1
|
Camunas-Alberca SM, Moran-Garrido M, Gaudioso Á, da Costa Souza F, Gradillas A, Ledesma MD, Barbas C, Taha AY. Sex-dependent upregulation in oxylipins involved in inflammation resolution in the cerebellum of Niemann-pick disease C1 mice. Prog Neuropsychopharmacol Biol Psychiatry 2025:111387. [PMID: 40306479 DOI: 10.1016/j.pnpbp.2025.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Unresolved inflammation in the cerebellum is implicated in motor and cognitive decline in Niemann-Pick Disease type C (NPC), a neurodegenerative lysosomal storage disorder caused by pathogenic mutations in the Npc1 gene, encoding a cholesterol transporter protein. It is unclear whether unresolved inflammation in NPC stems from impairments in lipid-mediated resolution. For this reason, free lipid mediators (i.e., oxylipins) and esterified lipid mediators, which regulate free oxylipins bioavailability, were quantified using Reverse-Phase Ultra-High Performance Liquid Chromatography coupled to negative Electrospray Ionization and Triple Quadrupole Tandem Mass Spectrometry (RP-UPLC-ESI(-)-QqQ-MS/MS) in Npc1 knock-in (NPC1ki) and Wildtype (WT) mice. Total cholesterol and fatty acids including polyunsaturated fatty acids (PUFA) precursors to oxylipins, were quantified using Gas Chromatography coupled to Flame Ionization Detection (GC-FID). Compared to WT mice, female NPC1ki mice, but not males, exhibited significantly elevated levels of free pro-resolving fatty acid epoxides (EpETrE and EpDPE) from the cytochrome P450 (CYP) pathway. Esterified mono- and dihydroxy lipid mediators from the lipoxygenase (LOX) and soluble epoxide hydrolase (sEH) pathways were mainly increased in NPC1ki females, suggesting enhanced sequestration of pro-inflammatory LOX and sEH metabolites. While PUFA and total cholesterol levels were not significantly different between groups, myristic (C14:0) and palmitoleic acid (C16:1n-7) were significantly elevated in NPC1ki females. These findings suggest sex-specific adaptations in inflammation resolution pathways in NPC, with females exhibiting distinct inflammatory responses that may drive sex-related differences in disease pathogenesis. Our findings underscore the need for sex-specific therapeutic approaches to improve NPC treatment outcomes.
Collapse
Affiliation(s)
- Sandra M Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Felipe da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616, Davis, CA, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, 95616 Davis, CA, USA.
| |
Collapse
|
2
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
3
|
Zhang Q, Wang Y, Zhu J, Zou M, Zhang Y, Wu H, Jin T. Specialized pro-resolving lipid mediators: a key player in resolving inflammation in autoimmune diseases. Sci Bull (Beijing) 2025; 70:778-794. [PMID: 39837719 DOI: 10.1016/j.scib.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 01/23/2025]
Abstract
Uncontrolled hyperactivation of the immune system is the central mechanism underlying the pathogenesis of autoimmune diseases. Timely control of the inflammatory response is essential to prevent inflammation progression and organ damage. Specialized pro-resolving lipid mediators (SPMs) are autacoid molecules derived from essential polyunsaturated fatty acids during acute inflammatory responses. They promote the resolution of inflammation and orchestrate endogenous reparative responses. The SPM superfamily includes lipoxins, resolvins, protectins, and maresins, as well as novel conjugates involved in tissue regeneration. Much work has been done focusing on the actions of SPMs in autoimmunity and has identified their deficiencies and therapeutic effects in autoimmune diseases. In this review, we provide a brief introduction of SPMs, summarize their effects on key cells involved in innate and adaptive immunity, and highlight their role and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm 17176, Sweden
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
4
|
Zahoor I, Nematullah M, Ahmed ME, Fatma M, Sajad M, Ayasolla K, Cerghet M, Palaniyandi S, Ceci V, Carrera G, Buttari F, Centonze D, Mao-Draayer Y, Rattan R, Chiurchiù V, Giri S. Maresin-1 promotes neuroprotection and modulates metabolic and inflammatory responses in disease-associated cell types in preclinical models of multiple sclerosis. J Biol Chem 2025; 301:108226. [PMID: 39864620 PMCID: PMC11903811 DOI: 10.1016/j.jbc.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Multiple sclerosis (MS) is a prevalent inflammatory neurodegenerative disease in young people, causing neurological abnormalities and impairment. To investigate a novel therapeutic agent for MS, we observed the impact of maresin 1 (MaR1) on disease progression in a well-known, relapsing-remitting experimental autoimmune encephalomyelitis mouse model. Treatment with MaR1 accelerated inflammation resolution, reduced neurological impairment, and delayed disease development by reducing immune cell infiltration (CD4+IL-17+ and CD4+IFNγ+) into the central nervous system. Furthermore, MaR1 administration enhanced IL-10 production, primarily in macrophages and CD4+ cells. However, neutralizing IL-10 with an anti-IL-10 antibody eliminated the protective impact by MaR1 in relapsing-remitting experimental autoimmune encephalomyelitis model, implying the significance of IL-10 in MaR1 treatment. Metabolism has been recognized as a critical mediator of effector activity in many types of immune cells. In our investigation, MaR1 administration significantly repaired metabolic dysregulation in CD4+ cells, macrophages, and microglia in EAE mice. Furthermore, MaR1 treatment restored defective efferocytosis in treated macrophages and microglia. MaR1 also preserved myelin in EAE mice and regulated O4+ oligodendrocyte metabolism by reversing metabolic dysregulation via increased mitochondrial activity and decreased glycolysis. Overall, in a preclinical MS animal model, MaR1 therapy has anti-inflammatory and neuroprotective properties. It also induced metabolic reprogramming in disease-associated cell types, increased efferocytosis, and maintained myelination. Moreover, our data on patient-derived peripheral blood mononuclear cells substantiated the protective role of MaR1, expanding the therapeutic spectrum of specialized proresolving lipid mediators. Altogether, these findings suggest the potential of MaR1 as a novel therapeutic agent for MS and other autoimmune diseases.
Collapse
MESH Headings
- Animals
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Mice
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Disease Models, Animal
- Female
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/pathology
- Macrophages/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Humans
- Mice, Inbred C57BL
- Interleukin-10/metabolism
- Neuroprotection/drug effects
- Neuroprotective Agents/pharmacology
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, Michigan, USA
| | | | | | - Mena Fatma
- Department of Neurology, Henry Ford Health, Detroit, Michigan, USA
| | - Mir Sajad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, USA
| | | | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, Michigan, USA
| | - Suresh Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, USA; Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Veronica Ceci
- Institute of Translational Pharmacology, National Research Council, Rome, Italy; Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Carrera
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), Italy
| | - Yang Mao-Draayer
- Oklahoma Medical Research Foundation, Oklahoma, Farmington Hills, Michigan, USA
| | - Ramandeep Rattan
- Women's Health Services, Henry Ford Health, Detroit, Michigan, USA
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, Italy; Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, Michigan, USA.
| |
Collapse
|
5
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Kornilov SA, Price ND, Gelinas R, Acosta J, Brunkow ME, Gervasi-Follmar T, Winger RC, Aldershoff D, Lausted C, Troisch P, Smith B, Heath JR, Repovic P, Cohan S, Magis AT. Multi-Omic characterization of the effects of Ocrelizumab in patients with relapsing-remitting multiple sclerosis. J Neurol Sci 2024; 467:123303. [PMID: 39561535 DOI: 10.1016/j.jns.2024.123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
The study examined changes in the plasma proteome, metabolome, and lipidome of N = 14 patients with relapsing-remitting multiple sclerosis (RRMS) initiating treatment with ocrelizumab, assayed at baseline, 6 months, and 12 months. Analyses of >4000 circulating biomarkers identified depletion of B-cell associated proteins as the early effect observed following ocrelizumab (OCR) initiation, accompanied by the reduction in plasma abundance of cytokines and cytotoxic proteins, markers of neuronaxonal damage, and biologically active lipids including ceramides and lysophospholipids, at 6 months. B-cell depletion was accompanied by decreases in B-cell receptor and cytokine signaling but a pronounced increase in circulating plasma B-cell activating factor (BAFF). This was followed by an upregulation of a number of signaling and metabolic pathways at 12 months. Patients with higher baseline brain MRI lesion load demonstrated both higher levels of cytotoxic and structural proteins in plasma at baseline and more pronounced biomarker change trajectories over time. Digital cytometry identified a putative increase in myeloid cells and a pro-inflammatory subset of T-cells. Therapeutic effects of ocrelizumab extend beyond CD20-mediated B-cell lysis and implicate metabolic reprogramming, juxtaposing the early normalization of immune activation, cytokine signaling and metabolite and lipid turnover in periphery with changes in the dynamics of immune cell activation or composition. We identify BAFF increase following CD20 depletion as a tentative compensatory mechanism that contributes to the reconstitution of targeted B-cells, necessitating further research.
