxolitinib has shown significant responses in patients with CNL; however, emergence of resistance might perturbate long-term management of the disease. The aim of this review is to summarize the clinical course and laboratory findings of CNL, highlight its pathogenesis and complex genetic landscape, and provide the context for the appropriate management of patients with CNL.
Collapse
Affiliation(s)
- Thomas P. Thomopoulos
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Alexandra Kourakli
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine, Attikon Hospital, Research Institute, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Vasiliki Pappa,
| |
Collapse
|
10
|
Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia: 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 2022; 97:491-505. [PMID: 35089603 DOI: 10.1002/ajh.26481] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
DISEASE OVERVIEW Chronic neutrophilic leukemia (CNL) is a rare, often aggressive myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis, bone marrow granulocyte hyperplasia, and frequent hepatosplenomegaly. The 2013 seminal discovery of oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R) in the majority of patients with CNL not only established its molecular pathogenesis but provided a diagnostic biomarker and rationale for pharmacological targeting. DIAGNOSIS In 2016, the World Health Organization (WHO) recognized activating CSF3R mutations as a central diagnostic feature of CNL. Other criteria include leukocytosis of ≥25 × 109 /L comprising >80% neutrophils with <10% circulating precursors and rare blasts, and absence of dysplasia or monocytosis, while not fulfilling criteria for other MPN. MANAGEMENT There is currently no standard of care for management of CNL, due in large part to the rarity of disease and dearth of formal clinical trials. Most commonly used therapeutic agents include conventional oral chemotherapy (e.g., hydroxyurea), interferon, and Janus kinase (JAK) inhibitors, while hematopoietic stem cell transplant remains the only potentially curative modality. DISEASE UPDATES Increasingly comprehensive genetic profiling in CNL, including new data on clonal evolution, has disclosed a complex genomic landscape with additional mutations and combinations thereof driving disease progression and drug resistance. Although accurate prognostic stratification and therapeutic decision-making remain challenging in CNL, emerging data on molecular biomarkers and the addition of newer agents, such as JAK inhibitors, to the therapeutic arsenal, are paving the way toward greater standardization and improvement of patient care.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology Maisonneuve‐Rosemont Hospital Montreal Quebec Canada
| | - Michelle Elliott
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
11
|
Rare evolution of CSF3R-mutated chronic neutrophilic leukemia to t(4;12)(q12;p13) acute myeloid leukemia with SETBP1 mutation. Leuk Res Rep 2022; 17:100311. [PMID: 35497674 PMCID: PMC9046630 DOI: 10.1016/j.lrr.2022.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative disease accompanied by mutations in CSF3R. Here, we present a patient with CNL who developed to acute myeloid leukemia (AML) at the same time that a t(4;12)(q12;p13) translocation appeared. The uniqueness of this cytogenetic abnormality led us to delineate the molecular aberrations relevant for clonal evolution. While the CSF3R mutation was present throughout the course of the disease, the SETBP1 mutation was newly acquired at the AML transformation. The present case suggests that careful monitoring of t(4;12)(q12;p13) and SETBP1 is crucial to predict AML evolution in CNL patients.
