1
|
Navrkalova V, Mareckova A, Hricko S, Hrabcakova V, Radova L, Kubes V, Porc J, Reigl T, Pospisilova S, Kotaskova J, Janikova A. Reliable detection of CNS lymphoma-derived circulating tumor DNA in cerebrospinal fluid using multi-biomarker NGS profiling: insights from a real-world study. Biomark Res 2025; 13:71. [PMID: 40346678 PMCID: PMC12065147 DOI: 10.1186/s40364-025-00777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Diagnosing primary or secondary CNS lymphoma (CNSL) is a clinical challenge due to the limitations of standard biopsy and imaging procedures despite established guidelines. Therefore, accurate biomarkers and analytical methods that are convenient for practical routine use are needed to diagnose and manage these aggressive lymphomas effectively. We evaluated the utility of minimally invasive circulating tumor DNA (ctDNA) detection in a prospective real-world scenario, moving this approach closer to clinical practice. METHODS A total of 164 plasma, cerebrospinal fluid (CSF), and tumor samples from 56 CNSL patients were collected to analyze tumor DNA by the diagnostic next-generation sequencing (NGS) panel LYNX, enabling simultaneous analysis of gene variants, chromosomal aberrations, and antigen receptor rearrangements in targeted regions. RESULTS The well-known genetic heterogeneity of CNSL was refined with integrative molecular data, showing the most frequent MYD88, PIM1, and KMT2D mutations and a broad spectrum of chromosomal aberrations, reflecting high genomic complexity. The multi-target approach achieved a substantially higher detection rate of CNS infiltration (90%) than tracking a single variant in gene MYD88 (46%). CSF clearly surpasses plasma if applying a routine (non-ultrasensitive) NGS approach and allows for more reliable evidence of CNS involvement than conventional flow cytometry (91% vs. 21%, p < 0.001). Parallel analysis of tumor DNA in both cell-free and cellular DNA from CSF makes the probability of primary or secondary CNS malignancy detection even higher. CONCLUSIONS Our prospective, tissue-agnostic approach highlights the feasibility of ctDNA sequencing by a commonplace and affordable method, offering higher sensitivity to detect CNS infiltration with lymphoma than standard cell-analyzing techniques. We accentuate the benefit of a multi-target NGS approach and adequate CSF sampling to obtain satisfactory diagnostic yield. Less invasive liquid biopsy testing by comprehensive NGS complements standard procedures in the diagnostics and management of CNSL patients, especially when encountering limitations.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| | - Andrea Mareckova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Samuel Hricko
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Viera Hrabcakova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vaclav Kubes
- Department of Pathology, University Hospital Brno, Brno, Czech Republic
| | - Jakub Porc
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Reigl
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine- Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, Wang X. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol 2025; 18:29. [PMID: 40069858 PMCID: PMC11900646 DOI: 10.1186/s13045-025-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Collapse
Affiliation(s)
- Lina Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong Province, 250012, Jinan, China
| | - Xuhua Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Navrkalova V, Mareckova A, Porc J, Hricko S, Hrabcakova V, Kissova J, Kundova S, Jarosova M, Pospisilova S, Kotaskova J, Janikova A. Advanced NGS analysis of cell-free tumor DNA supports clonal relation to primary high-grade B-cell lymphoma lesion and CNS relapse despite MRI negativity. Diagn Pathol 2025; 20:14. [PMID: 39905397 PMCID: PMC11792325 DOI: 10.1186/s13000-025-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
High-grade B-cell lymphomas (HGBCLs) are aggressive blood cancers with a severe disease course, especially when the central nervous system (CNS) is involved. Standard histological examination depends on tissue availability and is currently supplemented with molecular tests, as the status of MYC, BCL2, or BCL6 gene rearrangements is required for proper lymphoma classification. This case report demonstrates the relevance of cerebrospinal fluid (CSF) cell-free DNA testing by integrative next-generation sequencing (NGS) panel. The benefit of this approach resided in tumor genotyping alongside the proof of CNS progression despite MRI negativity, revealing a clonal relationship with the primary tumor lesion. In addition, our strategy allowed us to classify the tumor as DLBCL/HGBL-MYC/BCL2 entity. In clinical practice, such a minimally invasive approach provides a more sensitive tool than standard imaging and cell analyzing techniques, enabling more accurate disease monitoring and relapse prediction in particular cases.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Magnetic Resonance Imaging
- Circulating Tumor DNA/genetics
- Circulating Tumor DNA/cerebrospinal fluid
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/cerebrospinal fluid
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/cerebrospinal fluid
- Middle Aged
- Male
- Female
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| | - Andrea Mareckova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Porc
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Samuel Hricko
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Viera Hrabcakova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jarmila Kissova
- Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
| | - Sona Kundova
- Clinic of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czech Republic
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Bisig B, Lefort K, Carras S, de Leval L. Clinical use of circulating tumor DNA analysis in patients with lymphoma. Hum Pathol 2025; 156:105679. [PMID: 39491629 DOI: 10.1016/j.humpath.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The analysis of circulating tumor DNA (ctDNA) in liquid biopsy specimens has an established role for the detection of predictive molecular alterations and acquired resistance mutations in several tumors. The low-invasiveness of this approach allows for repeated sampling and dynamic monitoring of disease evolution. Originating from the entire body tumor bulk, plasma-derived ctDNA reflects intra- and interlesional genetic heterogeneity. In the management of lymphoma patients, ctDNA quantification at various timepoints of the patient's clinical history is emerging as a complementary tool that may improve risk stratification, assessment of treatment response and early relapse detection during follow-up, most prominently in patients with diffuse large B-cell lymphoma or classic Hodgkin lymphoma. While liquid biopsies have not yet entered standard-of-care treatment protocols in these settings, several trials have provided evidence that at least a subset of lymphoma patients may benefit from the introduction of liquid biopsies into daily clinical care. In parallel, continuous technological developments have enabled highly sensitive ctDNA assessment methods, which span from locus-specific techniques identifying single hotspot mutations, to sequencing panels and genome-wide approaches that explore broader genetic and epigenetic alterations. Here, we provide an overview of current methods and ongoing technical developments for ctDNA evaluation. We also summarize the most important data from a selection of clinical studies that have explored the clinical use of ctDNA in several lymphoma entities.
Collapse
Affiliation(s)
- Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Karine Lefort
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sylvain Carras
- Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Department of Molecular Biology and Department of Oncohematology, University Hospital Grenoble and University Grenoble Alpes, Grenoble, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
5
|
Hersby DS, Schejbel L, Breinholt MF, Høgdall E, Nørgaard P, Nielsen TH, Pedersen LM, Gang AO. Mutational heterogeneity in large B-cell lymphoma: insights from paired biopsies. Ann Hematol 2024:10.1007/s00277-024-06108-w. [PMID: 39644335 DOI: 10.1007/s00277-024-06108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Large B-cell lymphoma (LBCL) exhibits striking clinical and molecular heterogeneity. New approaches have emerged to explore tumor heterogeneity and classify LBCL into biological categories. Consequently, the informational requirements from diagnostic samples to provide the necessary information have increased, but the adequacy of single-site biopsies to provide such information is largely unknown. Here we describe spatial and temporal intra-patient variations in the mutational landscape of paired biopsies. METHODS Paired biopsies from 30 patients with LBCL were obtained from spatially distinct sites at the time of primary diagnosis before treatment and/or at a subsequent relapse. The samples were sequenced using a custom designed 59-gene next generation sequencing (NGS) lymphoma panel. RESULTS Differences in detected mutations of pathogenic or likely pathogenic significance were frequent both when comparing paired diagnostic biopsies, 2/6 (33%), and when comparing paired biopsies at primary diagnosis and relapse, 8/16 (50%). Mutational heterogeneity tended to increase with longer time interval between biopsies. Analysis of paired diagnostic and relapse biopsies revealed that certain clones present at diagnosis disappeared, while new clones emerged at relapse. Notably, TP53 mutations were detected in six out of seven patients in an extranodal location. In two cases, TP53 mutation was only detected in the relapse biopsy. Several of the mutations identified in this study are used or under investigation as targets for cancer treatments. CONCLUSION Multi-site biopsies revealed spatial and temporal mutational heterogeneity in patients with LBCL. Our findings indicate that mutational differences between biopsy pairs can occur at all timepoints examined. This underscores the necessity of performing repeat biopsies with each relapse to capture the full spectrum of genetic aberrations.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Fredslund Breinholt
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Nørgaard
- Department of Pathology, Hvidovre Hospitalet, Hvidovre, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| | - Lars Møller Pedersen
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Chauhan A, Lai C, Kuhr F, Simmons H, Cheson BD. Long-Term Follow-Up of Patients With Follicular Lymphoma Using Next Generation Sequencing to Detect Minimal Residual Disease. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:634-641. [PMID: 38789312 DOI: 10.1016/j.clml.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Follicular lymphoma (FL) is a highly treatable, indolent non-Hodgkin lymphoma. Although FL is considered incurable, a patient without progression of disease by 24 months after treatment is predicted to have a survival consistent with persons without lymphoma. Using a sensitive assessment of minimal residual disease (MRD), we tested the hypothesis that MRD monitoring can predict long term remissions. METHODS Unselected patients who were in a clinical remission for at least 24 months after their last treatment were enrolled and monitored prospectively for MRD detectability using a sensitive next-generation sequencing assay (clonoSEQ, Adaptive Biotechnologies, Seattle, WA). RESULTS Forty-seven consecutive patients were monitored. We evaluated the MRD thresholds 10-4, 10-5, and 10-6 for the ability to predict long-term remissions in this cohort and determined that undetectable disease at 10-6 was the best predictor with a specificity and negative predictive value (NPV) of 70% and 100%, respectively. While 3 patients exhibited clinical disease progression during the course of the study, none of the 31 patients with persistent MRD undetectability at 10-6 experienced relapse. CONCLUSIONS A significant proportion (31/47; 66.0%) of FL patients in clinical remission after ≥24 months following last therapy were undetectable at 10-6 by a sensitive assay of MRD. The threshold of sensitivity was 100%, specificity 70%, with a PPV of 19%, but a NPV of 100%. Although longer follow-up is needed for confirmation, many of these patients may continue to have durable complete remissions.