Collapse
Affiliation(s)
| | - Nathan D Price
- Institute for Systems Biology, WA, USA; Buck Institute for Research on Aging, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fung WH, van Lingen MR, Broos JY, Lam KH, van Dam M, Fung WK, Noteboom S, Koubiyr I, de Vries HE, Jasperse B, Teunissen CE, Giera M, Killestein J, Hulst HE, Strijbis EMM, Schoonheim MM, Kooij G. 9-HODE associates with thalamic atrophy and predicts white matter damage in multiple sclerosis. Mult Scler Relat Disord 2024; 92:105946. [PMID: 39447246 DOI: 10.1016/j.msard.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage. OBJECTIVES To investigate the potential association between plasma-derived LMs and MRI-quantified WM damage using fractional anisotropy (FA) and grey matter (GM) atrophy in dimethyl fumarate-treated relapsing remitting MS (RRMS) patients. METHODS Severity of FA-based WM damage and GM atrophy was determined in RRMS patients (n = 28) compared to age- and sex-matched controls (n = 31) at treatment initiation (baseline) and after 6 months. Plasma LMs were assessed using HPLC-MS/MS and baseline LMs were correlated to changes in FA and brain volumes. RESULTS We observed significant WM damage in RRMS patients (mean age 41.4 [SD 9.1]) at baseline and follow-up (z-score=-0.33 and 0.31, respectively) compared to controls (mean age 41.9 [SD 9.5]; p < 0.001 for both comparisons). Patients with severe WM damage showed a decline of thalamic volume (p = 0.02), and this decline correlated (r = 0.51, p < 0.001) with lower baseline levels of 9-HODE. This LM also predicted FA worsening (beta = 0.14, p < 0.001) over time at 6 months. CONCLUSION Despite the relatively small sample size, lower baseline levels of the LM 9-HODE correlated with more thalamic atrophy and predicted subsequent worsening of WM damage in RRMS patients.
Collapse
Affiliation(s)
- Wing Hee Fung
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Marike R van Lingen
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jelle Y Broos
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Leiden University Medical Centre (LUMC), Center of Proteomics and Metabolomics, Leiden, the Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Maureen van Dam
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wing Ka Fung
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- MS Center Amsterdam, Neurochemistry Laboratory, Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martin Giera
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Deng Y, Wang F, Wang T, Zhang X, Chen D, Wang Y, Chen C, Pan G. Research progress in the mechanisms and functions of specialized pro-resolving mediators in neurological diseases. Prostaglandins Other Lipid Mediat 2024; 175:106905. [PMID: 39265777 DOI: 10.1016/j.prostaglandins.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The nervous system interacts with the immune system through a variety of cellular regulators, signaling pathways, and molecular mechanisms. Disruptions in these interactions lead to the development of multiple neurological diseases. Recent studies have identified that specialized pro-resolving mediators (SPMs) play a regulatory role in the neuroimmune system. This study reviews recent research on the function of SPMs in the inflammatory process and their association with the nervous system. The review aims to provide new perspectives for studying the pathogenesis of neurological diseases and identify novel targets for clinical therapy.
Collapse
Affiliation(s)
- Yu Deng
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Fei Wang
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China
| | - Tianle Wang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Xu Zhang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Du Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Yuhan Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chaojun Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China.
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
9
|
Zhang Q, Zhang Y, Zou M, Wu H, Liu C, Mi Y, Zhu J, Wang Y, Jin T. The chemically stable analogue of resolvin D1 ameliorates experimental autoimmune encephalomyelitis by mediating the resolution of inflammation. Int Immunopharmacol 2024; 140:112740. [PMID: 39116500 DOI: 10.1016/j.intimp.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
While Resolvin D1 (RvD1) shows promise in resolving inflammation in experimental autoimmune encephalomyelitis (EAE), its pro-resolving roles on dendritic cells (DCs) remain unknown, and the chemical instability of RvD1 poses significant challenges to its drug development. This study aims to investigate whether 4-(2'-methoxyphenyl)-1-[2'-[N-(2″-pyridinyl)-p-fluorobenzamido]ethyl]piperazine (p-MPPF), a novel chemically stable analogue of RvD1, can play a pro-resolving role in EAE, particularly on DCs, and if p-MPPF could serve as a potential substitute for RvD1. We showed that both RvD1 and p-MPPF mediated the resolution of inflammation in EAE, as evidenced by ameliorated EAE progression, attenuated pathological changes in the spinal cord, altered cytokine expression profile in serum, and reduced proportion of pro-inflammatory immune cells in the spleen. Utilizing DCs derived from both the spleen and bone marrow of EAE, our investigation showed that RvD1 and p-MPPF prevented DC maturation, decreased pro-inflammatory cytokine secretion, shifted DCs away from a pro-inflammatory phenotype, increased the phagocytosis capacity of DCs, and suppressed their ability to induce differentiation of CD4+ T cells into Th1 and Th17 subsets. For underlying intracellular mechanisms, we found that RvD1 and p-MPPF down-regulated the lactate dehydrogenase A signaling pathways. Comparisons between RvD1 and p-MPPF showed that they exerted overlapped pro-resolving effects to a large extent. This study demonstrates that both RvD1 and p-MPPF exert therapeutic effects on EAE by mediating inflammation resolution, which is closely associated with modulating DC immune function towards a tolerogenic phenotype. SPM mimetics may serve as a more promising therapeutic drug.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yan Mi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
11
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
12
|
Zahoor I, Nematullah M, Ahmed ME, Fatma M, Mir S, Ayasolla K, Cerghet M, Palaniyandi S, Ceci V, Carrera G, Buttari F, Centonze D, Mao-Draayer Y, Rattan R, Chiurchiù V, Giri S. Maresin-1 promotes neuroprotection and prevents disease progression in experimental models of multiple sclerosis through metabolic reprogramming and shaping innate and adaptive disease-associated cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559216. [PMID: 37808700 PMCID: PMC10557612 DOI: 10.1101/2023.09.25.559216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Multiple sclerosis (MS) is one of the most common inflammatory neurodegenerative diseases in young adults and causes neurological abnormalities and disability. We studied the effect of maresin 1 (MaR1) on the progression of disease in a relapsing-remitting form of experimental allergic encephalomyelitis (RR-EAE). Treatment with MaR1 in RR-EAE accelerated inflammation resolution, protected against neurological deficits, and delayed disease progression by decreasing immune cell infiltration (CD4+IL17+ and CD4+IFNγ+) into the CNS. Furthermore, the administration of MaR1 increased the production of IL-10, predominantly in macrophages and CD4+ cells. However, neutralizing IL-10 with an anti-IL-10 antibody abolished the protective effect of MaR1 on RR-EAE, suggesting that IL-10 plays a role in mediating the protective effect of MaR1 on EAE. Metabolism is rapidly becoming recognized as an important factor influencing the effector function of many immune cells. Using cutting-edge metabolic assays, our study revealed that compared with vehicle treatment, MaR1 treatment effectively restored the metabolic dysregulation observed in CD4+ cells, macrophages, and microglia in the treated group. Furthermore, MaR1 treatment reversed defective efferocytosis in EAE mice, which was potentially facilitated by the induction of metabolic alterations in macrophages and microglia. MaR1 treatment also protected myelin in the EAE group and regulated the metabolism of O4+ oligodendrocytes by restoring metabolic dysregulation through improved mitochondrial function and decreased glycolysis. Overall, in a preclinical MS animal model, MaR1 treatment produced anti-inflammatory and neuroprotective effects. It also triggered metabolic reprogramming in disease-associated cell types, accelerated efferocytosis, and preserved myelination. These data support that MaR1 has potential as a novel treatment agent for MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | | | | | - Mena Fatma
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Sajad Mir