Collapse
|
12
|
Kwon A, Ibrahim I, Le T, Jaso JM, Weinberg O, Fuda F, Chen W. CSF3R T618I mutated chronic myelomonocytic leukemia: A proliferative subtype with a distinct mutational profile. Leuk Res Rep 2022; 17:100323. [PMID: 35586707 PMCID: PMC9108757 DOI: 10.1016/j.lrr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/26/2022] Open
|
13
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
14
|
Abstract
OPINION STATEMENT Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) characterized by oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R). Due in large part to the rarity of the disease and dearth of clinical trials, there is currently no standard of care for CNL. Available therapies range from conventional oral chemotherapy to targeted JAK inhibitors to hematopoietic stem cell transplant (HSCT), the latter representing the only potentially curative modality. For this reason, coupled with CNL's typically aggressive clinical course, allogeneic HSCT remains the primary recommended therapy for eligible patients. For ineligible patients, a number of nontransplant therapies have been evaluated in limited trials. These agents may additionally be considered "bridging" therapies pre-transplant in order to control myeloproliferation and alleviate symptoms. Historically, the most commonly utilized first-line agent has been hydroxyurea, though most patients ultimately require second (or subsequent)-line therapy; still hydroxyurea remains the conventional frontline option. Dasatinib has demonstrated efficacy in vitro in cases of CSF3R terminal membrane truncation mutations and may cautiously be considered upfront in such instances, though no substantive studies have validated its efficacy in vivo. Numerous other chemotherapy agents, practically re-appropriated from the pharmaceutical arsenal of MPN, have been utilized in CNL and are typically reserved for second/subsequent-line settings; these include interferon-alpha (IFN-a), hypomethylating agents, thalidomide, cladribine, and imatinib, among others. Most recently, ruxolitinib, a JAK1/2 inhibitor targeting JAK-STAT signaling downstream from CSF3R, has emerged as a potentially promising new candidate for the treatment of CNL. Increasingly robust data support the clinical efficacy, with associated variable reductions in allele burden, and tolerability of ruxolitinib in patients with CNL, particularly those carrying the CSF3RT618I mutation. Similar to conventional nontransplant strategies, however, no disease-modifying or survival benefits have been demonstrated. While responses to JAK-STAT inhibition in CNL have not been uniform, data are sufficient to recommend consideration of ruxolitinib in the therapeutic repertory of CNL. There remains a major unmet need for prospective trials with investigational therapies in CNL.
Collapse
|
15
|
B-lymphoblastic leukemia arising in a patient with chronic neutrophilic leukemia. Blood Adv 2021; 4:5389-5392. [PMID: 33147336 DOI: 10.1182/bloodadvances.2020003109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Key Points
We report the first identified case of chronic neutrophilic leukemia with transformation to B-lymphoblastic leukemia. Genetic alterations involving CSF3R, ASXL1, SRSF2, and RUNX1 contributed to the unusual progression and may drive B-cell leukemogenesis.
Collapse
|
16
|
Kuykendall AT, Tokumori FC, Komrokji RS. Traipsing Through Muddy Waters: A Critical Review of the Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes. Hematol Oncol Clin North Am 2021; 35:337-352. [PMID: 33641873 DOI: 10.1016/j.hoc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome/Myeloproliferative neoplasms (MDS/MPNs) are molecularly complex, clinically heterogeneous diseases that exhibit proliferative and dysplastic features. Diagnostic criteria use clinical, pathologic, and genomic features to distinguish between disease entities, though considerable clinical and genetic overlap persists. MDS/MPNs are associated with a poor prognosis, save for MDS/MPN with ring sideroblasts and thrombocytosis, which can behave more indolently. The current treatment approach is risk-adapted and symptom-directed and largely extrapolated from experience in MDS or MPN. Gene sequencing has demonstrated frequent mutations involving signaling, epigenetic, and splicing pathways, which present numerous therapeutic opportunities for clinical investigation.
Collapse
Affiliation(s)
- Andrew T Kuykendall
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA.
| | - Franco Castillo Tokumori
- University of South Florida, 17 Davis Boulevard, Suite 308, Tampa, FL 33606, USA. https://twitter.com/CTFrancoMD
| | - Rami S Komrokji
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA. https://twitter.com/Ramikomrokji
| |
Collapse
|
17
|
Prognostic impact of CSF3R mutations in favorable risk childhood acute myeloid leukemia. Blood 2020; 135:1603-1606. [PMID: 32187354 DOI: 10.1182/blood.2019004179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Truncation mutations in the granulocyte colony-stimulating factor receptor gene (CSF3R) are a rare abnormality in pediatric acute myeloid leukemia, and are usually associated either with mutations in CEBPA or with t(8;21). Through sequencing of over 2000 patients, the authors demonstrated that, although CSF3R mutations with associated t(8;21) still had an excellent response, CSF3R mutation abrogated the favorable risk of CEBPA mutation alone.
