1
|
Lin H, Yao R, Wei S, Zhang W, Wang H, Wei B, Ye Y, Liao Z, Yan X, Wang W, Guo B. Physiological analysis and transcriptome sequencing revealed that HSPA1 was involved in response to heat stress in thick-shell mussels, Mytilus coruscus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101449. [PMID: 40056693 DOI: 10.1016/j.cbd.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
Mytilus coruscus, being sensitive to temperature variations, has developed a protective mechanism against heat stress through the upregulation of genes encoding heat shock proteins. Past research indicates that exposure to heat stress can activate HSPA1 expression for protection, yet the underlying regulatory mechanisms governing this response are not fully clear. Therefore, the emphasis of this study lies on regulating the expression of HSPA1 in mussels under high temperature stress. This study showed that high temperature could cause tissue damage and induce apoptosis in M. coruscus. Overexpression of HSPA1 at high temperature can mitigate damage. Enzyme activity assays also found that after the overexpression of HSPA1 at high temperature, the enzyme activity of SOD, CAT and GSH-PX increased to cope with the stimulation brought by high temperature, which suggests that the HSPA1 gene plays a critical role in the antioxidant response. Transcriptome analysis showed that under high-temperature stress, key genes including HSPA1S, HSP90, HSPA5, DnaJA1, and JUN showed increased expression in HSPA1-knockdown treatments, with differential gene expression enriched in pathways associated with MAPK signaling, endoplasmic reticulum protein processing, TNF signaling, apoptosis, and cell apoptosis pathways. Based on this, we suggested that M. coruscus may counteract damage induced by high-temperature stress via the above key genes and biology processes, highlighting the crucial role of HSPA1 in mitigating cell damage and apoptosis due to high temperature. Overall, our results revealed HSPA1 regulatory relationship in M. coruscus treated with high temperature, and provided new insights for the conservation and environmental adaptive evolution of bivalve species.
Collapse
Affiliation(s)
- Huajian Lin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Sisi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wanliang Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hao Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Bingqi Wei
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiaojun Yan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, PR China; National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
2
|
Sharma P, Salunke A, Pandya N, Shah H, Pandya P, Parikh P. De novo Transcriptomic analysis to unveil the deltamethrin induced resistance mechanisms in Callosobruchus chinensis (L.). Sci Rep 2025; 15:5163. [PMID: 39939732 PMCID: PMC11822196 DOI: 10.1038/s41598-025-89466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
The use of synthetic insecticides has been crucial in the management of insect pests however the extensive use of insecticides can result in the development of resistance. Callosobruchus chinensis is a highly destructive pest of stored grains, it's a major feeder and infests a range of stored grains that are vital to both global food security and human nutrition. We extensively investigated gene expression changes of adults in response to deltamethrin to decipher the mechanism behind the insecticide resistance. The analysis of gene expression revealed 25,343 unigenes with a mean length of 1,435 bp. All the expressed genes were identified, and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Exposure to deltamethrin (4.6 ppm) causes 320 differentially expressed genes (DEGs), of which 280 down-regulated and 50 up-regulated. The transcriptome analysis revealed that DEGs were found to be enriched in pathways related to xenobiotics metabolism, signal transduction, cellular processes, organismal systems and information processing. The quantitative real-time PCR was used to validate the DEGs encoding metabolic detoxification. To the best of our knowledge, these results offer the first toxicity mechanisms enabling a more comprehensive comprehension of the action and detoxification of deltamethrin in C. chinensis.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Nishi Pandya
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Hetvi Shah
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India, 391410
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India, 391410.
| | - Pragna Parikh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
| |
Collapse
|
3
|
Rajamanickam K, Visha P, Elango A, Leela V. Salivary heat shock protein 70 as a potential non-invasive biomarker of environmental thermal stress in dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:449-467. [PMID: 39556253 DOI: 10.1007/s00484-024-02826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
The present study aims to explore the potential biomarker application of salivary heat shock 70 kDa protein in detecting thermal stress in dairy animals noninvasively. The study spans for 45 days during the mid-summer season (April-May), involving twelve multiparous non-pregnant adult Jersey crossbred cows by randomly allocating them into groups (six animals in each group). The control animals were maintained in the shed, whereas the thermal stress group animals were exposed to environment heat between 10:00 h to 16.00 h and they were feed and watered ad libitum. During the experimental period, the hematobiochemical, physiological, behavioural, nutritional and production responses were recorded and the whole blood and saliva were collected fortnightly. Results revealed significant increase in WBC, AST, ALP, blood urea nitrogen, triglycerides, cholesterol, HDL, blood and salivary cortisol, respiratory rate, rectal temperature, skin temperature of neck, lumbar and forelimb regions, standing time, salivary and blood HSP70 mRNA expression and their protein concentrations in heat stressed animals. In addition, RBC, haemoglobin, MCV, PCV, platelet, platelet-large cell ratio (PLCR), lying time, feed intake, milk yield and rumination time were significantly decreased in thermally stress animals. Furthermore, ROC curve analysis revealed the biomarker potential of these significantly altered parameters with 100% sensitivity and specificity for predicting environmental heat stress in dairy cows with AUC and Youden's - index of 1.00 except platelet. Moreover, salivary HSP70 demonstrated significant correlation with these biomarkers. Noteworthily, salivary HSP70 also exhibited strong association with blood HSP70 and salivary cortisol. Furthermore, salivary HSP70 revealed 100% sensitivity and specificity in discriminating the dairy cattle succumbed to heat stress from healthy. In conclusion, the present study provides a newer insight into the multifaceted roles of HSP70 and identified salivary heat shock 70 kDa protein as a potential, reliable and more sensitive non-invasive biomarker for identifying environmental heat stress in dairy cattle.