Collapse
Affiliation(s)
| | - Catherine Lai
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
7
|
Chang Y, Li S, Li Z, Wang X, Chang F, Geng S, Zhu D, Zhong G, Wu W, Chang Y, Tu S, Mao M. Non-invasive detection of lymphoma with circulating tumor DNA features and protein tumor markers. Front Oncol 2024; 14:1341997. [PMID: 38313801 PMCID: PMC10834776 DOI: 10.3389/fonc.2024.1341997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background According to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease. Method This study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA. Results Protein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome. Conclusion In summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive.
Collapse
Affiliation(s)
- Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Li
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Zhiming Li
- Department of Internal Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Guolin Zhong
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Wei Wu
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Yinyin Chang
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Shichun Tu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Mao Mao
- Research and Development, SeekIn Inc, Shenzhen, China
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Cuzzo B, Lipsky A, Cherng HJJ. Measurable Residual Disease Monitoring in Lymphoma. Curr Hematol Malig Rep 2023; 18:292-304. [PMID: 37930608 DOI: 10.1007/s11899-023-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW The utility of analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and disease in the bone marrow as an adjunctive tool in caring for hematologic cancer patients is expanding. This holds true for lymphoma where these biomarkers are being explored as a means of genotyping and quantifying disease. Regarding the latter, they can be used to monitor measurable residual disease (MRD) during and after treatment. This holds potential for aiding clinical decisions amidst treatment, detecting earlier relapse, and improving prognostication. Here, we review the evidence to support these applications in a variety of lymphoma subtypes. RECENT FINDINGS Numerous clinical trials across a variety of lymphomas have demonstrated value in MRD monitoring. MRD monitoring is often prognostic for progression free survival (PFS) and even overall survival (OS) at several time points in a disease course, particularly when utilizing serial measurements. With regards to tailoring treatment, there are a growing number of trials examining MRD-adaptive treatment strategies to intensify or de-escalate treatment to individualize care. Lastly, MRD monitoring has been utilized successfully in detecting earlier relapse when compared to more standard methods of clinical surveillance such as radiographic assessment. Although not routinely implemented into clinical practice, MRD monitoring in lymphoma is helping shape the future landscape of this disease by aiding in prognostication, guiding therapy, and detecting earlier relapse. Steps to standardize and further examine this technology prospectively are being taken to bring MRD monitoring to the forefront of the field.
Collapse
Affiliation(s)
- Brian Cuzzo
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Andrew Lipsky
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Hua-Jay J Cherng
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Hersby DS, Schejbel L, Breinholt MF, Høgdall E, Nørgaard P, Dencker D, Nielsen TH, Pedersen LM, Gang AO. Multi-site pre-therapeutic biopsies demonstrate genetic heterogeneity in patients with newly diagnosed diffuse large B-cell lymphoma. Leuk Lymphoma 2023; 64:1527-1535. [PMID: 37328933 DOI: 10.1080/10428194.2023.2220454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, both regarding clinical presentation, response to treatment and outcome. Recently, subclassification of DLBCL based on mutational profile has been suggested, and next generation sequencing (NGS) analysis may be relevant as part of the diagnostic workflow. This will, however, often be based on analysis of one tumor biopsy. Here, we present a prospective study where multi-site sampling was performed prior to treatment in patients with newly diagnosed DLBCL. Two spatially different biopsies from 16 patients were analyzed using NGS with an in-house 59-gene lymphoma panel. In 8/16 (50%) patients, mutational differences were found between the two biopsy sites, including differences in TP53 mutational status. Our data indicate that a biopsy from the extra-nodal site may represent the most advanced clone, and an extra-nodal biopsy should be preferred for analysis, if safely accessible. This will help ensure a standardized stratification and treatment decision.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Peter Nørgaard
- Department of Pathology, Hvidovre Hospitalet, Hvidovre, Denmark
| | - Ditte Dencker
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| | - Lars Møller Pedersen
- Department of Hematology, Zealand Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Velicu MA, Lavrador JP, Sibtain N, Vergani F, Bhangoo R, Gullan R, Ashkan K. Neurosurgical Management of Central Nervous System Lymphoma: Lessons Learnt from a Neuro-Oncology Multidisciplinary Team Approach. J Pers Med 2023; 13:jpm13050783. [PMID: 37240953 DOI: 10.3390/jpm13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Central nervous system lymphoma (CNSL) represents one of the most aggressive forms of extranodal lymphoma. The gold standard for CNSL diagnosis remains the stereotactic biopsy, with a limited role for cytoreductive surgery that has not been supported by historical data. Our study aims to provide a comprehensive overview of neurosurgery's role in the diagnosis of systemic relapsed and primary CNSL, with an emphasis on the impact on management and survival. This is a single center retrospective cohort study with data collected between August 2012 and August 2020, including patients referred with a potential diagnosis of CNSL to the local Neuro-oncology Multidisciplinary Team (MDT). The concordance between the MDT outcome and histopathological confirmation was assessed using diagnostic statistics. A Cox regression is used for overall survival (OS) risk factor analysis, and Kaplan-Meier statistics are performed for three prognostic models. The diagnosis of lymphoma is confirmed in all cases of relapsed CNSL, and in all but two patients who underwent neurosurgery. For the relapsed CNSL group, the highest positive predictive value (PPV) is found for an MDT outcome when lymphoma had been considered as single or topmost probable diagnosis. Neuro-oncology MDT has an important role in establishing the diagnosis in CNSL, not only to plan tissue diagnosis but also to stratify the surgical candidates. The MDT outcome based on history and imaging has good predictive value for cases where lymphoma is considered the most probable diagnosis, with the best prediction for cases of relapsed CNSL, questioning the need for invasive tissue diagnosis in the latter group.