Collapse
|
18
|
Bornemann L, Schuster M, Schmitz S, Sobczak C, Bessen C, Merz SF, Jöckel KH, Haverkamp T, Gunzer M, Göthert JR. Defective migration and dysmorphology of neutrophil granulocytes in atypical chronic myeloid leukemia treated with ruxolitinib. BMC Cancer 2020; 20:650. [PMID: 32660441 PMCID: PMC7359613 DOI: 10.1186/s12885-020-07130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The identification of pathologically altered neutrophil granulocyte migration patterns bears strong potential for surveillance and prognostic scoring of diseases. We recently identified a strong correlation between impaired neutrophil motility and the disease stage of myelodysplastic syndrome (MDS). Here, we apply this assay to study quantitively increased neutrophils of a patient suffering from a rare leukemia subtype, atypical chronic myeloid leukemia (aCML). METHODS A 69-year-old male was analyzed in this study. Besides routine analyses, we purified the patient's neutrophils from peripheral whole blood and studied their migration behavior using time-lapse video microscopy in a standardized assay. These live cell migration analyses also allowed for the quantification of cell morphology. Furthermore, the cells were stained for the markers CD15, CD16, fMLPR, CXCR1 and CXCR2. RESULTS Despite cytoreductive therapy with hydroxyurea, the patient's WBC and ANC were poorly controlled and severe dysgranulopoiesis with hypogranularity was observed. Neutrophils displayed strongly impaired migration when compared to healthy controls and migrating cells exhibited a more flattened-out morphology than control neutrophils. Because of a detected CSF3R (p.T618I) mutation and constitutional symptoms treatment with ruxolitinib was initiated. Within 1 week of ruxolitinib treatment, the cell shape normalized and remained indistinguishable from healthy control neutrophils. However, neutrophil migration did not improve over the course of ruxolitinib therapy but was strikingly altered shortly before a sinusitis with fever and bleeding from a gastric ulcer. Molecular work-up revealed that under ruxolitinib treatment, the CSF3R clone was depleted, yet the expansion of a NRAS mutated subclone was promoted. CONCLUSION These results demonstrate the usefulness of neutrophil migration analyses to uncover corresponding alterations of neutrophil migration in rare myeloid neoplasms. Furthermore, in addition to monitoring migration the determination of morphological features of live neutrophils might represent a useful tool to monitor the effectiveness of therapeutic approaches.
Collapse
Affiliation(s)
- Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Marc Schuster
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Present address: Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Saskia Schmitz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Charlyn Sobczak
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Clara Bessen
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Simon F Merz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Department of Dermatology, Venerology and Allergology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Thomas Haverkamp
- MVZ Dr. Eberhard & Partner, Brauhausstraße 4, 44137, Dortmund, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V, Dortmund, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital, West German Cancer Center (WTZ), University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| |
Collapse
|
19
|
Hinze A, Rinke J, Hochhaus A, Ernst T. Durable remission with ruxolitinib in a chronic neutrophilic leukemia patient harboring a truncation and membrane proximal CSF3R compound mutation. Ann Hematol 2020; 100:581-584. [PMID: 32577845 PMCID: PMC7817602 DOI: 10.1007/s00277-020-04152-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Hinze
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jenny Rinke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
20
|
Wang X, Resendes NM, Shanahan L, Hutchinson L, Woda B, Cerny J. Chronic neutrophilic leukemia, a rare case of leukocytosis. Leuk Res 2020; 94:106384. [PMID: 32447046 DOI: 10.1016/j.leukres.2020.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Xin Wang
- Department of Medicine, UMass Memorial Medical Center, Worcester, MA, 01655, USA.