Collapse
Affiliation(s)
- Kandasamy Rajamanickam
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute, Salem, Tamil Nadu, 636 112, India.
| | - Pasuvalingam Visha
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute, Salem, Tamil Nadu, 636 112, India
| | - Ayyasamy Elango
- Veterinary College and Research Institute, Dean, Salem, Tamil Nadu, 636 112, India
| | - Venkatasubramanian Leela
- Department of Veterinary Physiology, Madras Veterinary College, Chennai, Tamil Nadu, 600 007, India
| |
Collapse
|
4
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Li SR, Wu ZZ, Yu HJ, Sun ZJ. Targeting erythroid progenitor cells for cancer immunotherapy. Int J Cancer 2024; 155:1928-1938. [PMID: 39039820 DOI: 10.1002/ijc.35102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Immunotherapy, especially immune checkpoint blockade therapy, represents a major milestone in the history of cancer therapy. However, the current response rate to immunotherapy among cancer patients must be improved; thus, new strategies for sensitizing patients to immunotherapy are urgently needed. Erythroid progenitor cells (EPCs), a population of immature erythroid cells, exert potent immunosuppressive functions. As a newly recognized immunosuppressive population, EPCs have not yet been effectively targeted. In this review, we summarize the immunoregulatory mechanisms of EPCs, especially for CD45+ EPCs. Moreover, in view of the regulatory effects of EPCs on the tumor microenvironment, we propose the concept of EPC-immunity, present existing strategies for targeting EPCs, and discuss the challenges encountered in both basic research and clinical applications. In particular, the impact of existing cancer treatments on EPCs is discussed, laying the foundation for combination therapies. The aim of this review is to provide new avenues for improving the efficacy of cancer immunotherapy by targeting EPCs.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Zhong Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
6
|
Wongkhammul N, Khamphikham P, Tongjai S, Tantiworawit A, Fanhchaksai K, Wongpalee SP, Tubsuwan A, Maneekesorn S, Charoenkwan P. Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease. Int J Mol Sci 2024; 25:11246. [PMID: 39457028 PMCID: PMC11508986 DOI: 10.3390/ijms252011246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hemoglobin H/Constant Spring (Hb H/CS) disease represents a form of non-deletional Hb H disease characterized by chronic hemolytic anemia that ranges from moderate to severe and may lead to transfusion-dependent thalassemia. To study the underlying mechanisms of this disease, we conducted an analysis of erythropoiesis and gene expression in erythroid progenitor cells derived from CD34+ hematopoietic stem/progenitor cells from patients with Hb H/CS disease and normal controls. Twelve patients with Hb H/CS disease and five normal controls were enrolled. Peripheral blood samples were collected to isolate CD34+ hematopoietic stem/progenitor cells for the analysis of cell proliferation and differentiation. Six samples from patients with Hb H/CS disease and three controls were subsequently studied for gene expression by next generation sequencing analysis. Erythroid progenitor cells derived from patients with Hb H/CS disease exhibited a trend towards increased rates of erythroid proliferation and decreased cell viability compared to those from controls. Moreover, erythroid progenitor cells derived from patients with Hb H/CS disease demonstrated delayed terminal differentiation. Gene expression profiling revealed elevated levels of genes encoding molecular chaperones, including the heat shock protein genes (HSPs) and the chaperonin containing TCP-1 subunit genes (CCTs) in the Hb H/CS disease group. In summary, erythroid progenitor cells derived from patients with Hb H/CS disease exhibit a trend towards heightened erythroid proliferation, diminished cell viability, and delayed terminal differentiation. Additionally, the increased expression of genes encoding molecular chaperones was observed, providing information on potential underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Narawich Wongkhammul
- Center of Multidisciplinary of Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Tongjai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.P.W.)