Collapse
Affiliation(s)
- Maria Alexandra Velicu
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Naomi Sibtain
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| |
Collapse
|
11
|
Talotta D, Almasri M, Cosentino C, Gaidano G, Moia R. Liquid biopsy in hematological malignancies: current and future applications. Front Oncol 2023; 13:1164517. [PMID: 37152045 PMCID: PMC10157039 DOI: 10.3389/fonc.2023.1164517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The assessment of the cancer mutational profile is crucial for patient management, stratification, and therapeutic decisions. At present, in hematological malignancies with a solid mass, such as lymphomas, tumor genomic profiling is generally performed on the tissue biopsy, but the tumor may harbor genetic lesions that are unique to other anatomical compartments. The analysis of circulating tumor DNA (ctDNA) on the liquid biopsy is an emerging approach that allows genotyping and monitoring of the disease during therapy and follow-up. This review presents the different methods for ctDNA analysis and describes the application of liquid biopsy in different hematological malignancies. In diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma (HL), ctDNA analysis on the liquid biopsy recapitulates the mutational profile of the tissue biopsy and can identify mutations otherwise absent on the tissue biopsy. In addition, changes in the ctDNA amount after one or two courses of chemotherapy significantly predict patient outcomes. ctDNA analysis has also been tested in myeloid neoplasms with promising results. In addition to mutational analysis, liquid biopsy also carries potential future applications of ctDNA, including the analysis of ctDNA fragmentation and epigenetic patterns. On these grounds, several clinical trials aiming at incorporating ctDNA analysis for treatment tailoring are currently ongoing in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | | | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Hou Y, Zi J, Liu S, Ge Q, Ge Z. Mutational profiling of circulating tumor DNA and clinical characteristics in lymphoma: Based on next generation sequencing. Mol Carcinog 2023; 62:200-209. [PMID: 36300887 DOI: 10.1002/mc.23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/10/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023]
Abstract
Liquid biopsy has been experimented with to identify the mutation of lymphoma based on next-generation sequencing (NGS). We applied NGS analysis to circulating tumor DNA (ctDNA) in 20 lymphoma patients. Then, we compared treatment outcomes, and clinical characteristics among these patients, then investigated mutational profiling. Two independent cohorts of 241 patients with mature B cell lymphoma in Mature B-cell malignancies data set (MBN) data set and 50 diffuse large B-cell lymphoma (DLBCL) patients in DLBCL data set, were used to examine the association between gene mutations and prognosis. We found ctDNA positive group had significantly more relapsed/PD (7/12, 58.3%) and less CR/PR patients (1/12, 8.3%) compared to negative group (0, 0%) (5/8, 62.5%) (p < 0.001). Somatic alterations were identified in 12 of 20 patients and the total 11 mutations were: Ataxia telangiectasia mutated (ATM), TP53, BCL2, BTG2, CD28, EP300, IDH2, IRF8, JAK3, NOTCH1, and NRAS. ATM (S2168L) was found in SLL and TLBL for the first time. BTG2 (c.292_293del), CD28 (P119T), IRF8 (E74D) and NOTCH1 (c.4348 G > A) were newly detected in DLBCL, angioimmunoblastic T-cell lymphoma, primary central nervous system lymphoma, and BCL for the first time respectively. We also disclosed an unreported mutation EP300 (c.1058_1059insC) in DLBCL. Our cases implied ctDNA detection consistent with the FISH of tissue samples to some extent, speculating new molecular subtypes of DLBCL, finding some potential drug-resistant mutations, and suggesting disease recurrence. Moreover, in MBN and DLBCL datasets, patients with TP53 mutation had a significantly shorter OS (all p < 0.05) in both circulating free DNA and tumor tissue. The mutations (no SNP) of NOTCH1 (all p < 0.05) significantly contributed to worse OS in the two cohorts.
Collapse
Affiliation(s)
- Yue Hou
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Jie Zi
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Shuo Liu
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zheng Ge
- Department of Hematology, School of Medicine, Zhongda Hospital, Institute of Hematology Southeast University, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Recent advances have been made in circulating tumor DNA (ctDNA), the method to minimally invasive detect lymphoma sensitively with tumor-derived DNA in the blood of patients with lymphomas. This article discusses these various methods of ctDNA detection and the clinical context in which they have been applied to for a variety of lymphoma subtypes. RECENT FINDINGS ctDNA has been applied to a variety of subtypes of lymphoma and has been used in the context of genotyping somatic mutations and classification of disease, monitoring of response during treatment, detecting minimal residual disease even with radiographic remission, and predicting relapse and long-term survival outcomes. There are a variety of techniques used to measure ctDNA including digital polymerase chain reaction and next-generation sequencing techniques including high-throughput variable-diversity-joining rearrangement sequencing, high-throughput sequencing of somatic mutations, and Cancer Personalized Profiling by deep sequencing. While the greatest data has been generated in diffuse large B cell lymphoma, there have been studies utilizing application of ctDNA in follicular lymphoma, mantle cell lymphoma, Hodgkin's lymphoma, peripheral T cell lymphoma, and primary CNS lymphoma among others. ctDNA is an emerging biomarker in lymphoma that can minimally invasively provide further genotypic information, diagnostic clarification, and treatment prognostication by detection of minimal residual disease even without radiographic evidence of disease. Future studies are needed to standardize the use of ctDNA and translate its use clinically for the management of lymphoma patients.
Collapse
Affiliation(s)
| | - Jasmine Zain
- City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
14
|
ctDNA Is Useful to Detect Mutations at Codon 641 of Exon 16 of EZH2, a Biomarker for Relapse in Patients with Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14194650. [PMID: 36230571 PMCID: PMC9563768 DOI: 10.3390/cancers14194650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary It is well known that epigenetic modifications and proteins involved in this process are important in the biogenesis of diffuse large B-cell lymphoma. In this sense, we decided to analyze the EZH2 mutations, which are frequent in this neoplasm, using ctDNA to demonstrate the utility of this tool for searching these mutations. The importance of the study of this gene is due to its role in the biogenesis of lymphomas and also because there are selective inhibitors targeting EZH2. This targeted therapy could be particularly effective in patients with activating mutations in EZH2, remarking the importance of its detection. Abstract (1) Background: The epigenetic regulator EZH2 is a subunit of the polycomb repressive complex 2 (PRC2), and methylates H3K27, resulting in transcriptional silencing. It has a critical role in lymphocyte differentiation within the lymph node. Therefore, mutations at this level are implicated in lymphomagenesis. In fact, the mutation at the Y641 amino acid in the EZH2 gene is mutated in up to 40% of B-cell lymphomas. (2) Methods: We compared the presence of exon 16 EZH2 mutations in tumor samples and ctDNA in a prospective trial. These mutations were determined by Sanger sequencing and ddPCR. (3) Results: One hundred and thirty-eight cases were included. Ninety-eight were germinal center, and twenty had EZH2 mutations. Mean follow-up (IQR 25–75) was 23 (7–42) months. The tumor samples were considered the standard of reference. Considering the results of the mutation in ctDNA by Sanger sequencing, the sensibility (Se) and specificity (Sp) were 52% and 99%, respectively. After adding the droplet digital PCR (ddPCR) analysis, the Se and Sp increased to 95% and 100%, respectively. After bivariate analysis, only the presence of double-hit lymphoma (p = 0.04) or EZH2 mutations were associated with relapse. The median Progression free survival (PFS) (95% interval confidence) was 27.7 (95% IC: 14–40) vs. 44.1 (95% IC: 40–47.6) months for the mutated vs. wild-type (wt) patients. (4) Conclusions: The ctDNA is useful for analyzing EZH2 mutations, which have an impact on PFS.
Collapse
|
15
|
Feasibility of Leukemia-Derived Exosome Enrichment and Co-isolated dsDNA Sequencing in Acute Myeloid Leukemia Patients: A Proof of Concept for New Leukemia Biomarkers Detection. Cancers (Basel) 2022; 14:cancers14184504. [PMID: 36139664 PMCID: PMC9497185 DOI: 10.3390/cancers14184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present pilot study aimed at investigating the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA target re-sequencing for adult Acute Myeloid Leukemias (AML) marker detection. To our knowledge, this is the first time that a proof-of-concept combining a leukemia-derived exosome enrichment strategy based on a commercial CE-IVD kit and next-generation sequencing was applied in a cohort of adult AML patients. The reported approach is easy, quick and user friendly and gives the possibility of obtaining a good quantity of exosomal dsDNA (composed of exosomal cargo and surrounding DNA) suitable for further analysis. The time-effective procedure opens up future effective clinical applications. This pilot study presents the potential of a proof-of-concept based on exosome analysis to be applied in clinical practice, as well as the feasibility of this kind of investigations using a certified kit, avoiding many additional analyses. It may encourage further studies regarding extracellular vesicles in myeloid neoplasia. Abstract Exosomes are extracellular vesicles playing a pivotal role in the intercellular communication. They shuttle different cargoes, including nucleic acids from their cell of origin. For this reason, they have been studied as carriers of tumor markers in different liquid biopsy approaches, in particular for solid tumors. Few data are available concerning exosomes as markers of myeloid neoplasia. To better understand their real potential and the best approach to investigate leukemic exosomes, we present the results of a pilot feasibility study evaluating the application of next-generation sequencing analysis of dsDNA derived from exosomes isolated in 14 adult patients affected by acute myeloid leukemias. In particular, leukemia-derived exosome fractions have been analyzed. The concentration of dsDNA co-extracted with exosomes and the number and types of mutations detected were considered and compared with ones identified in the Bone Marrow (BM) and Peripheral Blood (PB) cells. Exosomal DNA concentration, both considering the cargo and the DNA surrounding the lipid membrane resulted in a linear correlation with leukemic burden. Moreover, exosomal DNA mutation status presented 86.5% of homology with BM and 75% with PB. The results of this pilot study confirmed the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA NGS analysis for AML biomarker detection. These data point to the use of liquid biopsy in myeloid neoplasia for the detection of active leukemic cells resident in the BM via a painless procedure.