| | - Natasha M Resendes
- Department of Medicine, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| | - Lindsey Shanahan
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| | - Lloyd Hutchinson
- Department of Pathology, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| | - Bruce Woda
- Department of Pathology, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, 01655, USA
| |
Collapse
|
21
|
Dao KHT, Gotlib J, Deininger MM, Oh ST, Cortes JE, Collins RH, Winton EF, Parker DR, Lee H, Reister A, Schultz, Savage S, Stevens, Brockett C, Subbiah N, Press RD, Raess PW, Cascio M, Dunlap J, Chen Y, Degnin C, Maxson JE, Tognon CE, Macey T, Druker BJ, Tyner JW. Efficacy of Ruxolitinib in Patients With Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. J Clin Oncol 2020; 38:1006-1018. [PMID: 31880950 PMCID: PMC7106977 DOI: 10.1200/jco.19.00895] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Colony-stimulating factor-3 receptor (CSF3R)-T618I is a recurrent activating mutation in chronic neutrophilic leukemia (CNL) and to a lesser extent in atypical chronic myeloid leukemia (aCML) resulting in constitutive JAK-STAT signaling. We sought to evaluate safety and efficacy of the JAK1/2 inhibitor ruxolitinib in patients with CNL and aCML, irrespective of CSF3R mutation status. METHODS We conducted a phase II study of ruxolitinib in 44 patients (21 CNL and 23 aCML). The primary end point was overall hematologic response rate (ORR) by the end of 6 continuous 28-day cycles for the first 25 patients enrolled. We considered a response as either partial (PR) or complete response (CR). We expanded accrual to 44 patients to increase our ability to evaluate secondary end points, including grade ≥ 3 adverse events, spleen volume, symptom assessment, genetic correlates of response, and 2-year survival. RESULTS ORR was 32% for the first 25 enrolled patients (8 PR [7 CNL and 1 aCML]). In the larger cohort of 44 patients, 35% had a response (11 PR [9 CNL and 2 aCML] and 4 CR [CNL]), and 50% had oncogenic CSF3R mutations. The mean absolute allele burden reduction of CSF3R-T618I after 6 cycles was greatest in the CR group, compared with the PR and no response groups. The most common cause of death is due to disease progression. Grade ≥ 3 anemia and thrombocytopenia were observed in 34% and 14% of patients, respectively. No serious adverse events attributed to ruxolitinib were observed. CONCLUSION Ruxolitinib was well tolerated and demonstrated an estimated response rate of 32%. Patients with a diagnosis of CNL and/or harboring CSF3R-T618I were most likely to respond.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Antineoplastic Agents/therapeutic use
- Female
- Gene Frequency
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Neutrophilic, Chronic/drug therapy
- Leukemia, Neutrophilic, Chronic/genetics
- Male
- Middle Aged
- Nitriles
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/adverse effects
- Pyrazoles/therapeutic use
- Pyrimidines
- Receptors, Colony-Stimulating Factor/genetics
- Survival Rate
Collapse
Affiliation(s)
- Kim-Hien T. Dao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Jason Gotlib
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | | | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University in St Louis, St Louis, MO
| | - Jorge E. Cortes
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert H. Collins
- Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Dana R. Parker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hyunjung Lee
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Anna Reister
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Schultz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Samantha Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Stevens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Chase Brockett
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Nan Subbiah
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Richard D. Press
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Philipp W. Raess
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Michael Cascio
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Jennifer Dunlap
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Yiyi Chen
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Catherine Degnin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Cristina E. Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Tara Macey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Howard Hughes Medical Institute, Chase, MD
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
22
|
Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia: 2020 update on diagnosis, molecular genetics, prognosis, and management. Am J Hematol 2020; 95:212-224. [PMID: 31769070 DOI: 10.1002/ajh.25688] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
DISEASE OVERVIEW Chronic neutrophilic leukemia (CNL) is a rare, often aggressive myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis, bone marrow granulocyte hyperplasia, and frequent hepatosplenomegaly. The seminal discovery of oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R) in the majority of patients with CNL in 2013 anchored a new scientific framework, deepening our understanding of its molecular pathogenesis, providing a diagnostic biomarker, and rationalizing the use of pharmacological targeting. DIAGNOSTIC CRITERIA In 2016, the World Health Organization (WHO) included the presence of activating CSF3R mutations as a central diagnostic feature of CNL. Other criteria include leukocytosis of ≥25 × 109 /L comprising >80% neutrophils with <10% circulating precursors and rare blasts, and absence of dysplasia or monocytosis, while not fulfilling criteria for other MPN. DISEASE UPDATES Increasingly comprehensive genetic profiling of CNL has disclosed a complex genomic landscape and additional prognostically relevant mutational combinations. Though prognostic determination and therapeutic decision-making remain challenging, emerging data on prognostic markers and the use of newer therapeutic agents, such as JAK inhibitors, are helping to define state-of-the-art management in CNL.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of HematologyMaisonneuve‐Rosemont Hospital Montreal Quebec Canada