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamesh Ayasolla
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Suresh Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Veronica Ceci
- Institute of Translational Pharmacology, National Research Council, Rome, 00133, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Giulia Carrera
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Yang Mao-Draayer
- Michigan Institute for Neurological Disorders, Farmington Hills, MI 48334, USA
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Health, Detroit, MI 48202, USA
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, 00133, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
13
|
Serhan CN, Bäck M, Chiurchiù V, Hersberger M, Mittendorfer B, Calder PC, Waitzberg DL, Stoppe C, Klek S, Martindale RG. Expert consensus report on lipid mediators: Role in resolution of inflammation and muscle preservation. FASEB J 2024; 38:e23699. [PMID: 38805158 DOI: 10.1096/fj.202400619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Building for Transformative Medicine, Boston, Massachusetts, USA
| | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institute, Solna, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Nancy University Hospital, Vandoeuvre les Nancy, France
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council of Rome, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Mittendorfer
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Nutrition & Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip C Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Dan L Waitzberg
- Department of Gastroenterology, School of Medicine, University of Sao Paulo, Hospital das Clínicas LIM 35, Ganep-Human Nutrition, Sao Paulo, Brazil
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stanislaw Klek
- Surgical Oncology Clinic, The Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
14
|
Babar MU, Nassar AF, Nie X, Zhang T, He J, Yeung J, Norris P, Ogura H, Muldoon A, Chen L, Libreros S. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part II: Role of Specialized Pro-Resolving Mediators in Inflammation, Infections, and Cancer. Metabolites 2024; 14:314. [PMID: 38921449 PMCID: PMC11205484 DOI: 10.3390/metabo14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Acute inflammation is the body's first defense in response to pathogens or injury that is partially governed by a novel genus of endogenous lipid mediators that orchestrate the resolution of inflammation, coined specialized pro-resolving mediators (SPMs). SPMs, derived from omega-3-polyunstaturated fatty acids (PUFAs), include the eicosapentaenoic acid-derived and docosahexaenoic acid-derived Resolvins, Protectins, and Maresins. Herein, we review their biosynthesis, structural characteristics, and therapeutic effectiveness in various diseases such as ischemia, viral infections, periodontitis, neuroinflammatory diseases, cystic fibrosis, lung inflammation, herpes virus, and cancer, especially focusing on therapeutic effectiveness in respiratory inflammation and ischemia-related injuries. Resolvins are sub-nanomolar potent agonists that accelerate the resolution of inflammation by reducing excessive neutrophil infiltration, stimulating macrophage functions including phagocytosis, efferocytosis, and tissue repair. In addition to regulating neutrophils and macrophages, Resolvins control dendritic cell migration and T cell responses, and they also reduce the pro-inflammatory cytokines, proliferation, and metastasis of cancer cells. Importantly, several lines of evidence have demonstrated that Resolvins reduce tumor progression in melanoma, oral squamous cell carcinoma, lung cancer, and liver cancer. In addition, Resolvins enhance tumor cell debris clearance by macrophages in the tumor's microenvironment. Resolvins, with their unique stereochemical structure, receptors, and biosynthetic pathways, provide a novel therapeutical approach to activating resolution mechanisms during cancer progression.
Collapse
Affiliation(s)
- Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Kobe 678-1297, Japan
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Hansen CE, Kamermans A, Mol K, Berve K, Rodriguez-Mogeda C, Fung WK, van Het Hof B, Fontijn RD, van der Pol SMA, Michalick L, Kuebler WM, Kenkhuis B, van Roon-Mom W, Liedtke W, Engelhardt B, Kooij G, Witte ME, de Vries HE. Inflammation-induced TRPV4 channels exacerbate blood-brain barrier dysfunction in multiple sclerosis. J Neuroinflammation 2024; 21:72. [PMID: 38521959 PMCID: PMC10960997 DOI: 10.1186/s12974-024-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.
Collapse
Grants
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 81X3100216 Deutsches Zentrum für Herz-Kreislaufforschung
- SFB-TR84 : subprojects A02 & C09, SFB-1449 subproject B01, SFB 1470 subproject A04, KU1218/9-1, KU1218/11-1, and KU1218/12-1 Deutsche Forschungsgemeinschaft
- PROVID (01KI20160A) and SYMPATH (01ZX1906A) Bundesministerium für Bildung und Forschung
- HA2016-02-02 Hersenstichting
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Kevin Mol
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura Michalick
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
| | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | | | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Kocaturk I, Gulten S, Ece B, Kukul Guven FM. Exploring PGE2 and LXA4 Levels in Migraine Patients: The Potential of LXA4-Based Therapies. Diagnostics (Basel) 2024; 14:635. [PMID: 38535055 PMCID: PMC10969667 DOI: 10.3390/diagnostics14060635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Neurogenic inflammation plays a significant role in the pathogenesis of migraines. This study aimed to investigate the serum levels of prostaglandin E2 (PGE2), lipoxin A4 (LXA4), and other inflammatory biomarkers (C-reactive protein, fibrinogen) in migraine patients. In total, 53 migraine patients and 53 healthy controls were evaluated. Blood serum samples were collected during both attack and interictal periods and compared with the control group. In both the attack and interictal periods, PGE2 and LXA4 values were significantly lower in migraine patients compared to the control group (p < 0.001). Additionally, PGE2 values during the attack period were significantly higher than those during the interictal period (p = 0.016). Patients experiencing migraine attacks lasting ≥ 12 h had significantly lower serum PGE2 and LXA4 levels compared to those with attacks lasting < 12 h (p = 0.028 and p = 0.009, respectively). In ROC analysis, cut-off values of 332.7 pg/mL for PGE2 and 27.2 ng/mL for LXA4 were determined with 70-80% sensitivity and specificity. In conclusion, PGE2 and LXA4 levels are significantly lower in migraine patients during both interictal and attack periods. Additionally, the levels of LXA4 and PGE2 decrease more with the prolongation of migraine attack duration. Our findings provide a basis for future treatment planning.
Collapse
Affiliation(s)
- Idris Kocaturk
- Department of Neurology, Kastamonu University, Kastamonu 37150, Türkiye
| | - Sedat Gulten
- Department of Biochemistry, Kastamonu University, Kastamonu 37150, Türkiye;
| | - Bunyamin Ece
- Department of Radiology, Kastamonu University, Kastamonu 37150, Türkiye;
| | | |
Collapse
|
17
|
Oppong AE, Coelewij L, Robertson G, Martin-Gutierrez L, Waddington KE, Dönnes P, Nytrova P, Farrell R, Pineda-Torra I, Jury EC. Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity. iScience 2024; 27:109225. [PMID: 38433900 PMCID: PMC10907838 DOI: 10.1016/j.isci.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
There are no blood-based biomarkers distinguishing patients with relapsing-remitting (RRMS) from secondary progressive multiple sclerosis (SPMS) although evidence supports metabolomic changes according to MS disease severity. Here machine learning analysis of serum metabolomic data stratified patients with RRMS from SPMS with high accuracy and a putative score was developed that stratified MS patient subsets. The top differentially expressed metabolites between SPMS versus patients with RRMS included lipids and fatty acids, metabolites enriched in pathways related to cellular respiration, notably, elevated lactate and glutamine (gluconeogenesis-related) and acetoacetate and bOHbutyrate (ketone bodies), and reduced alanine and pyruvate (glycolysis-related). Serum metabolomic changes were recapitulated in the whole blood transcriptome, whereby differentially expressed genes were also enriched in cellular respiration pathways in patients with SPMS. The final gene-metabolite interaction network demonstrated a potential metabolic shift from glycolysis toward increased gluconeogenesis and ketogenesis in SPMS, indicating metabolic stress which may trigger stress response pathways and subsequent neurodegeneration.