Collapse
|
16
|
Slyusarenko M, Shalaev S, Valitova A, Zabegina L, Nikiforova N, Nazarova I, Rudakovskaya P, Vorobiev M, Lezov A, Filatova L, Yevlampieva N, Gorin D, Krzhivitsky P, Malek A. AuNP Aptasensor for Hodgkin Lymphoma Monitoring. BIOSENSORS 2022; 12:23. [PMID: 35049651 PMCID: PMC8774100 DOI: 10.3390/bios12010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
A liquid biopsy based on circulating small extracellular vesicles (SEVs) has not yet been used in routine clinical practice due to the lack of reliable analytic technologies. Recent studies have demonstrated the great diagnostic potential of nanozyme-based systems for the detection of SEV markers. Here, we hypothesize that CD30-positive Hodgkin and Reed-Sternberg (HRS) cells secrete CD30 + SEVs; therefore, the relative amount of circulating CD30 + SEVs might reflect classical forms of Hodgkin lymphoma (cHL) activity and can be measured by using a nanozyme-based technique. A AuNP aptasensor analytics system was created using aurum nanoparticles (AuNPs) with peroxidase activity. Sensing was mediated by competing properties of DNA aptamers to attach onto surface of AuNPs inhibiting their enzymatic activity and to bind specific markers on SEVs surface. An enzymatic activity of AuNPs was evaluated through the color reaction. The study included characterization of the components of the analytic system and its functionality using transmission and scanning electron microscopy, nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), and spectrophotometry. AuNP aptasensor analytics were optimized to quantify plasma CD30 + SEVs. The developed method allowed us to differentiate healthy donors and cHL patients. The results of the CD30 + SEV quantification in the plasma of cHL patients were compared with the results of disease activity assessment by positron emission tomography/computed tomography (PET-CT) scanning, revealing a strong positive correlation. Moreover, two cycles of chemotherapy resulted in a statistically significant decrease in CD30 + SEVs in the plasma of cHL patients. The proposed AuNP aptasensor system presents a promising new approach for monitoring cHL patients and can be modified for the diagnostic testing of other diseases.
Collapse
Affiliation(s)
- Maria Slyusarenko
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
- The Faculty of Physics and Center for Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (M.V.); (A.L.); (N.Y.)
| | - Sergey Shalaev
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Alina Valitova
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Lidia Zabegina
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Nadezhda Nikiforova
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Inga Nazarova
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Polina Rudakovskaya
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Maxim Vorobiev
- The Faculty of Physics and Center for Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (M.V.); (A.L.); (N.Y.)
| | - Alexey Lezov
- The Faculty of Physics and Center for Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (M.V.); (A.L.); (N.Y.)
| | - Larisa Filatova
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Natalia Yevlampieva
- The Faculty of Physics and Center for Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (M.V.); (A.L.); (N.Y.)
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Pavel Krzhivitsky
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| | - Anastasia Malek
- Subcellular Technology Laboratory, Department of Hematology and Chemotherapy and Department of Radionuclide Diagnostics, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (S.S.); (A.V.); (L.Z.); (N.N.); (I.N.); (L.F.); (P.K.)
| |
Collapse
|
17
|
Roschewski M, Rossi D, Kurtz DM, Alizadeh AA, Wilson WH. Circulating Tumor DNA in Lymphoma: Principles and Future Directions. Blood Cancer Discov 2022; 3:5-15. [PMID: 35015693 PMCID: PMC9245363 DOI: 10.1158/2643-3230.bcd-21-0029] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous tumors with striking genetic diversity and variable outcomes even within pathologic diagnoses. Treatment response assessment relies on radiologic and nuclear scans, which cannot detect disease at the molecular level. Molecular tumor analyses require invasive tissue biopsies that cannot accurately capture spatial tumor heterogeneity within each patient. Circulating tumor DNA (ctDNA) is a minimally invasive and highly versatile biomarker that overcomes fundamental limitations of imaging scans and tissue biopsies and may aid clinical decision-making in lymphoma. In this review, we highlight the key established principles regarding ctDNA in lymphoma and emphasize the important research questions and future directions. SIGNIFICANCE: ctDNA is an emerging biomarker for lymphomas that noninvasively provides genotypic information and can measure the effectiveness of treatment by detecting the presence of minimal residual disease. Key principles have emerged related to ctDNA for lymphoma, but further studies are needed to standardize its use and establish clinical utility.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland.
| | - Davide Rossi
- Experimental Hematology, Institute of Oncology Research, Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine; Division of Hematology, Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Institute, Stanford University, Stanford, California
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
18
|
Lavacchi D, Landini I, Perrone G, Roviello G, Mini E, Nobili S. Pharmacogenetics in diffuse large B-cell lymphoma treated with R-CHOP: Still an unmet challenge. Pharmacol Ther 2022; 229:107924. [PMID: 34175369 DOI: 10.1016/j.pharmthera.2021.107924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma representing approximately one third of all non-Hodgkin lymphomas and about 40% of patients do not benefit of the standard first-line immune-chemotherapeutic treatment (i.e., R-CHOP - rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) that is administered as upfront therapy to substantially all patients independently from the stage of disease and other prognostic parameters. The administration of other pharmacological treatments is in fact limited to selected patients, unfitting for R-CHOP. Although clinical prognostic scores, i.e. International Prognostic Index (IPI), and molecular classifiers based on the cell of origin are available, at present no biomarkers predictive of R-CHOP response has been identified and validated. Constitutional polymorphisms of genes involved in the mechanism of action of drugs included in R-CHOP have been suggested by many authors to play a role in the efficacy and in some case in the toxicity of this treatment. Thus, it is conceivable that in the future, after proper validation, some polymorphisms can be used as pharmacogenetic biomarkers of therapeutic outcome in this disease setting. This review discusses the status of the art on molecular biomarkers predictive of DLBCL prognosis and deals with the relevant issue of the variability in response to DLBCL drug treatment. Overall, this review focuses on single nucleotide polymorphisms (SNPs) that, based on a candidate gene approach or on a genome-wide association study (GWAS) analysis, have been suggested to play a role in response to R-CHOP. In particular, SNPs discovered by a candidate gene approach are related to genes involved in drug transport (i.e., ATP-binding cassette transporters), drug metabolism, drug detoxification enzymes, oxidative stress, apoptosis, DNA repair, immunity and angiogenesis. Data from a GWAS analysis performed in DLBCL patients treated with R-CHOP, identified two SNPs associated with clinical outcomes related to genes involved in pivotal cellular processes and in transcriptional regulation and cell cycle progression, respectively. Ongoing prospective pharmacogenetic clinical trials, including a GWAS study we performed, have also been discussed.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Gabriele Perrone
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy; DENOTHE Excellence Center, University of Florence, Florence, Italy; Cancer Pharmacology Working Group of the Italian Society of Pharmacology, Milan, Italy.
| | - Stefania Nobili
- Cancer Pharmacology Working Group of the Italian Society of Pharmacology, Milan, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
19
|
Mika T, Thomson J, Nilius-Eliliwi V, Vangala D, Baraniskin A, Wulf G, Klein-Scory S, Schroers R. Quantification of cell-free DNA for the analysis of CD19-CAR-T cells during lymphoma treatment. Mol Ther Methods Clin Dev 2021; 23:539-550. [PMID: 34853800 PMCID: PMC8606297 DOI: 10.1016/j.omtm.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells are increasingly used for the treatment of hematologic malignancies. Treatment success relies highly upon sufficient expansion of CAR-T effector cells. Accordingly, longitudinal quantification of CAR-T cells during therapy is clinically important. Techniques to quantify CAR-T cells in patient blood samples are based on flow cytometry and PCR. However, cellular kinetics of CAR-T cells are very complex and under current investigation. In this study, feasibility of CAR-T cell quantification by cell-free DNA (cfDNA) was analyzed. cfDNA isolated from 74 blood samples of 12 patients during lymphoma treatment with the anti-CD19 CAR-T cell product axicabtagene ciloleucel (axi-cel) were analyzed. Concentrations of cfDNA specific for the CAR-T gene construct (cfCAR-DNA) and a reference gene were quantified by a newly designed digital-droplet PCR (ddPCR) assay. Detection and quantification of cfCAR-DNA was feasible and reliable for all patients included. Relative quantification of cfCAR-DNA compared to a reference gene, suitable for genomic DNA analysis, was heterogeneous in treatment responders and non-responders. In contrast, parallel analyses of cfCAR-DNA and reference cfDNA in a patient-specific approach gave insight into active lymphoma killing and treatment responses. In summary, plasma cfDNA determination in lymphoma patients is a promising tool for future clinical decision making.