| | - Michelle Elliott
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota
| |
Collapse
|
23
|
Inherited transmission of the CSF3R T618I mutational hotspot in familial chronic neutrophilic leukemia. Blood 2019; 134:2414-2416. [DOI: 10.1182/blood.2019003206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Stoner RC, Press RD, Maxson JE, Tyner JW, Dao KHT. Insights on mechanisms of clonal evolution in chronic neutrophilic leukemia on ruxolitinib therapy. Leukemia 2019; 34:1684-1688. [PMID: 31844143 DOI: 10.1038/s41375-019-0688-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan C Stoner
- School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, mailcode KR-HEM, Portland, OR, 97239, USA
| | - Richard D Press
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Julia E Maxson
- School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, mailcode KR-HEM, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kim-Hien T Dao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA. .,Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
25
|
He C, Zhang Y, Luo H, Luo B, He Y, Jiang N, Liang Y, Zeng J, Luo Y, Xian Y, Liu J, Zheng X. Identification of the key differentially expressed genes and pathways involved in neutrophilia. Innate Immun 2019; 26:270-284. [PMID: 31726910 PMCID: PMC7251796 DOI: 10.1177/1753425919887411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most important determinants in the acute inflammatory response. Pathologically increased numbers of PMNs in the circulation or specific tissues (or both) lead to neutrophilia. However, the genes expressed and pathways involved in neutrophilia have yet to be elucidated. By analysis of three public microarray datasets related to neutrophilia (GSE64457, GSE54644, and GSE94923) and evaluation by gene ontology, pathway enrichment, protein-protein interaction networks, and hub genes analysis using multiple methods (DAVID, PATHER, Reactome, STRING, Reactome FI Plugin, and CytoHubba in Cytoscape), we identified the commonly up-regulated and down-regulated different expressed genes. We also discovered that multiple signaling pathways (IL-mediated, LPS-mediated, TNF-α, TLR cascades, MAPK, and PI3K-Akt) were involved in PMN regulation. Our findings suggest that the commonly expressed genes involved in regulation of multiple pathways were the underlying molecular mechanisms in the development of inflammatory, autoimmune, and hematologic diseases that share the common phenotypic characteristics of increased numbers of PMNs. Taken together, these data suggest that these genes are involved in the regulation of neutrophilia and that the corresponding gene products could serve as potential biomarkers and/or therapeutic targets for neutrophilia.
Collapse
Affiliation(s)
- Chengcheng He
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yingchun Zhang
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Hongwei Luo
- People's Hospital of Mianzhu, Deyang, Sichuan, P. R. China
| | - Bo Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yancheng He
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Nan Jiang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yu Liang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jingyuan Zeng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujiao Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujun Xian
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiajia Liu
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xiaoli Zheng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
26
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
27
|
Venugopal S, Mascarenhas J. Chronic Neutrophilic Leukemia: Current and Future Perspectives. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:129-134. [DOI: 10.1016/j.clml.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023]
|
28
|
Marumo A, Mizuki T, Tanosaki S. Atypical chronic myeloid leukemia achieving good response with azacitidine. Indian J Cancer 2019; 56:354-355. [DOI: 10.4103/ijc.ijc_506_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Hu NB, Fang LW, Qin TJ, Xiao ZJ, Xu ZF. [Ruxolitinib for chronic neutrophilic leukemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:1029-1032. [PMID: 30612407 PMCID: PMC7348221 DOI: 10.3760/cma.j.issn.0253-2727.2018.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Z F Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
30
|
Thapa B, Jamhour C, Chahine J, Rogers HJ, Daw H. Colony-stimulating Factor 3 Receptor Mutated Chronic Neutrophilic Leukemia: A Rare Case Report. Cureus 2018; 10:e3326. [PMID: 30473959 PMCID: PMC6248686 DOI: 10.7759/cureus.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm, which is characterized by sustained peripheral leukocytosis with neutrophilia, hepatosplenomegaly, and hypercellularity of the bone marrow, with less than 5% myeloblasts along with normal neutrophil maturation and no dysplasia. In 2016, World Health Organization (WHO) included activating mutations in the gene for colony-stimulating factor 3 receptor (CSF3R) as one of the diagnostic criteria with CSF3RT618I being the most common mutation. We report a rare case of CNL (JAK2V617F negative, BCR-ABL1 negative, CSF3RT618I positive) in an elderly female who had an aggressive clinical course of the disease.