Collapse
Affiliation(s)
- Alexandra E. Oppong
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Leda Coelewij
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Georgia Robertson
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Lucia Martin-Gutierrez
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Kirsty E. Waddington
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Pierre Dönnes
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
- Scicross AB, Skövde, Sweden
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical, Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 500 03 Prague, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London and Institute of Neurology and National Hospital of Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Inés Pineda-Torra
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| | - Elizabeth C. Jury
- Division of Medicine, Department of Inflammation, University College London, London WC1E 6JF, UK
| |
Collapse
|
18
|
Taha AY, Gaudioso Á, Moran-Garrido M, Camunas-Alberca SM, Bachiller-Hernández J, Sáiz J, Ledesma MD, Barbas C. Neurons regulate the esterification of bioactive lipid mediators in the brain of acid sphingomyelinase deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110896. [PMID: 37956788 DOI: 10.1016/j.pnpbp.2023.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Acid sphingomyelinase deficiency is a neurodegenerative lysosomal storage disorder caused by mutations in the sphingomyelin-degrading enzyme acid sphingomyelinase (ASM) gene. Upregulated neuroinflammation has been well-characterized in an ASM knockout mouse model of acid sphingomyelinase deficiency disease, but lipid mediator pathways involved in 'mediating' inflammation and inflammation-resolution have yet to be characterized. In this study, we 1) measured free (bioactive) and esterified (inactive) lipid mediators involved in inflammation and inflammation resolution in cerebellum and neuronal cultures of ASM knockout (ASMko) mice and wildtype (WT) controls, and 2) quantified the esterification of labeled pro-resolving free d11-14(15)-epoxyeicosatrienoic acid in cultured neurons from ASMko and WT mice. We found elevated concentrations of esterified pro-resolving lipid mediators and hydroxyeicosatrienoic acids typically destined for pro-resolving lipid mediator synthesis (e.g. lipoxins) in the cerebellum and neurons of ASMko mice compared to controls. Free d11-14(15)-epoxyeicosatrienoic acid esterification within neurons of ASMko mice was significantly elevated compared to WT. Our findings show evidence of increased inactivation of free pro-resolving lipid mediators through esterification in ASMko mice, suggesting impaired resolution as a new pathway underlying ASM deficiency pathogenesis.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616 Davis, CA, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, 95616 Davis, CA, USA
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Maria Moran-Garrido
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Sandra M Camunas-Alberca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jaime Bachiller-Hernández
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
19
|
Broos JY, van der Burgt RTM, Konings J, Rijnsburger M, Werz O, de Vries HE, Giera M, Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression? J Neuroinflammation 2024; 21:21. [PMID: 38233951 PMCID: PMC10792915 DOI: 10.1186/s12974-023-02981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne T M van der Burgt
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Zahoor I, Waters J, Ata N, Datta I, Pedersen TL, Cerghet M, Poisson L, Markovic-Plese S, Rattan R, Taha AY, Newman JW, Giri S. Blood-based targeted metabolipidomics reveals altered omega fatty acid-derived lipid mediators in relapsing-remitting multiple sclerosis patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574253. [PMID: 38260401 PMCID: PMC10802284 DOI: 10.1101/2024.01.04.574253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Unresolved and uncontrolled inflammation is considered a hallmark of pathogenesis in chronic inflammatory diseases like multiple sclerosis (MS), suggesting a defective resolution process. Inflammatory resolution is an active process partially mediated by endogenous metabolites of dietary polyunsaturated fatty acids (PUFA), collectively termed specialized pro-resolving lipid mediators (SPMs). Altered levels of resolution mediators have been reported in several inflammatory diseases and may partly explain impaired inflammatory resolution. Performing LC-MS/MS-based targeted lipid mediator profiling, we observed distinct changes in fatty acid metabolites in serum from 30 relapsing-remitting MS (RRMS) patients relative to 30 matched healthy subjects (HS). Robust linear regression revealed 12 altered lipid mediators after adjusting for confounders (p <0.05). Of these, 15d-PGJ2, PGE3, and LTB5 were increased in MS while PGF2a, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 12-HEPE, 14-HDoHE, and DHEA were decreased in MS compared to HS. In addition, 12,13-DiHOME and 12,13-DiHODE were positively correlated with expanded disability status scale values (EDSS). Using Partial Least Squares, we identified several lipid mediators with high VIP scores (VIP > 1: 32% - 52%) of which POEA, PGE3, DHEA, LTB5, and 12-HETE were top predictors for distinguishing between RRMS and HS (AUC =0.75) based on the XGBoost Classifier algorithm. Collectively, these findings suggest an imbalance between inflammation and resolution. Altogether, lipid mediators appear to have potential as diagnostic and prognostic biomarkers for RRMS.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Nasar Ata
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health, Detroit, 48202, USA
| | | | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Health, Detroit, 48202, USA
| | - Silva Markovic-Plese
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ramandeep Rattan
- Division of Gynaecology Oncology, Department of Women’s Health Services, Henry Ford Health, Detroit, 48202, USA
| | - Ameer Y. Taha
- Department of Food and Technology, University of California, Davis, USA
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| |
Collapse
|
21
|
Leuti A, Fava M, Pellegrini N, Forte G, Fanti F, Della Valle F, De Dominicis N, Sergi M, Maccarrone M. Simulated Microgravity Affects Pro-Resolving Properties of Primary Human Monocytes. Cells 2024; 13:100. [PMID: 38201304 PMCID: PMC10778078 DOI: 10.3390/cells13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Space-related stressors such as microgravity are associated with cellular and molecular alterations of the immune and inflammatory homeostasis that have been linked to the disorders that astronauts suffer from during their missions. Most of the research of the past 30 years has consistently established that innate adaptive immune cells represent a target of microgravity, which leads to their defective or dysfunctional activation, as well as to an altered ability to produce soluble mediators-e.g., cytokines/chemokines and bioactive lipids-that altogether control tissue homeostasis. Bioactive lipids include a vast array of endogenous molecules of immune origin that control the induction, intensity and outcome of the inflammatory events. However, none of the papers published so far focus on a newly characterized class of lipid mediators called specialized pro-resolving mediators (SPMs), which orchestrate the "resolution of inflammation"-i.e., the active control and confinement of the inflammatory torrent mostly driven by eicosanoids. SPMs are emerging as crucial players in those processes that avoid acute inflammation to degenerate into a chronic event. Given that SPMs, along with their metabolism and signaling, are being increasingly linked to many inflammatory disorders, their study seems of the outmost importance in the research of pathological processes involved in space-related diseases, also with the perspective of developing therapeutic countermeasures. Here, we show that microgravity, simulated in the rotary cell culture system (RCCS) developed by NASA, rearranges SPM receptors both at the gene and protein level, in human monocytes but not in lymphocytes. Moreover, RCCS treatment reduces the biosynthesis of a prominent SPM like resolvin (Rv) D1. These findings strongly suggest that not only microgravity can impair the functioning of immune cells at the level of bioactive lipids directly involved in proper inflammation, but it does so in a cell-specific manner, possibly perturbing immune homeostasis with monocytes being primary targets.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Marina Fava
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (N.P.); (G.F.)
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.F.); (F.D.V.)