Collapse
|
20
|
Bastos-Oreiro M, Suárez-González J, Andrés-Zayas C, Carrión NC, Moreno S, Carbonell D, Chicano M, Muñiz P, Sanz L, Diaz-Crespo FJ, Menarguez J, Diez-Martín JL, Buño I, Martínez-Laperche C. Incorporation of next-generation sequencing in clinical practice using solid and liquid biopsy for patients with non-Hodgkin's lymphoma. Sci Rep 2021; 11:22815. [PMID: 34819573 PMCID: PMC8613247 DOI: 10.1038/s41598-021-02362-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Although next-generation sequencing (NGS) data on lymphomas require further validation before being implemented in daily practice, the clinical application of NGS can be considered right around the corner. The aim of our study was to validate an NGS lymphoid panel for tissue and liquid biopsy with the most common types of non-Hodgkin’s lymphoma [follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL)]. In this series, 372 somatic alterations were detected in 93.6% (44/47) of the patients through tissue biopsy. In FL, we identified 93 somatic alterations, with a median of 7.4 mutations per sample. In DLBCL, we detected 279 somatic variants with a median of 8.6 mutations (range 0–35). In 92% (24/26) of the cases, we were able to detect some variant in the circulating tumor DNA. We detected a total of 386 variants; 63.7% were detected in both types of samples, 13.2% were detected only in the circulating tumor DNA, and 23% were detected only in the tissue biopsy. We found a correlation between the number of circulating tumor DNA mutations, advanced stage, and bulky disease. The genetic alterations detected in this panel were consistent with those previously described at diagnosis. The liquid biopsy sample is therefore a complementary tool that can provide new genetic information, even in cases where a solid biopsy cannot be performed or an insufficient sample was obtained. In summary, we describe and analyze in this study the findings and difficulties encountered when incorporating liquid biopsy into clinical practice in non-Hodgkin’s lymphoma at diagnosis.
Collapse
Affiliation(s)
- Mariana Bastos-Oreiro
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain. .,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.
| | - Julia Suárez-González
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Andrés-Zayas
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Natalia Carolina Carrión
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Solsiré Moreno
- Deparment of Pathology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Laura Sanz
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | | | - Javier Menarguez
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Deparment of Pathology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - José Luis Diez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, C/ Doctor Esquerdo 46, 28007, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
21
|
Zhang S, Zhang T, Liu H, Zhao J, Zhou H, Su X, Liu X, Li L, Qiu L, Qian Z, Zhou S, Gong W, Meng B, Ren X, He J, Wang X, Zhang H. Tracking the evolution of untreated high-intermediate/high-risk diffuse large B-cell lymphoma by circulating tumour DNA. Br J Haematol 2021; 196:617-628. [PMID: 34664256 DOI: 10.1111/bjh.17894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogenous malignancy, early identification of patients for relapse remains challenging. The potential to non-invasively monitor tumour evolutionary dynamics of DLBCL needs to be further established. In the present study, 17 tumour biopsy and 38 plasma samples from 38 patients with high-intermediate/high-risk DLBCL were evaluated at baseline. Longitudinal blood samples were also collected during therapy. Circulating tumour DNA (ctDNA) was analysed using targeted sequencing based on a gene panel via a recently developed methodology, circulating single-molecule amplification and re-sequencing technology (cSMART). We found that the most frequently mutated genes were tumour protein p53 (TP53; 42·1%), histone-lysine N-methyltransferase 2D (KMT2D; 28·9%), caspase recruitment domain family member 11 (CARD11; 21·1%), cAMP response element-binding protein binding protein (CREBBP; 15·8%), β2 -microglobulin (B2M; 15·8%), and tumour necrosis factor alpha-induced protein 3 (TNFAIP3; 15·8%). The mutation profiles between ctDNA and matched tumour tissue showed good concordance; however, more mutation sites were detected in ctDNA samples. Either TP53 or B2M mutations before treatment predicted poor prognosis. Analysis of dynamic blood samples confirmed the utility of ctDNA for the real-time assessment of treatment response and revealed that the increases in ctDNA levels and changes in KMT2D mutation status could be useful predictors of disease progression. Our present results suggest that ctDNA is a promising method for the detection of mutation spectrum and serves as a biomarker for disease monitoring and predicting clinical recurrence.
Collapse
Affiliation(s)
- Sicong Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Tingting Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Hengqi Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jing Zhao
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | | | | | - Xianming Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jin He
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
22
|
Alonso-Álvarez S, Manni M, Montoto S, Sarkozy C, Morschhauser F, Wondergem MJ, Guarini A, Magnano L, Alcoceba M, Chamuleau M, Galimberti S, Gomes da Silva M, Holte H, Zucca E, Lockmer S, Aurer I, Marcheselli L, Stepanishyna Y, Caballero Barrigón MD, Salles G, Federico M. Primary refractory follicular lymphoma: a poor outcome entity with high risk of transformation to aggressive B cell lymphoma. Eur J Cancer 2021; 157:132-139. [PMID: 34508995 DOI: 10.1016/j.ejca.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Primary refractory (PREF) follicular lymphoma (FL) has a completely different clinical course from that of FL that responds to front-line treatments. In addition to having poor responses to salvage therapies, it seems that patients with PREF are at increased risk of histological transformation (HT). The Aristotle consortium presented the opportunity of investigating the risk of HT in a very large series of cases. Thus, we investigated the risk of HT in patients with PREF FL compared with that of responding patients or in stable disease and ultimately their outcome. METHODS Six thousand three hundred thirty-nine patients from the Aristotle database were included in the analysis. These patients had a histologically confirmed grade 1, 2 or 3a FL diagnosed between 1997 and 2013. The primary end-points were the cumulative incidence (CI) of HT at the first progression or relapse and the survival after transformation. FINDINGS The 5-year CI of HT among patients with PREF was 34% (95% confidence interval (CI): 27-43), whilst it was 7.1% (95% CI: 6.0-8.5) in the group of patients with partial response (PR) or stable disease (SD) (PR + SD) and 3.5% (95% CI: 3.0-4.2) in the group of patients achieving complete response (CR). The 5-year survival after relapse (SAR) was 33% (95% CI: 28-39) for the PREF group, 57% (95% CI 54-61) in patients with PR, 51% (95% CI 43-58) in the SD group after first-line therapy and 63% (95% CI: 66-72) in patients with CR after initial treatment (p-value <0.001). The 5-year SAR for those patients with PREF who developed HT was 21% (95% CI: 12-31), clearly diminished when compared with those patients with PREF who did not experience HT (38% [95% CI: 31-44]) (p-value = 0.001). INTERPRETATION Patients with PREF FL have a dismal outcome and an associated very high rate of HT that further worsens their poor prognosis.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Department of Haematology, Hospital Universitario Central de Asturias, Spain.