Collapse
Affiliation(s)
- Bicky Thapa
- Internal Medicine, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | | | - Johnny Chahine
- Internal Medicine, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Heesun J Rogers
- Clinical Pathology, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Hamed Daw
- Hematology and Oncology, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| |
Collapse
|
31
|
Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and management. Am J Hematol 2018; 93:578-587. [PMID: 29512199 DOI: 10.1002/ajh.24983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
DISEASE OVERVIEW AND DIAGNOSIS Chronic neutrophilic leukemia (CNL) is a potentially aggressive myeloproliferative neoplasm, for which current WHO diagnostic criteria include leukocytosis of ≥ 25 x 109 /L of which ≥ 80% are neutrophils, with < 10% circulating neutrophil precursors with blasts rarely observed. In addition, there is no dysplasia, nor clinical or molecular criteria for other myeloproliferative neoplasms. UPDATE ON DIAGNOSIS Previously the diagnosis of CNL was often as one of exclusion based on no identifiable cause for physiologic neutrophilia in patients fulfilling the aforementioned criteria. The 2016 WHO classification now recognizes somatic activating mutations of CSF3R (most commonly CSF3RT618I) as diagnostic, allowing for an accurate diagnosis for the majority of suspected cases through molecular testing. These mutations are primary driver mutations, accounting for the characteristic clinical phenotype and potential susceptibility to molecularly targeted therapy. RISK STRATIFICATION Concurrent mutations, common to myeloid neoplasms and their precursor states, most frequently in SETBP1 and ASXL1, are frequent and appear to be of prognostic significance. Although data are evolving on the full genomic profile, the rarity of CNL has delayed complete understanding of its full molecular pathogenesis and individual patient prognosis.
Collapse
Affiliation(s)
- Michelle A. Elliott
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| |
Collapse
|
32
|
Uygun V, Daloğlu H, Öztürkmen S, Karasu G, Avcı Z, Yeşilipek A. Chronic neutrophilic leukemia, an extremely rare cause of neutrophilia in childhood: Cure with hematopoietic stem cell transplantation. Pediatr Transplant 2018; 22:e13199. [PMID: 29676020 DOI: 10.1111/petr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 11/27/2022]
Abstract
CNL is a rare myeloproliferative disorder frequently seen in older adults. A significant proportion of patients show progression to AML. Here, we report the case of a patient with FA who was monitored for leukopenia but who developed leukocytosis during the follow-up and was diagnosed with CNL probably after an acquired CSF3R mutation. Because the patient had FA, which could accelerate the progression to AML, an HSCT was performed, which resulted in cure. This patient (aged 12 years) is one of the youngest patients reported to develop CNL as well as the first FA patient with a diagnosis of CNL.
Collapse
Affiliation(s)
- Vedat Uygun
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Hayriye Daloğlu
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Seda Öztürkmen
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Gülsün Karasu
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| | - Zekai Avcı
- Department of Pediatric Hematology and Oncology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Akif Yeşilipek
- Department of Pediatric Bone Marrow Transplantation Unit, MedicalPark Antalya Hospital, Antalya, Turkey
| |
Collapse
|
33
|
Zhang Y, Wang F, Chen X, Zhang Y, Wang M, Liu H, Cao P, Ma X, Wang T, Zhang J, Zhang X, Lu P, Liu H. CSF3R Mutations are frequently associated with abnormalities of RUNX1, CBFB, CEBPA, and NPM1 genes in acute myeloid leukemia. Cancer 2018; 124:3329-3338. [PMID: 29932212 DOI: 10.1002/cncr.31586] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mutations in the colony-stimulating factor 3 receptor (CSF3R) gene occur frequently in chronic neutrophilic leukemia and are rare in de novo acute leukemia. The objective of this study was to assess the incidence of CSF3R mutations in acute leukemia and their association with other genetic abnormalities. METHODS Amplicon-targeted, next-generation sequencing of 58 genes was performed retrospectively on 1152 patients (acute myeloid leukemia [AML], n = 587; acute lymphoid leukemia [ALL], n = 565). Reverse transcriptase-polymerase chain reaction analysis was used to detect 35 leukemia-specific gene fusions. RESULTS CSF3R mutations (26 patients) were detected in 3.6% (13 of 364 patients), 4.6% (8 of 175 patients), and 8.3% (4 of 48 patients) of those with de novo, relapsed, and secondary AML, respectively, and in 0.2% (1 of 565 patients) of those with ALL. In total, 9 distinct CSF3R mutations were detected. Membrane-proximal missense mutations and cytoplasmic truncations were identified as mutually exclusive. The proportion of patients who had French-American-British subtypes M2 and M4 in the CSF3R-mutated group was significantly greater than that in the CSF3R wild-type group for both the de novo AML cohort (P = .001) and the relapsed AML