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
22
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 PMCID: PMC11774313 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L. Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Gauthier T, Martin-Rodriguez O, Chagué C, Daoui A, Ceroi A, Varin A, Bonnefoy F, Valmary-Degano S, Couturier M, Behlke S, Saas P, Cartron PF, Perruche S. Amelioration of experimental autoimmune encephalomyelitis by in vivo reprogramming of macrophages using pro-resolving factors. J Neuroinflammation 2023; 20:307. [PMID: 38124095 PMCID: PMC10734130 DOI: 10.1186/s12974-023-02994-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Reinstating inflammation resolution represents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence, inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. METHODS Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). RESULTS We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with in vivo or in vitro reprogrammed macrophages using such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. CONCLUSIONS Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation.
Collapse
Affiliation(s)
- Thierry Gauthier
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | | | - Cécile Chagué
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | - Anna Daoui
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | - Adam Ceroi
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | - Alexis Varin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | - Francis Bonnefoy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
- MED'INN'Pharma, 25000, Besancon, France
| | | | | | | | - Philippe Saas
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France
| | - Pierre-François Cartron
- Team "Apoptosis and Tumor Progression" CRCINA-INSERM U1232, Université de Nantes Nantes, LaBEX IGO, REpiCGO, EpiSAVMEN, LaBCT, Institut de Cancérologie de L'Ouest (ICO), 44000, Nantes, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000, Besançon, France.
- MED'INN'Pharma, 25000, Besancon, France.
| |
Collapse
|
24
|
Engert LC, Mullington JM, Haack M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav Immun 2023; 113:12-20. [PMID: 37369338 PMCID: PMC10528069 DOI: 10.1016/j.bbi.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sleep disturbances, as manifested in insomnia symptoms of difficulties falling asleep or frequent nighttime awakenings, are a strong risk factor for a diverse range of diseases involving immunopathology. Low-grade systemic inflammation has been frequently found associated with sleep disturbances and may mechanistically contribute to increased disease risk. Effects of sleep disturbances on inflammation have been observed to be long lasting and remain after recovery sleep has been obtained, suggesting that sleep disturbances may not only affect inflammatory mediators, but also the so-called specialized pro-resolving mediators (SPMs) that actively resolve inflammation. The goal of this investigation was to test for the first time whether the omega-3 fatty acid-derived D- (RvD) and E-series (RvE) resolvins are impacted by prolonged experimental sleep disturbance (ESD). METHODS Twenty-four healthy participants (12 F, age 20-42 years) underwent two 19-day in-hospital protocols (ESD/control), separated by > 2 months. The ESD protocol consisted of repeated nights of short and disrupted sleep with intermittent nights of undisturbed sleep, followed by three nights of recovery sleep at the end of the protocol. Under the control sleep condition, participants had an undisturbed sleep opportunity of 8 h/night throughout the protocol. The D- and E-series resolvins were measured in plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The precursor of the D-series resolvins, 17-HDHA, was downregulated in the ESD compared to the control sleep condition (p <.001 for condition), and this effect remained after the third night of recovery sleep has been obtained. This effect was also observed for the resolvins RvD3, RvD4, and RvD5 (p <.001 for condition), while RvD1 was higher in the ESD compared to the control sleep condition (p <.01 for condition) and RvD2 showed a mixed effect of a decrease during disturbed sleep followed by an increase during recovery sleep in the ESD condition (p <.001 for condition*day interaction). The precursor of E-series resolvins, 18-HEPE, was downregulated in the ESD compared to the control sleep condition (p <.01 for condition) and remained low after recovery sleep has been obtained. This effect of downregulation was also observed for RvE2 (p <.01 for condition), while there was no effect for RvE1 (p >.05 for condition or condition*day interaction). Sex-differential effects were found for two of the D-series resolvins, i.e., RvD2 and RvD4. CONCLUSION This first investigation on the effects of experimental sleep disturbance on inflammatory resolution processes shows that SPMs, particularly resolvins of the D-series, are profoundly downregulated by sleep disturbances and remain downregulated after recovery sleep has been obtained, suggesting a longer lasting impact of sleep disturbances on these mediators. These findings also suggest that sleep disturbances contribute to the development and progression of a wide range of diseases characterized by immunopathology by interfering with processes that actively resolve inflammation. Pharmacological interventions aimed at promoting inflammatory resolution physiology may help to prevent future disease risk as a common consequence of sleep disturbances. TRIAL REGISTRATION ClinicalTrials.gov NCT02484742.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Padilla N, Fabbri A, Della-Morte D, Ricordi C, Infante M. Papel inmunomodulador de la vitamina D y los ácidos grasos poliinsaturados omega-3 en trastornos autoinmunes: Revisión de la Literatura. ARCHIVOS LATINOAMERICANOS DE NUTRICIÓN 2023; 73:223-232. [DOI: 10.37527/2023.73.3.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Los trastornos autoinmunes representan una familia de al menos 80 condiciones diferentes que surgen de una respuesta aberrante del sistema inmunológico resultando finalmente en la destrucción de tejidos y órganos específicos del cuerpo. Es importante destacar que durante las últimas tres décadas los estudios epidemiológicos han proporcionado evidencia de un aumento constante en la incidencia y prevalencia de trastornos autoinmunes. En los últimos años, varios estudios han demostrado que la vitamina D y los ácidos grasos poliinsaturados (AGPs) omega-3 ejercen propiedades inmunomoduladoras y antiinflamatorias sinérgicas que pueden aprovecharse positivamente para la prevención y el tratamiento de trastornos autoinmunes. En este sentido, el reciente ensayo clínico denominado VITAL (ensayo de vitamina D y omega 3); un estudio a gran escala, aleatorizado, doble ciego, controlado con placebo encontró que la suplementación conjunta de vitamina D y AGPs omega-3 (VIDOM) puede reducir la incidencia de enfermedades autoinmunes. En esta revisión de la literatura, resumimos los mecanismos moleculares detrás de las propiedades inmunomoduladoras y antiinflamatorias de la vitamina D y los AGPs omega-3, así como la posible interacción bidireccional entre el metabolismo de la vitamina D y el metabolismo de los AGPs omega-3 que justifica la co- suplementación VIDOM en trastornos autoinmunes.
Collapse
|
26
|
Rotstein D, Schneider R. A Birth Year Cohort and What It Can Reveal About Lipid Mediators as Putative Biomarkers of Progression in Multiple Sclerosis. Neurology 2023; 101:197-198. [PMID: 37290973 DOI: 10.1212/wnl.0000000000207605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Dalia Rotstein
- From the Department of Medicine (D.R., R.S.), Division of Neurology, University of Toronto; St. Michael's Hospital (D.R., R.S.), and Keenan Research Centre for Biomedical Science (R.S.), Unity Health Toronto, Ontario, Canada.