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
| | - Kanda Fanhchaksai
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.P.W.)
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Supawadee Maneekesorn
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimlak Charoenkwan
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Velasco‐Carneros L, Bernardo‐Seisdedos G, Maréchal J, Millet O, Moro F, Muga A. Pseudophosphorylation of single residues of the J-domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system. Protein Sci 2024; 33:e5105. [PMID: 39012012 PMCID: PMC11249846 DOI: 10.1002/pro.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.
Collapse
Affiliation(s)
- Lorea Velasco‐Carneros
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Ganeko Bernardo‐Seisdedos
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
- Department of Medicine, Faculty of Health SciencesUniversity of DeustoBilbaoSpain
| | - Jean‐Didier Maréchal
- Insilichem, Departament de QuímicaUniversitat Autònoma de Barcelona (UAB)Bellaterra (Barcelona)Spain
| | - Oscar Millet
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| |
Collapse
|
8
|
Anyona SB, Cheng Q, Wasena SA, Osata SW, Guo Y, Raballah E, Hurwitz I, Onyango CO, Ouma C, Seidenberg PD, McMahon BH, Lambert CG, Schneider KA, Perkins DJ. Entire expressed peripheral blood transcriptome in pediatric severe malarial anemia. Nat Commun 2024; 15:5037. [PMID: 38866743 PMCID: PMC11169501 DOI: 10.1038/s41467-024-48259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, compares the entire expressed whole blood host transcriptome between Kenyan children (3-48 mos.) with non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA, signifying impairments in host inflammasome activation, cell death, and innate immune and cellular stress responses. Immune cell profiling shows decreased memory responses, antigen presentation, and immediate pathogen clearance, suggesting an immature/improperly regulated immune response in SMA. Module repertoire analysis of blood-specific gene signatures identifies up-regulation of erythroid genes, enhanced neutrophil activation, and impaired inflammatory responses in SMA. Enrichment analyses converge on disruptions in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome system, autophagy, and heme metabolism. Pathway analyses highlight activation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)-1 target and Reactive Oxygen Species (ROS) signaling] as a central theme in SMA. These signaling pathways are also top-ranking in protein abundance measures and a Ugandan SMA cohort with available transcriptomic data. Targeted RNA-Seq validation shows strong concordance with our entire expressed transcriptome data. These findings identify key molecular themes in SMA pathogenesis, offering potential targets for new malaria therapies.
Collapse
Affiliation(s)
- Samuel B Anyona
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, 40105, Kenya.
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
| | - Qiuying Cheng
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Sharley A Wasena
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Shamim W Osata
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
| | - Yan Guo
- Department of Public Health Sciences, University of Miami, Miami, 33136, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, 50100, Kenya
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Clinton O Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Philip D Seidenberg
- Department of Emergency Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Kristan A Schneider
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
9
|
Vadolas J, Nualkaew T, Voon HPJ, Vilcassim S, Grigoriadis G. Interplay between α-thalassemia and β-hemoglobinopathies: Translating genotype-phenotype relationships into therapies. Hemasphere 2024; 8:e78. [PMID: 38752170 PMCID: PMC11094674 DOI: 10.1002/hem3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
α-Thalassemia represents one of the most important genetic modulators of β-hemoglobinopathies. During this last decade, the ongoing interest in characterizing genotype-phenotype relationships has yielded incredible insights into α-globin gene regulation and its impact on β-hemoglobinopathies. In this review, we provide a holistic update on α-globin gene expression stemming from DNA to RNA to protein, as well as epigenetic mechanisms that can impact gene expression and potentially influence phenotypic outcomes. Here, we highlight defined α-globin targeted strategies and rationalize the use of distinct molecular targets based on the restoration of balanced α/β-like globin chain synthesis. Considering the therapies that either increase β-globin synthesis or reactivate γ-globin gene expression, the modulation of α-globin chains as a disease modifier for β-hemoglobinopathies still remains largely uncharted in clinical studies.
Collapse
Affiliation(s)
- Jim Vadolas
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tiwaporn Nualkaew
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Present address:
Department of Medical Technology, School of Allied Health SciencesWalailak UniversityNakhon Si ThammaratThailand
| | - Hsiao P. J. Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Shahla Vilcassim
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| | - George Grigoriadis
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| |
Collapse
|
10
|
Shi D, Wang B, Li H, Lian Y, Ma Q, Liu T, Cao M, Ma Y, Shi L, Yuan W, Shi J, Chu Y. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024; 27:109265. [PMID: 38450158 PMCID: PMC10915626 DOI: 10.1016/j.isci.2024.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
Collapse
Affiliation(s)
- Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuyi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
11
|
Güllülü Ö, Mayer BE, Toplek FB. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita. Int J Mol Sci 2024; 25:1606. [PMID: 38338888 PMCID: PMC10855549 DOI: 10.3390/ijms25031606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
12
|
Dong Z, Li H, Wang Y, Lin S, Guo F, Zhao J, Yao R, Zhu L, Wang W, Buttino I, Qi P, Guo B. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165785. [PMID: 37499827 DOI: 10.1016/j.scitotenv.2023.165785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.