cohort (P = .024). All de novo and relapsed AMLs with CSF3R mutations were associated with genetic alterations in transcription factors, including RUNX1-RUNX1T1, CBFB-MYH11, double-mutated CCAAT/enhancer binding protein α (CEBPAdm), and NPM1 mutations; and core-binding factor gene abnormalities and CEBPAdm accounted for 90.5% (19 of 21 patients). CONCLUSIONS CSF3R mutations are uncommon in AML; however, when they occur, they are often associated with core-binding factor gene abnormalities and CEBPAdm. An in-depth understanding of the interaction between these genetic alterations could facilitate a clearer understanding of the role of CSF3R mutations in AML development and may be used for disease classification, prognosis, and the development of targeted therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xue Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yu Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Mingyu Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hong Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaoli Ma
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Tong Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jianping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xian Zhang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Peihua Lu
- International Medical Center, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Hongxing Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| |
Collapse
|
34
|
Dao KHT, Tyner JW, Gotlib J. Recent Progress in Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. Curr Hematol Malig Rep 2018; 12:432-441. [PMID: 28983816 DOI: 10.1007/s11899-017-0413-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We reviewed recent diagnostic and therapeutic progress in chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML). We summarized recent genetic data that may guide future efforts towards implementing risk-adapted therapy based on mutational profile and improving disease control and survival of affected patients. RECENT FINDINGS Recent genetic data in CNL and aCML prompted modifications to the World Health Organization (WHO) diagnostic criteria, which have improved our understanding of how CNL and aCML are different diseases despite sharing common findings of peripheral granulocytosis and marrow myeloid hyperplasia. The overlap of recurrently mutated genes between aCML and CMML support considering CSF3R-T618I mutated cases as a distinct entity, either as CNL or CNL with dysplasia. Ongoing preclinical and clinical studies will help to further inform the therapeutic approach to these diseases. Our understanding of CNL and aCML has greatly advanced over the last few years. This will improve clarity for the diagnosis of these diseases, provide a strategy for risk stratification, and guide risk-adapted therapy.
Collapse
Affiliation(s)
- Kim-Hien T Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
CSF3R-mutated chronic neutrophilic leukemia: long-term outcome in 19 consecutive patients and risk model for survival. Blood Cancer J 2018; 8:21. [PMID: 29449543 PMCID: PMC5814430 DOI: 10.1038/s41408-018-0058-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
|
36
|
Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria. Blood Cancer J 2018; 8:19. [PMID: 29440636 PMCID: PMC5811432 DOI: 10.1038/s41408-018-0049-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm defined by persistent, predominantly mature neutrophil proliferation, marrow granulocyte hyperplasia, and frequent splenomegaly. The seminal discovery of oncogenic driver mutations in CSF3R in the majority of patients with CNL in 2013 generated a new scientific framework for this disease as it deepened our understanding of its molecular pathogenesis, provided a biomarker for diagnosis, and rationalized management using novel targeted therapies. Consequently, in 2016, the World Health Organization (WHO) revised the diagnostic criteria for CNL to reflect such changes in its genomic landscape, now including the presence of disease-defining activating CSF3R mutations as a key diagnostic component of CNL. In this communication, we provide a background on the history of CNL, its clinical and hemopathologic features, and its molecular anatomy, including relevant additional genetic lesions and their significance. We also outline the recently updated WHO diagnostic criteria for CNL. Further, the natural history of the disease is reviewed as well as potential prognostic variables. Finally, we summarize and discuss current treatment options as well as prospective novel therapeutic targets in hopes that they will yield meaningful improvements in patient management and outcomes.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
37
|
Gutiérrez-Abril J, Santamaría I, Pitiot AS, Gutiérrez-Fernández A, Alvarez-Eguiluz Á, Vicente JM, Sanzo C, González-Muñiz S, Balbín M, Puente XS. A t(1;9) translocation involving CSF3R as a novel mechanism in unclassifiable chronic myeloproliferative neoplasm. Haematologica 2017; 102:e510-e513. [PMID: 28935846 DOI: 10.3324/haematol.2017.176693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jesús Gutiérrez-Abril