| | - Raphael Schneider
- From the Department of Medicine (D.R., R.S.), Division of Neurology, University of Toronto; St. Michael's Hospital (D.R., R.S.), and Keenan Research Centre for Biomedical Science (R.S.), Unity Health Toronto, Ontario, Canada
| |
Collapse
|
27
|
Broos JY, Loonstra FC, de Ruiter LRJ, Gouda M, Fung WH, Schoonheim MM, Heijink M, Strijbis EMM, Teunissen C, Killestein J, de Vries HE, Giera M, Uitdehaag BMJ, Kooij G. Association of Arachidonic Acid-Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology 2023; 101:e533-e545. [PMID: 37290971 PMCID: PMC10401685 DOI: 10.1212/wnl.0000000000207459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs). METHODS A targeted high-performance liquid chromatography-tandem mass spectrometry approach was used on plasma samples of PwMS and HCs of the Project Y cohort, a cross-sectional population-based cohort that contains PwMS all born in 1966 in the Netherlands and age-matched HCs. LMs were compared between PwMS and HCs and were correlated with levels of sNfL, sGFAP, disability (Expanded Disability Status Scale [EDSS]), and brain volumes. Finally, significant correlates were included in a backward multivariate regression model to identify which LMs best related to disability. RESULTS The study sample consisted of 170 patients with relapsing remitting MS (RRMS), 115 patients with progressive MS (PMS), and 125 HCs. LM profiles of patients with PMS significantly differed from those of patients with RRMS and HCs, particularly patients with PMS showed elevated levels of several arachidonic acid (AA) derivatives. In particular, 15-hydroxyeicosatetraenoic acid (HETE) (r = 0.24, p < 0.001) correlated (average r = 0.2, p < 0.05) with clinical and biochemical parameters such as EDSS and sNfL. In addition, higher 15-HETE levels were related to lower total brain (r = -0.24, p = 0.04) and deep gray matter volumes (r = -0.27, p = 0.02) in patients with PMS and higher lesion volume (r = 0.15, p = 0.03) in all PwMS. DISCUSSION In PwMS of the same birth year, we show that ω-3 and ω-6 LMs are associated with disability, biochemical parameters (sNfL, GFAP), and MRI measures. Furthermore, our findings indicate that, particularly, in patients with PMS, elevated levels of specific products of the AA pathway, such as 15-HETE, associate with neurodegenerative processes. Our findings highlight the potential relevance of ω-6 LMs in the pathogenesis of MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Floor C Loonstra
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Mariam Gouda
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Wing Hee Fung
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Menno M Schoonheim
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Marieke Heijink
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Eva M M Strijbis
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Charlotte Teunissen
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Joep Killestein
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Helga E de Vries
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Martin Giera
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Gijs Kooij
- From the MS Center Amsterdam (J.Y.B., W.H.F., H.E.d.V., G.K.), Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc; Leiden University Medical Centre (LUMC) (J.Y.B., M.H., M.A.G.), Center of Proteomics and Metabolomics; MS Center Amsterdam (F.C.L., L.R.J.d.R., W.H.F., E.M.M.S., J.K., B.M.J.U.), Neurology, Vrije Universiteit Amsterdam, MS Center Amsterdam (M.M.T.E.E.G., C.T.), Neurochemistry Laboratory, Department of Clinical Chemistry, and MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands.
| |
Collapse
|
28
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
29
|
Chiurchiù V. Lipids in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11523. [PMID: 37511282 PMCID: PMC10380295 DOI: 10.3390/ijms241411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids are undoubtedly the major constituents of the cell membranes of all living organisms, and the most efficient source of energy [...].
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
30
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Fuller H, Race AD, Fenton H, Burke L, Downing A, Williams EA, Rees CJ, Brown LC, Loadman PM, Hull MA. Plasma and rectal mucosal oxylipin levels during aspirin and eicosapentaenoic acid treatment in the seAFOod polyp prevention trial. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102570. [PMID: 37003144 DOI: 10.1016/j.plefa.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Aspirin and eicosapentaenoic acid (EPA) have colorectal polyp prevention activity, alone and in combination. This study measured levels of plasma and rectal mucosal oxylipins in participants of the seAFOod 2 × 2 factorial, randomised, placebo-controlled trial, who received aspirin 300 mg daily and EPA 2000 mg free fatty acid, alone and in combination, for 12 months. METHODS Resolvin (Rv) E1, 15-epi-lipoxin (LX) A4 and respective precursors 18-HEPE and 15-HETE (with chiral separation) were measured by ultra-high performance liquid chromatography-tandem mass spectrometry in plasma taken at baseline, 6 months and 12 months, as well as rectal mucosa obtained at trial exit colonoscopy at 12 months, in 401 trial participants. RESULTS Despite detection of S- and R- enantiomers of 18-HEPE and 15-HETE in ng/ml concentrations, RvE1 or 15‑epi-LXA4 were not detected above a limit of detection of 20 pg/ml in plasma or rectal mucosa, even in individuals randomised to both aspirin and EPA. We have confirmed in a large clinical trial cohort that prolonged (12 months) treatment with EPA is associated with increased plasma 18-HEPE concentrations (median [inter-quartile range] total 18-HEPE 0.51 [0.21-1.95] ng/ml at baseline versus 0.95 [0.46-4.06] ng/ml at 6 months [P<0.0001] in those randomised to EPA alone), which correlate strongly with respective rectal mucosal 18-HEPE levels (r = 0.82; P<0.001), but which do not predict polyp prevention efficacy by EPA or aspirin. CONCLUSION Analysis of seAFOod trial plasma and rectal mucosal samples has not provided evidence of synthesis of the EPA-derived specialised pro-resolving mediator RvE1 or aspirin-trigged lipoxin 15‑epi-LXA4. We cannot rule out degradation of individual oxylipins during sample collection and storage but readily measurable precursor oxylipins argues against widespread degradation.
Collapse
Affiliation(s)
- H Fuller
- Leeds Institute of Medical Research, University of Leeds, UK
| | - A D Race
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - H Fenton
- Leeds Institute of Medical Research, University of Leeds, UK
| | - L Burke
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - A Downing
- Leeds Institute of Medical Research, University of Leeds, UK
| | - E A Williams
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - C J Rees
- Population Health Science Institute, Newcastle University, UK
| | - L C Brown
- MRC Clinical Trials Unit at University College, London, UK
| | - P M Loadman
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - M A Hull
- Leeds Institute of Medical Research, University of Leeds, UK.
| |
Collapse
|
33
|
Talamonti E, Jacobsson A, Chiurchiù V. Impairment of Endogenous Synthesis of Omega-3 DHA Exacerbates T-Cell Inflammatory Responses. Int J Mol Sci 2023; 24:ijms24043717. [PMID: 36835128 PMCID: PMC9966148 DOI: 10.3390/ijms24043717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Omega-3 (ω-3) polyunsaturated fatty acids, including docosahexaenoic acid (DHA), are involved in numerous biological processes and have a range of health benefits. DHA is obtained through the action of elongases (ELOVLs) and desaturases, among which Elovl2 is the key enzyme involved in its synthesis, and can be further metabolized into several mediators that regulate the resolution of inflammation. Our group has recently reported that ELOVL2 deficient mice (Elovl2-/-) not only display reduced DHA levels in several tissues, but they also have higher pro-inflammatory responses in the brain, including the activation of innate immune cells such as macrophages. However, whether impaired synthesis of DHA affects cells of adaptive immunity, i.e., T lymphocytes, is unexplored. Here we show that Elovl2-/- mice have significantly higher lymphocytes in peripheral blood and that both CD8+ and CD4+ T cell subsets produce greater amounts of pro-inflammatory cytokines in both blood and spleen compared to wild type mice, with a higher percentage of cytotoxic CD8+ T cells (CTLs) as well as IFN-γ-producing Th1 and IL-17-producing Th17 CD4+ cells. Furthermore, we also found that DHA deficiency impacts the cross-talk between dendritic cells (DC) and T cells, inasmuch as mature DCs of Elovl2-/- mice bear higher expression of activation markers (CD80, CD86 and MHC-II) and enhance the polarization of Th1 and Th17 cells. Reintroducing DHA back into the diets of Elovl2-/- mice reversed the exacerbated immune responses observed in T cells. Hence, impairment of endogenous synthesis of DHA exacerbates T cell inflammatory responses, accounting for an important role of DHA in regulating adaptive immunity and in potentially counteracting T-cell-mediated chronic inflammation or autoimmunity.
Collapse
Affiliation(s)
- Emanuela Talamonti
- Department of Biochemistry and Biophysics, Stockholm University, 114 Stockholm, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 Stockholm, Sweden
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 Stockholm, Sweden
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Correspondence: or
| |
Collapse
|
34
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
35
|
Kim JS, Soto-Diaz K, Bingham TW, Steelman AJ, Das A. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model. J Biol Chem 2023; 299:102886. [PMID: 36626985 PMCID: PMC9926309 DOI: 10.1016/j.jbc.2023.102886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies show that omega-3 fatty acid consumption is associated with improved conditions in neurodegenerative diseases such as multiple sclerosis (MS). However, the mechanism of this association is not well understood. Emerging evidence suggests that parent molecules such as docosahexaenoic acid are converted into downstream metabolites that are capable of directly modulating immune responses. In vitro, we found that docosahexaenoyl ethanolamide (DHEA), another dietary component and its epoxide metabolite, reduced the polarization of naïve T-cells toward proinflammatory Th1 and Th17 phenotypes. Furthermore, we identified that DHEA and related endocannabinoids are changing during the disease progression in mice undergoing relapse-remitting experimental autoimmune encephalomyelitis (RR-EAE). In addition, daily administration of DHEA to mice delayed the onset of disease, the rate of relapse, and the severity of clinical scores at relapse in RR-EAE, an animal model of MS. Collectively, these data indicate that DHEA and their downstream metabolites reduce the disease severity in the RR-EAE model of MS and can be potential dietary adjuvants to existing MS therapeutics.