| | - Martina Manni
- CHIMOMODepartment, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Montoto
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Clémentine Sarkozy
- INSERM 1052, Charles Mérieux Lyon-1 Faculty, Claude Bernard University, Lyon, France
| | - Franck Morschhauser
- Department of Clinical Haematology, CHU Lille, Unite GRITA, Universite de Lille 2, Lille, France
| | - Marielle J Wondergem
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Attilio Guarini
- Haematology Unit, IRCCS IstitutoTumori "Giovanni Paolo II", Bari, Italy
| | - Laura Magnano
- Department of Haematology, Hospital Clinic of Barcelona, Spain
| | - Miguel Alcoceba
- Department of Hematology, Hospitalario Universitario de Salamanca (HUS/IBSAL) and CIBERONC, Salamanca, Spain
| | - Martine Chamuleau
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Harald Holte
- Department of Oncology, Radiumhospitalet, Oslo University Hospital, Norway
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Sandra Lockmer
- Dep. of Hematology, Karolinska University Hospital and Dep. of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Igor Aurer
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb and Medical School, University of Zagreb, Croatia
| | | | - Yana Stepanishyna
- CHIMOMODepartment, University of Modena and Reggio Emilia, Modena, Italy; Department of Oncohematology, National Cancer Institute, Kiev, Ukraine
| | | | - Gilles Salles
- Gilles SALLES, Lymphoma Service, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Massimo Federico
- CHIMOMODepartment, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Chan JY, Lim JQ, Ong CK. Towards Next Generation Biomarkers in Natural Killer/T-Cell Lymphoma. Life (Basel) 2021; 11:838. [PMID: 34440582 PMCID: PMC8398475 DOI: 10.3390/life11080838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an Epstein-Barr virus-associated non-Hodgkin lymphoma linked to an aggressive clinical course and poor prognosis. Despite an improvement in survival outcomes with the incorporation of novel agents including immune checkpoint inhibitors in the treatment of NKTCL, a significant proportion of patients still relapse or remain refractory to treatment. Several clinical prognostic models have been developed for NKTCL patients treated in the modern era, though the optimal approach to risk stratification remains to be determined. Novel molecular biomarkers derived from multi-omic profiling have recently been developed, with the potential to improve diagnosis, prognostication and treatment of this disease. Notably, a number of potential biomarkers have emerged from a better understanding of the tumor immune microenvironment and inflammatory responses. This includes a recently described 3'UTR structural variant in the PD-L1 gene, which confers susceptibility to checkpoint immunotherapy. In this review, we summarize the biomarker landscape of NKTCL and highlight emerging biomarkers with the potential for clinical implementation.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Blood Cancer Centre, Singapore 169857, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore
| |
Collapse
|
24
|
|
25
|
Yoon SE, Kim YJ, Shim JH, Park D, Cho J, Ko YH, Park WY, Mun YC, Lee KE, Cho D, Kim WS, Kim SJ. Plasma Circulating Tumor DNA in Patients with Primary Central Nervous System Lymphoma. Cancer Res Treat 2021; 54:597-612. [PMID: 34325497 PMCID: PMC9016302 DOI: 10.4143/crt.2021.752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Analysis of circulating tumor DNA (ctDNA) in blood could allow noninvasive genetic analysis of primary tumors. Although there have been unmet needs for noninvasive methods in patients with primary central nervous system lymphoma (PCNSL), it is still not determined whether plasma ctDNA analysis could be useful for patients with PCNSL. Materials and Methods Targeted deep sequencing of 54 genes was performed in cell-free DNA isolated from plasma samples collected pretreatment, during treatment, and at the end of treatment in 42 consecutively diagnosed PCNSL patients between January 2017 and December 2018. Results Targeted sequencing of plasma cell-free DNA detected somatic mutations representing ctDNA in 11 cases (11/41, 27%). The detection of ctDNA was not related to the concentration of cell-free DNA or tumor volume. The mutation profiles of these 11 cases varied between patients. The most frequently mutated gene was PIM1 (4/11, 36.4%), whereas KMT2D, PIK3CA, and MYD88 were each observed in three patients (3/11, 27%). The mutations of 13 genes were concordantly found in primary tumor tissue and plasma ctDNA, giving a detection sensitivity of 45%. During the serial tracking of seven patients with complete response, the disappearance of ctDNA mutations was found in four patients, whereas three patients had detected ctDNA mutation at the end of treatment. Conclusion The plasma ctDNA mutation analysis still has limited value for surveillance and predicting treatment outcomes of PCNSL because the detection efficiency was lower than other systemic lymphomas. Thus, analytical platforms should be improved to overcome anatomical hurdles associated with PCNSL.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Joon Ho Shim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,GENINUS Inc., Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yeung-Chul Mun
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyoung Eun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
26
|
Abstract
Non-Hodgkin lymphoma encompasses a diverse group of B-cell and T-cell neoplasms. Current classification is based on clinical information, histologic assessment, immunophenotypic characteristics, and molecular alterations. A wide range of genetic alterations, including large chromosomal structural rearrangements, aneuploidies, point mutations, and copy number alterations, have been reported across all types of lymphomas. Many of these are now incorporated into the World Health Organization-defined criteria for the diagnostic evaluation of patients with lymphoid proliferations and, therefore, their accurate identification is paramount for diagnosis, subclassification, and selection of treatment. In addition to their value in the diagnostic setting, many alterations that are not routinely evaluated in standard clinical practice may still define specific disease entities as they have important implications in risk stratification, as well as roles in emerging alternate therapies and disease monitoring. Because of the complexity and range of alterations, their accurate and sensitive assessment requires a careful selection of technology. Here, we discuss the most commonly used molecular techniques in current clinical practice and highlight some of the benefits and pitfalls based on the type of alteration.
Collapse
|
27
|
Alig S, Macaulay CW, Kurtz DM, Dührsen U, Hüttmann A, Schmitz C, Jin MC, Sworder BJ, Garofalo A, Shahrokh Esfahani M, Nabet BY, Soo J, Scherer F, Craig AFM, Casasnovas O, Westin JR, Gaidano G, Rossi D, Roschewski M, Wilson WH, Meignan M, Diehn M, Alizadeh AA. Short Diagnosis-to-Treatment Interval Is Associated With Higher Circulating Tumor DNA Levels in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2021; 39:2605-2616. [PMID: 33909455 DOI: 10.1200/jco.20.02573] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Patients with Diffuse Large B-cell Lymphoma (DLBCL) in need of immediate therapy are largely under-represented in clinical trials. The diagnosis-to-treatment interval (DTI) has recently been described as a metric to quantify such patient selection bias, with short DTI being associated with adverse risk factors and inferior outcomes. Here, we characterized the relationships between DTI, circulating tumor DNA (ctDNA), conventional risk factors, and clinical outcomes, with the goal of defining objective disease metrics contributing to selection bias. PATIENTS AND METHODS We evaluated pretreatment ctDNA levels in 267 patients with DLBCL treated across multiple centers in Europe and the United States using Cancer Personalized Profiling by Deep Sequencing. Pretreatment ctDNA levels were correlated with DTI, total metabolic tumor volumes (TMTVs), the International Prognostic Index (IPI), and outcome. RESULTS Short DTI was associated with advanced-stage disease (P < .001) and higher IPI (P < .001). We also found an inverse correlation between DTI and TMTV (RS = -0.37; P < .001). Similarly, pretreatment ctDNA levels were significantly associated with stage, IPI, and TMTV (all P < .001), demonstrating that both DTI and ctDNA reflect disease burden. Notably, patients with shorter DTI had higher pretreatment ctDNA levels (P < .001). Pretreatment ctDNA levels predicted short DTI independent of the IPI (P < .001). Although each risk factor was significantly associated with event-free survival in univariable analysis, ctDNA level was prognostic of event-free survival independent of DTI and IPI in multivariable Cox regression (ctDNA: hazard ratio, 1.5; 95% CI [1.2 to 2.0]; IPI: 1.1 [0.9 to 1.3]; -DTI: 1.1 [1.0 to 1.2]). CONCLUSION Short DTI largely reflects baseline tumor burden, which can be objectively measured using pretreatment ctDNA levels. Pretreatment ctDNA levels therefore have utility for quantifying and guarding against selection biases in prospective DLBCL clinical trials.