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Asturias, Spain
| | - Iñigo Santamaría
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Instituto Universitario de Oncología (IUOPA), Hospital Universitario Central de Asturias, Asturias, Spain
| | - Ana S Pitiot
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Instituto Universitario de Oncología (IUOPA), Hospital Universitario Central de Asturias, Asturias, Spain
| | - Ana Gutiérrez-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Asturias, Spain
| | - Ángel Alvarez-Eguiluz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Asturias, Spain.,Laboratorio de Oncología Molecular, Laboratorio de Medicina, Instituto Universitario de Oncología (IUOPA), Hospital Universitario Central de Asturias, Asturias, Spain
| | - José M Vicente
- Servicio de Hematología. Hospital Vital Álvarez Buylla, Asturias, Spain
| | - Carmen Sanzo
- Servicio de Hematología. Hospital Universitario Central de Asturias, Spain
| | | | - Milagros Balbín
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Instituto Universitario de Oncología (IUOPA), Hospital Universitario Central de Asturias, Asturias, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Asturias, Spain .,Centro de Investigación en Red de Cáncer, Spain
| |
Collapse
|
38
|
Langabeer SE, Haslam K, Kelly J, Quinn J, Morrell R, Conneally E. Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis. Clin Transl Oncol 2017; 20:420-423. [PMID: 28762112 DOI: 10.1007/s12094-017-1722-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Chronic neutrophilic leukemia is a rare form of myeloproliferative neoplasm characterized by mature neutrophil hyperleukocytosis. The majority of patients harbor somatic mutations of CSF3R gene and are potentially amenable to targeted therapy with JAK inhibitors. The incidence and clinical significance of additional mutations requires clarification. MATERIALS AND METHODS A next-generation sequencing approach for myeloid malignancy-associated mutations was applied to diagnostic and matched blast crisis samples from four chronic neutrophilic leukemia patients. RESULTS Next-generation sequencing confirmed the CSF3R T618I in all patients with identification of concurrent SRSF2, SETBP1, NRAS and CBL mutations at diagnosis. At blast crisis, clonal evolution was evidenced by an increased CSF3R T618I allele frequency and by loss or acquisition of CBL and NRAS mutations. CONCLUSION The diagnostic utility of a targeted next-generation sequencing approach was clearly demonstrated with the identification of additional mutations providing the potential for therapeutic stratification of chronic neutrophilic leukemia patients.
Collapse
Affiliation(s)
- S E Langabeer
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland.
| | - K Haslam
- Central Pathology Laboratory, Cancer Molecular Diagnostics, St. James's Hospital, Dublin 8, Ireland
| | - J Kelly
- Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - J Quinn
- Department of Haematology, Beaumont Hospital, Dublin, Ireland
| | - R Morrell
- Department of Haematology, Letterkenny University Hospital, Letterkenny, Ireland
| | - E Conneally
- Department of Haematology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
39
|
Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood 2017; 130:115-125. [PMID: 28500170 PMCID: PMC5510786 DOI: 10.1182/blood-2017-04-742288] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/06/2017] [Indexed: 12/11/2022] Open
Abstract
Since its approval in 2011, the Janus kinase 1/2 (JAK1/2) inhibitor ruxolitinib has evolved to become the centerpiece of therapy for myelofibrosis (MF), and its use in patients with hydroxyurea resistant or intolerant polycythemia vera (PV) is steadily increasing. Several other JAK2 inhibitors have entered clinical testing, but none have been approved and many have been discontinued. Importantly, the activity of these agents is not restricted to patients with JAK2 V617F or exon 12 mutations. Although JAK2 inhibitors provide substantial clinical benefit, their disease-modifying activity is limited, and rational combinations with other targeted agents are needed, particularly in MF, in which survival is short. Many such combinations are being explored, as are other novel agents, some of which could successfully be combined with JAK2 inhibitors in the future. In addition, new JAK2 inhibitors with the potential for less myelosuppression continue to be investigated. Given the proven safety and efficacy of ruxolitinib, it is likely that ruxolitinib-based combinations will be a major way forward in drug development for MF. If approved, less myelosuppressive JAK2 inhibitors such as pacritinib or NS-018 could prove to be very useful additions to the therapeutic armamentarium in MF. In PV, inhibitors of histone deacetylases and human double minute 2 have activity, but their role, if any, in the future treatment algorithm is uncertain, given the availability of ruxolitinib and renewed interest in interferons. Ruxolitinib is in late-phase clinical trials in essential thrombocythemia, in which it could fill an important void for patients with troublesome symptoms.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|