Collapse
Affiliation(s)
- Justin S. Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner W. Bingham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew J. Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,For correspondence: Aditi Das; Andrew J. Steelman
| | - Aditi Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
36
|
Navarini L, Vomero M, Currado D, Berardicurti O, Biaggi A, Marino A, Bearzi P, Corberi E, Rigon A, Arcarese L, Leuti A, Fava M, Fogolari M, Mattei A, Ruscitti P, Di Cola I, Sambuco F, Travaglino F, Angeletti S, Ursini F, Mariani E, Cipriani P, Agrò FE, Iagnocco A, Antonelli Incalzi R, Maccarrone M, Giacomelli R. The specialized pro-resolving lipid mediator Protectin D1 affects macrophages differentiation and activity in Adult-onset Still's disease and COVID-19, two hyperinflammatory diseases sharing similar transcriptomic profiles. Front Immunol 2023; 14:1148268. [PMID: 37153620 PMCID: PMC10160453 DOI: 10.3389/fimmu.2023.1148268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1β from M2 macrophages was observed when compared to controls (p<0.05). Discussion PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1β production.
Collapse
Affiliation(s)
- Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
- *Correspondence: Luca Navarini,
| | - Marta Vomero
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Onorina Berardicurti
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Alice Biaggi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Annalisa Marino
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Pietro Bearzi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luisa Arcarese
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Leuti
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marina Fava
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marta Fogolari
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Alessia Mattei
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilenia Di Cola
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federica Sambuco
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Francesco Travaglino
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Silvia Angeletti
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Erminia Mariani
- Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Felice Eugenio Agrò
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
- Research Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Annamaria Iagnocco
- Academic Rheumatology Centre - AO Mauriziano Torino, Cattedra di Reumatologia - Dipartimento Scienze Cliniche e Biologiche, Università degli Studi di Torino, Turin, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, University of Rome “Campus Biomedico”, Rome, Italy
- Internal Medicine, Fondazione Policlinico Campus Biomedico, Rome, Italy
| | - Mauro Maccarrone
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| |
Collapse
|
37
|
Zyla-Jackson K, Walton DA, Plafker KS, Kovats S, Georgescu C, Brush RS, Tytanic M, Agbaga MP, Plafker SM. Dietary protection against the visual and motor deficits induced by experimental autoimmune encephalomyelitis. Front Neurol 2023; 14:1113954. [PMID: 36937529 PMCID: PMC10017782 DOI: 10.3389/fneur.2023.1113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.
Collapse
Affiliation(s)
- Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Richard S. Brush
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madison Tytanic
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Scott M. Plafker
| |
Collapse
|
38
|
Shen Q, Otoki Y, Sobel RA, Nagra RM, Taha AY. Evidence of increased sequestration of pro-resolving lipid mediators within brain esterified lipid pools of multiple sclerosis patients. Mult Scler Relat Disord 2022; 68:104236. [PMID: 36308971 DOI: 10.1016/j.msard.2022.104236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Unresolved inflammation in multiple sclerosis (MS) is associated with progressive demyelination and symptom worsening. In the brain, both inflammation and resolution pathways are mediated by free lipid mediators (i.e., oxylipins) that can be derived from the enzymatic hydrolysis of esterified oxylipins . It is not known whether disturbances in the turnover of free lipid mediators from esterified pools exist in postmortem brain of MS patients. We hypothesized that resolution pathways are impaired in MS patients because of disturbances in the turnover of free pro-resolving lipid mediators from esterified lipids. The objective was to characterize free and esterified oxylipins in postmortem prefrontal cortex of MS and unaffected control participants. METHODS Oxylipins in free, neutral lipid and phospholipid pools were extracted from prefrontal cortex of 10 MS participants and 5 unaffected controls, separated by solid phase extraction columns, and quantified by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Significant differences between the control and MS groups were determined by an unpaired t-test with Benjamini and Hochberg False Discovery Rate correction (10%) applied to oxylipins within each lipid pool. RESULTS The concentration of 7 esterified pro-resolving fatty acid epoxides within neutral lipids were significantly higher by 126%-285% in postmortem prefrontal cortex of MS compared to control participants. The concentration of esterified linoleic acid-derived 9(10)-epoxy-octadecenoic acid, a pro-inflammatory epoxide, was higher by 206% in MS compared to controls. No significant changes were observed in free or phospholipid-bound oxylipins. CONCLUSION In MS, several pro-resolving lipid mediators are trapped within prefrontal cortex neutral lipids, potentially limiting their supply and availability in the free bioactive form. This may explain why inflammation resolution is impaired in MS patients.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Raymond A Sobel
- Veterans Affairs Health Care System, Palo Alto, CA 94304, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
39
|
Roohbakhsh A, Etemad L, Karimi G. Resolvin D1: A key endogenous inhibitor of neuroinflammation. Biofactors 2022; 48:1005-1026. [PMID: 36176016 DOI: 10.1002/biof.1891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
After the initiation of inflammation, a series of processes start to resolve the inflammation. A group of endogenous lipid mediators, namely specialized pro-resolving lipid mediators is at the top list of inflammation resolution. Resolvin D1 (RvD1), is one of the lipid mediators with significant anti-inflammatory properties. It is produced from docosahexaenoic acid (omega-3 polyunsaturated fatty acid) in the body. In this article, we aimed to review the most recent findings concerning the pharmacological effects of RvD1 in the central nervous system with a focus on major neurological diseases and dysfunctions. A literature review of the past studies demonstrated that RvD1 plasma level changes during mania, depression, and Parkinson's disease. Furthermore, RVD1 and its epimer, aspirin-triggered RvD1 (AT-RvD1), have significant therapeutic effects on experimental models of ischemic and traumatic brain injuries, memory dysfunction, pain, depression, amyotrophic lateral sclerosis, and Alzheimer's and Parkinson's diseases. Interestingly, the beneficial effects of RvD1 and AT-RvD1 were mostly induced at nanomolar and micromolar concentrations implying the significant potency of these lipid mediators in treating diseases with inflammation.
Collapse
Affiliation(s)
- Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Wang H, Zhao Y, Zhang Y, Yang T, Zhao S, Sun N, Tan H, Zhang H, Wang C, Fan H. Effect of Chlorogenic Acid via Upregulating Resolvin D1 Inhibiting the NF-κB Pathway on Chronic Restraint Stress-Induced Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10532-10542. [PMID: 35975781 DOI: 10.1021/acs.jafc.2c04593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic stress can cause chronic inflammatory injury to the liver. Chlorogenic acid (CGA) is known to have a wide range of biological activities and anti-inflammatory effects. Resolvin D1 (RvD1) is a polyunsaturated fatty acid derivative that has inhibitory effects on a variety of inflammatory diseases. However, whether CGA can inhibit liver inflammation in chronic stress through RvD1 remains unclear. In this work, male rats were subjected to restraint stress for 6 h every day and built a chronic stress model for 21 days. CGA (100 mg/kg) was administered intragastrically 1 h before restraint, with intraperitoneal injection of RvD1 inhibitor WRW4 (antagonist of FPR2, 0.1 mg/kg) or WRW4 solution every 2 days for 30 min before CGA administration. CGA reduced hepatic hemorrhage and inflammatory cell infiltration, alleviated hepatic injury, decreased the activation of the NF-κB pathway and the expression of interleukin 1β, interleukin 6, and tumor necrosis factor α in the liver, and increased RvD1 in the serum and liver. The therapeutic effect of CGA was blocked after WRW4 intervention. These results suggest that the protective effects of CGA mediate the NF-κB pathway by upregulating the generation of RvD1. Above all, this research demonstrates the liver protective effect of CGA and provides a potential treatment strategy for chronic inflammatory disease.