Collapse
Affiliation(s)
- Stefan Alig
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Charles W Macaulay
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - David M Kurtz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Ulrich Dührsen
- Department of Hematology, University Hospital of Essen, Essen, Germany
| | - Andreas Hüttmann
- Department of Hematology, University Hospital of Essen, Essen, Germany
| | - Christine Schmitz
- Department of Hematology, University Hospital of Essen, Essen, Germany
| | - Michael C Jin
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Brian J Sworder
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Andrea Garofalo
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | | | - Barzin Y Nabet
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA
| | - Joanne Soo
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Florian Scherer
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA.,Department Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander F M Craig
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA
| | - Olivier Casasnovas
- Hematology Department, University Hospital F. Mitterrand and Inserm UMR 1231, Dijon, France
| | - Jason R Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Piemonte Orientale Amedeo Avogadro, Novara, Italy
| | - Davide Rossi
- Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Mark Roschewski
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wyndham H Wilson
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA.,Stanford Cancer Institute, Institute for Stem Cell Biology & Regenerative Medicine, Stanford, CA
| | - Ash A Alizadeh
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA.,Stanford Cancer Institute, Institute for Stem Cell Biology & Regenerative Medicine, Stanford, CA
| |
Collapse
|
28
|
Zhang W, Wang W, Han X, Gan Y, Qian L, Zhang Y, Zhang C, Wang Y, Guan Y, Yang L, Zhou D. Circulating tumor DNA by high-throughput sequencing of T cell receptor monitored treatment response and predicted treatment failure in T cell lymphomas. Int J Lab Hematol 2021; 43:1041-1049. [PMID: 33734593 DOI: 10.1111/ijlh.13498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Next-generation sequencing (NGS)-based circulating tumor DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. Studies for T cell lymphoma are limited. METHODS We explored whether this technology is applicable to T cell lymphoma with different subtypes and assessed its performance in clinical settings. RESULTS Thirty tumor and 74 blood samples were analyzed in our study. Malignant clone was identified in 23 of the 30 (76.7%) tumor samples through high-throughput sequencing (HTS) combined with PCR. We detected the same tumor clone in plasma in 18out of the 23 (78.3%) patients. Circulating tumor DNA fraction correlated with lactate dehydrogenase (LDH) (r = .52, P = .017), high level of ctDNA predicted treatment failure (P = .0003) and there was a trend patients with high ctDNA burden would have poorer PFS Furthermore, ctDNA changed in concordance with clinical outcome and was more sensitive than PET/CT. Also, recurrence of ctDNA was an important clue for relapse. CONCLUSION In conclusion, our study indicated that ctDNA monitoring was suitable for T cell lymphoma. High level of pretreatment ctDNA was a poor prognosis factor and changes of ctDNA correlated well with clinical courses and was sensitive to find early relapse.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Xiao Han
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Yulai Gan
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Long Qian
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | | | | | | | | | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
29
|
Harrington F, Greenslade M, Talaulikar D, Corboy G. Genomic characterisation of diffuse large B-cell lymphoma. Pathology 2021; 53:367-376. [PMID: 33642095 DOI: 10.1016/j.pathol.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/09/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a genomically heterogenous disease comprised of many subtypes that display significantly different clinical outcomes, in the context of treatment with conventional immunochemotherapy. Poor clinical outcomes in some subtypes, and imperfect identification of high risk individuals in otherwise low risk subgroups, demonstrate there is room for improvement in the subclassification and risk stratification of DLBCL. In addition, more comprehensive profiling may lead to improved molecular testing guided treatment selection. Existing characterisation and risk stratification strategies, such as division of DLBCL into activated B-cell (ABC) and germinal centre B-cell (GCB) subtypes, although prognostically useful, may oversimplify the underlying biology and have proven to be less useful in improving therapy selection. Several groups have proposed more predictive molecular testing based prognostic models with potentially more relevance to therapy choice. These alternative approaches use more resource intensive comprehensive genomic profiling strategies which present practical challenges to implement in diagnostic laboratories. The addition of genomic testing to the subclassification of DLBCL shows promise, but laboratories must identify testing strategies relevant to clinical practice. A consensus on optimal molecular profiling techniques is yet to be achieved. In this article we review various next generation sequencing-based analytical techniques and molecular classification models proposed recently. Emerging therapeutics where molecular profiling may guide patient selection are also reviewed. The potential utility of genomic testing in DLBCL is discussed, in addition to practical considerations when considering introducing genomics into the diagnostic laboratory.
Collapse
Affiliation(s)
| | - Mark Greenslade
- Diagnostic Genetics, LabPlus, Auckland City Hospital, Grafton, New Zealand
| | - Dipti Talaulikar
- Department of Haematology, Canberra Hospital, ACT, Australia; College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Greg Corboy
- Diagnostic Genetics, LabPlus, Auckland City Hospital, Grafton, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
30
|
Doraiswamy A, Shah MR, Bannerji R. Immunotherapies Old and New: Hematopoietic Stem Cell Transplant, Chimeric Antigen Receptor T Cells, and Bispecific Antibodies for the Treatment of Relapsed/Refractory Diffuse Large B Cell Lymphoma. Curr Hematol Malig Rep 2021; 16:72-81. [PMID: 33619641 DOI: 10.1007/s11899-021-00610-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Diffuse large B cell lymphoma (DLBCL) is curable in a majority of patients; however, a significant portion of patients develop relapsed or refractory disease. High-dose chemotherapy followed by autologous stem cell transplant is the standard approach in appropriately selected patients. Many patients are not candidates for transplant and many who do receive autologous transplant relapse. Therapies which harness T cells including chimeric antigen receptor T cells (CAR-T) and bispecific antibodies are active in this chemotherapy-resistant population. We review the role of autologous and allogeneic stem cell transplant, CAR-T therapy, and bispecific antibodies in the treatment of relapsed or refractory DLBCL. RECENT FINDINGS Phase I studies of bispecific antibodies directed against CD20 × CD3 have shown activity in heavily pre-treated DLBCL including in patients who have progressed following autologous transplant and/or CAR-T therapy. Two CAR-T products have received regulatory approval in relapsed or refractory DLBCL, with other products in clinical trials. CAR-T treatment has resulted in durable remissions and trials are ongoing to determine if CAR-T should replace autologous transplant as second-line therapy for DLBCL. The development of multiple T cell-directed therapies for DLBCL offers new treatment options for chemotherapy-resistant disease. We discuss our approach to relapsed or refractory DLBCL patients and the open question of optimal sequencing of autologous transplant (a current standard treatment), CAR-T therapy (FDA approved), and bispecific antibodies (in clinical trials).
Collapse
Affiliation(s)
- Anupama Doraiswamy
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Mansi R Shah
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Rajat Bannerji
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
31
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
32
|
Patriarca A, Gaidano G. Investigational drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2020; 30:25-38. [PMID: 33295827 DOI: 10.1080/13543784.2021.1855140] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma in adults. 30-40% DLBCL eventually relapse and 10% are primary refractory, posing an unmet clinical need, especially in patients not eligible for hematopoietic stem cell transplant. Knowledge of DLBCL molecular pathogenesis has identified druggable molecular pathways. Surface antigens can be targeted by novel antibodies and innovative cell therapies. Areas covered: This review illuminates those investigational drugs and cell therapies that are currently in early phase clinical trials for the treatment of DLBCL. New small molecules that modulate the pathways involved in the molecular pathogenesis of DLBCL, monospecific and bispecific monoclonal antibodies, drug-immunoconjugates, and cellular therapies are placed under the spotlight. A futuristic perspective concludes the paper. Expert opinion: A precision medicine strategy based on robust molecular predictors of outcome is desirable in the development of investigational small molecules for DLBCL. Novel monoclonal and bispecific antibodies may be offered to (i) relapsed/refractory patients ineligible for CAR-T cells because of comorbidities, and (ii) younger patients before CAR-T cell infusion to reduce a high tumor burden. A focus on the optimal sequencing of the emerging DLBCL drugs is appropriate and necessary.
Collapse
Affiliation(s)
- Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| |
Collapse
|
33
|
Jung D, Jain P, Yao Y, Wang M. Advances in the assessment of minimal residual disease in mantle cell lymphoma. J Hematol Oncol 2020; 13:127. [PMID: 32972438 PMCID: PMC7513535 DOI: 10.1186/s13045-020-00961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The clinical impact of minimal residual disease detection at early time points or during follow-ups has been shown to accurately predict relapses among patients with lymphomas, mainly in follicular and diffuse large B cell lymphoma. The field of minimal residual disease testing in mantle cell lymphoma is still evolving but has great impact in determining the prognosis. Flow cytometry and polymerase chain reaction-based testing are most commonly used methods in practice; however, these methods are not sensitive enough to detect the dynamic changes that underline lymphoma progression. Newer methods using next-generation sequencing, such as ClonoSeq, are being incorporated in clinical trials. Other techniques under evolution include CAPP-seq and anchored multiplex polymerase chain reaction-based methods. This review article aims to provide a comprehensive update on the status of minimal residual disease detection and its prognostic effect in mantle cell patients. The role of circulating tumor DNA-based minimal residual disease detection in lymphomas is also discussed.
Collapse
Affiliation(s)
- Dayoung Jung
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Hemapathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Brancato V, Aiello M, Della Pepa R, Basso L, Garbino N, Nicolai E, Picardi M, Salvatore M, Cavaliere C. Automatic Prediction and Assessment of Treatment Response in Patients with Hodgkin's Lymphoma Using a Whole-Body DW-MRI Based Approach. Diagnostics (Basel) 2020; 10:diagnostics10090702. [PMID: 32948043 PMCID: PMC7555579 DOI: 10.3390/diagnostics10090702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
The lack of validation and standardization represents the main drawback for a clear role of whole-body diffusion weighted imaging (WB-DWI) for prediction and assessment of treatment response in Hodgkin’s lymphoma (HL). We explored the reliability of an automatic approach based on the WB-DWI technique for prediction and assessment of response to treatment in patients with HL. The study included 20 HL patients, who had whole-body positron emission tomography (PET)/ magnetic resonance Imaging (MRI) performed before, during and after chemotherapy. Using the syngo.via MR Total Tumor Load tool, we automatically extracted values of diffusion volume (DV) and its associated histogram features by WB-DWI images, and evaluated their utility in predicting and assessing interim and end-of-treatment (EOT) response. The Mann–Whitney test followed by receiver operator characteristic (ROC) analysis was performed between features and their inter-time point percentage differences for patients having a complete or partial treatment response, revealing that several WB-DWI associated features allowed for prediction of interim response and both prediction and assessment of EOT response. Our proposed method offers huge advantages in terms of saving time and work, enabling clinicians to draw conclusions relating to HL treatment response in a fully automatic way, and encloses, also, all DWI advantages compared to PET/ computed tomography (CT).
Collapse
Affiliation(s)
- Valentina Brancato
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| | - Marco Aiello
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
- Correspondence:
| | - Roberta Della Pepa
- Department of Clinical Medicine and Surgery, Hematology Section, Federico II University of Naples, 80131 Naples, Italy; (R.D.P.); (M.P.)
| | - Luca Basso
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| | - Nunzia Garbino
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| | - Emanuele Nicolai
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Section, Federico II University of Naples, 80131 Naples, Italy; (R.D.P.); (M.P.)
| | - Marco Salvatore
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| | - Carlo Cavaliere
- IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico, SYNLAB istituto di Diagnostica Nucleare), 80143 Napoli, Italy; (V.B.); (L.B.); (N.G.); (E.N.); (M.S.); (C.C.)
| |
Collapse
|
35
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
36
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Viviani S, Mazzocchi A, Pavoni C, Taverna F, Rossi A, Patti C, Romano A, Trentin L, Sorasio R, Guidetti A, Gottardi D, Tarella C, Cimminiello M, Zanotti R, Farina L, Ferreri AJM, Galbiati M, Corradini P, Gianni AM, Gallamini A, Rambaldi A. Early serum TARC reduction predicts prognosis in advanced-stage Hodgkin lymphoma patients treated with a PET-adapted strategy. Hematol Oncol 2020; 38:501-508. [PMID: 32602970 DOI: 10.1002/hon.2775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Among patients with advanced-stage classical Hodgkin lymphoma (cHL) receiving ABVD chemotherapy, PET performed after the first two treatment cycles (PET-2) has prognostic value. However, 15% of patients with a negative PET-2 will experience treatment failure. Here we prospectively evaluated serum thymus and activation-regulated chemokine (TARC) levels, to improve risk assessment in patients treated according to HD0607 PET-driven trial (#NCT00795613). In 266 patients with available serum samples, who have agreed to participate in a sub-study for assessment of the role of TARC monitoring, serum TARC levels were measured at baseline and at time of PET-2 by commercially available ELISA test kits. The primary end-point was to evaluate the association between TARC after 2 ABVD cycles and PFS. Median TARC-2 values were significantly higher in PET-2-positive patients compared to PET-2-negative patients (P = .001), and in patients with treatment failure compared to those in continuous CR (P = .01). The 4-year PFS significantly differed between patients with TARC-2 >800 pg/mL vs ≤800 pg/mL (64% vs 86%, P = .0001). Moreover, among PET-2-negative patients, elevated TARC-2 identified those with a worse prognosis (74% vs 89%; P = .01). In multivariable analysis, TARC-2 >800 pg/mL was a significant independent predictor of PFS in the whole study population (HR 2.39, P = .004) and among the PET-2-negative patients (HR 2.49, P = .02). In conclusion, our results indicate that TARC-2 serum levels above 800 pg/mL suggest the need for a stringent follow-up in PET-2-negative patients, and the evaluation of new drugs in PET-2-positive, who will likely fail to respond to intensification with escalated BEACOPP.
Collapse
Affiliation(s)
- Simonetta Viviani
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arabella Mazzocchi
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pavoni
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Taverna
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Rossi
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Patti
- Division of Hematology 1, Azienda Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Alessandra Romano
- Department of Medical and Surgery Science, Hematology Unit, University of Catania, Catania, Italy
| | - Livio Trentin
- Department of Hematology, University of Padova, Padova, Italy
| | - Roberto Sorasio
- Division of Hematology, Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
| | - Anna Guidetti
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Gottardi
- Division of Hematology, Ospedale Mauriziano Umberto I di Torino, Turin, Italy
| | - Corrado Tarella
- Hemato-Oncology Division, European Institute of Oncology IRCCS, Milan, Italy.,University Department "Scienze della Salute" (DISS), University of Milan, Milan, Italy
| | | | - Roberta Zanotti
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Lucia Farina
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrés José Maria Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Marina Galbiati
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Corradini
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Andrea Gallamini
- Division of Hematology, Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Department of Oncology and Hematology, University of Milan, Milan, Italy
| |
Collapse
|
38
|
|
39
|
Clinical and Biological Prognostic Factors in Follicular Lymphoma. Hematol Oncol Clin North Am 2020; 34:647-662. [PMID: 32586571 DOI: 10.1016/j.hoc.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Follicular lymphoma comprises approximately 20-30% of all cases of B-cell lymphomas. Median survival has improved significantly in the modern era. Prognostic factors include histologic grade, cytogenetics, molecular mutations, the tumor microenvironment, and tumor burden. Clinical prognostic indices are available and increasingly incorporate genetic information. Prognostic factors also arise during the course of treatment. Early progression within 24 months of initial chemoimmunotherapy is an adverse prognostic marker of inferior survival. Other high-risk populations include those with double refractory disease or those with high risk of transformation to diffuse large B-cell lymphoma.
Collapse
|
40
|
Hayashida M, Maekawa F, Chagi Y, Iioka F, Kobashi Y, Watanabe M, Ohno H. Combination of multicolor flow cytometry for circulating lymphoma cells and tests for the RHOAG17V and IDH2R172 hot-spot mutations in plasma cell-free DNA as liquid biopsy for the diagnosis of angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 2020; 61:2389-2398. [PMID: 32476550 DOI: 10.1080/10428194.2020.1768382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We applied two-step multicolor flow cytometry (FCM) for circulating lymphoma cells in the blood of 20 patients with angioimmunoblastic T-cell lymphoma (AITL) and confirmed neoplastic T-cells in all. Eleven exhibited dim expression of CD3 and 7 lost its expression. The proportion of CD10+ lymphoma cells ranged widely from 0 to 100%, with a median of 15.7%. Ten patients demonstrated expansion of a single T-cell receptor β-chain repertoire. Lymphoma cells comprised 0.01 to 18.22% (median, 0.26%) of white cells and the absolute numbers ranged from 0.5 to 1491.6 cells (median, 29.3 cells) per microliter of blood. We next found that 14 (70%) and 3 (15%) patients carried RHOAG17V and IDH2R172 mutations, respectively, in cell-free DNA (cfDNA) in the plasma. The combination of multicolor FCM of the blood, and tests for RHOAG17V and IDH2R172 hot-spot mutations in plasma cfDNA provides a blood-based 'liquid biopsy' for the diagnosis of AITL.
Collapse
Affiliation(s)
- Masahiko Hayashida
- Tenri Institute of Medical Research, Tenri, Japan.,Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | - Futoshi Iioka
- Department of Hematology, Tenri Hospital, Tenri, Japan
| | - Yoichiro Kobashi
- Department of Diagnostic Surgical Pathology, Tenri Hospital, Tenri, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hitoshi Ohno
- Tenri Institute of Medical Research, Tenri, Japan.,Department of Hematology, Tenri Hospital, Tenri, Japan
| |
Collapse
|
41
|
Plasma cell-free DNA is a prognostic biomarker for survival in patients with aggressive non-Hodgkin lymphomas. Ann Hematol 2020; 99:1293-1302. [DOI: 10.1007/s00277-020-04008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
|