Collapse
Affiliation(s)
- Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuntong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haoyang Tan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
41
|
Specialized Pro-Resolving Mediators in Neuroinflammation: Overview of Studies and Perspectives of Clinical Applications. Molecules 2022; 27:molecules27154836. [PMID: 35956787 PMCID: PMC9370036 DOI: 10.3390/molecules27154836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Specialized pro-resolving mediators (SPMs) are lipid mediators derived from poly-unsaturated fatty acids (PUFAs) which have been demonstrated to have an important role in the inflammation environment, preventing an overreaction of the organism and promoting the resolution of inflammation. Our purpose was to point out the current evidence for specialized pro-resolving mediators, focusing on their role in neuroinflammation and in major neurological diseases.
Collapse
|
42
|
Zahoor I, Suhail H, Datta I, Ahmed ME, Poisson LM, Waters J, Rashid F, Bin R, Singh J, Cerghet M, Kumar A, Hoda MN, Rattan R, Mangalam AK, Giri S. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc Natl Acad Sci U S A 2022; 119:e2123265119. [PMID: 35700359 PMCID: PMC9231486 DOI: 10.1073/pnas.2123265119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | | | - Laila M. Poisson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Rui Bin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ashok Kumar
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48202
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Health System, Detroit, MI 48202
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 5224
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| |
Collapse
|
43
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
44
|
Resolution of inflammation: Intervention strategies and future applications. Toxicol Appl Pharmacol 2022; 449:116089. [DOI: 10.1016/j.taap.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
|
45
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
46
|
Poblete RA, Arenas M, Sanossian N, Hong YK, Freeman WD, Lyden PD, Louie SG. Pro-resolving lipid mediators in traumatic brain injury: emerging concepts and translational approach. Am J Transl Res 2022; 14:1482-1494. [PMID: 35422939 PMCID: PMC8991125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023]
Abstract
Despite the high mortality and disability associated with traumatic brain injury (TBI), effective pharmacologic treatments are lacking. Of emerging interest, bioactive lipids, including specialized pro-resolving lipid mediators of inflammation (SPMs), act to attenuate inflammation after injury resolution. The SPM lipidome may serve as a biomarker of disease and predictor of clinical outcomes, and the use of exogenous SPM administration represents a novel therapeutic strategy for TBI. This review article provides a comprehensive discussion of the current pre-clinical and clinical literature supporting the importance of bioactive lipids, including SPMs, in TBI recovery. We additionally propose a translational approach to answer important clinical and scientific questions to advance the study of bioactive lipids and SPMs towards clinical research. Given the morbidity and mortality associated with TBI with limited treatment options, novel approaches are needed.
Collapse
Affiliation(s)
- Roy A Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Marcela Arenas
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Nerses Sanossian
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - William D Freeman
- Department of Neurology, College of Medicine and Science, Mayo ClinicLos Angeles, CA, USA
| | - Patrick D Lyden
- Department of Neurology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA,Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA
| | - Stan G Louie
- Division of Ophthalmology, Keck School of Medicine, The University of Southern CaliforniaLos Angeles, CA, USA,Department of Clinical Pharmacy, School of Pharmacy, The University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
47
|
HPLC-MS/MS Oxylipin Analysis of Plasma from Amyotrophic Lateral Sclerosis Patients. Biomedicines 2022; 10:biomedicines10030674. [PMID: 35327476 PMCID: PMC8945419 DOI: 10.3390/biomedicines10030674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Oxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls. We found a significant decrease in linoleic acid-derived oxylipins in ALS patients, including 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE. These derivatives have been reported as important regulators of inflammation on different cell systems. In addition, some 5-lipoxygenase metabolites, such as 5-hydroxy- eicosatetraenoic acid also showed a significant decrease in ALS plasma samples. Isoprostanes of the F2α family were detected only in ALS patients but not in control samples, while the hydroxylated metabolite 11-HETE significantly decreased. Despite our effort to analyze specialized pro-resolving mediators, they were not detected in plasma samples. However, we found the levels of 14-hydroxy-docosahexaenoic acid, a marker pathway of the Maresin biosynthesis, were also reduced in ALS patients, suggesting a defective activation in the resolution programs of inflammation in ALS. We further analyze oxylipin concentration levels in plasma from ALS patients to detect correlations between these metabolites and some clinical parameters. Interestingly, we found that plasmatic levels of 13-HODE and 9-HODE positively correlate with disease duration, expressed as days since onset. In summary, we developed a method to analyze “(oxy)lipidomics” in ALS human plasma and found new profiles of metabolites and novel lipid derivatives with unknown biological activities as potential footprints of disease onset.
Collapse
|
48
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
49
|
Zhang J, Li Z, Fan M, Jin W. Lipoxins in the Nervous System: Brighter Prospects for Neuroprotection. Front Pharmacol 2022; 13:781889. [PMID: 35153778 PMCID: PMC8826722 DOI: 10.3389/fphar.2022.781889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Lipoxins (LXs) are generated from arachidonic acid and are involved in the resolution of inflammation and confer protection in a variety of pathological processes. In the nervous system, LXs exert an array of protective effects against neurological diseases, including ischemic or hemorrhagic stroke, neonatal hypoxia-ischemia encephalopathy, brain and spinal cord injury, Alzheimer's disease, multiple sclerosis, and neuropathic pain. Lipoxin administration is a potential therapeutic strategy in neurological diseases due to its notable efficiency and unique superiority regarding safety. Here, we provide an overview of LXs in terms of their synthesis, signaling pathways and neuroprotective evidence. Overall, we believe that, along with advances in lipoxin-related drug design, LXs will bring brighter prospects for neuroprotection.
Collapse
Affiliation(s)
- Jiayu Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
50
|
Sánchez-Fernández A, Zandee S, Mastrogiovanni M, Charabati M, Rubbo H, Prat A, López-Vales R. Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:27. [PMID: 35109863 PMCID: PMC8808957 DOI: 10.1186/s12974-022-02386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS). METHODS SPMs and the key biosynthetic enzymes involved in SPM production were analysed by metabololipidomics and qPCR in active brain lesions, serum and peripheral blood mononuclear cells (PBMC) of MS patients as well as in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). We also tested the therapeutic actions of the SPM coined Maresin-1 (MaR1) in EAE mice and studied its impact on inflammation by doing luminex and flow cytometry analysis. RESULTS We show that levels of MaR1 and other SPMs were below the limit of detection or not increased in the spinal cord of EAE mice, whereas the production of pro-inflammatory eicosanoids was induced during disease progression. Similarly, we reveal that SPMs were undetected in serum and active brain lesion samples of MS patients, which was linked to impaired expression of the enzymes involved in the biosynthetic pathways of SPMs. We demonstrate that exogenous administration of MaR1 in EAE mice suppressed the protein levels of various pro-inflammatory cytokines and reduced immune cells counts in the spinal cord and blood. MaR1 also decreased the numbers of Th1 cells but increased the accumulation of regulatory T cells and drove macrophage polarization towards an anti-inflammatory phenotype. Importantly, we provide clear evidence that administration of MaR1 in mice with clinical signs of EAE enhanced neurological outcomes and protected from demyelination. CONCLUSIONS This study reveals that there is an imbalance in the production of SPMs in MS patients and in EAE mice, and that increasing the bioavailability of SPMs, such as MaR1, minimizes inflammation and mediates therapeutic actions. Thus, these data suggest that immunoresolvent therapies, such as MaR1, could be a novel avenue for the treatment of MS.
Collapse
Affiliation(s)
- Alba Sánchez-Fernández
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Rubèn López-Vales
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|