Collapse
Affiliation(s)
- Zhenyu Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shuangrui Lin
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Feng Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
13
|
Dahleh MMM, Araujo SM, Bortolotto VC, Torres SP, Machado FR, Meichtry LB, Musachio EAS, Guerra GP, Prigol M. The implications of exercise in Drosophila melanogaster: insights into Akt/p38 MAPK/Nrf2 pathway associated with Hsp70 regulation in redox balance maintenance. J Comp Physiol B 2023; 193:479-493. [PMID: 37500966 DOI: 10.1007/s00360-023-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory Human and Animal Bio Health, Federal University of Fronteira Sul, Realeza, PR, CEP 85770-000, Brazil
| | | | - Stéphanie Perreira Torres
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| |
Collapse
|
14
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. Blood Adv 2023; 7:5496-5509. [PMID: 37493969 PMCID: PMC10515311 DOI: 10.1182/bloodadvances.2023010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Yana Ryan
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
15
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.538003. [PMID: 37398027 PMCID: PMC10312461 DOI: 10.1101/2023.04.23.538003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp . parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. While it has been observed that Plasmodium falciparum infection of late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA-seq after fluorescence-activated cell sorting (FACS) of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with Plasmodium falciparum . Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared to uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Whereas some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia. Key Points Erythroblasts at different stages of differentiation have distinct responses to infection by Plasmodium falciparum . P. falciparum infection of erythroblasts alters expression of genes related to oxidative and proteotoxic stress and erythroid development.
Collapse
|
16
|
Haftorn KL, Denault WRP, Lee Y, Page CM, Romanowska J, Lyle R, Næss ØE, Kristjansson D, Magnus PM, Håberg SE, Bohlin J, Jugessur A. Nucleated red blood cells explain most of the association between DNA methylation and gestational age. Commun Biol 2023; 6:224. [PMID: 36849614 PMCID: PMC9971030 DOI: 10.1038/s42003-023-04584-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Determining if specific cell type(s) are responsible for an association between DNA methylation (DNAm) and a given phenotype is important for understanding the biological mechanisms underlying the association. Our EWAS of gestational age (GA) in 953 newborns from the Norwegian MoBa study identified 13,660 CpGs significantly associated with GA (pBonferroni<0.05) after adjustment for cell type composition. When the CellDMC algorithm was applied to explore cell-type specific effects, 2,330 CpGs were significantly associated with GA, mostly in nucleated red blood cells [nRBCs; n = 2,030 (87%)]. Similar patterns were found in another dataset based on a different array and when applying an alternative algorithm to CellDMC called Tensor Composition Analysis (TCA). Our findings point to nRBCs as the main cell type driving the DNAm-GA association, implicating an epigenetic signature of erythropoiesis as a likely mechanism. They also explain the poor correlation observed between epigenetic age clocks for newborns and those for adults.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Øyvind E Næss
- Institute of Health and Society, University of Oslo, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dana Kristjansson
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Zhang R, Malinverni D, Cyr DM, Rios PDL, Nillegoda NB. J-domain protein chaperone circuits in proteostasis and disease. Trends Cell Biol 2023; 33:30-47. [PMID: 35729039 PMCID: PMC9759622 DOI: 10.1016/j.tcb.2022.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.
Collapse
Affiliation(s)
- Ruobing Zhang
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas M Cyr
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Zhang H, Xue F, Zhao H, Chen L, Wang T, Wu X. DNA methylation status of DNAJA4 is essential for human erythropoiesis. Epigenomics 2022; 14:1249-1267. [DOI: 10.2217/epi-2022-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims: To investigate DNA methylation patterns in early and terminal stages of erythropoiesis, and to explore the function of differentially methylated genes in erythropoiesis and erythroid disorders. Materials & methods: Differential analysis of DNA methylation and gene expression during erythropoiesis, as well as weighted gene coexpression network analysis of acute myeloid leukemia was performed. Results: We identified four candidate genes that possessed differential methylation in the promoter regions. DNAJA4 affected proliferation, apoptosis and enucleation during terminal erythropoiesis and was associated with the prognosis of acute myeloid leukemia. DNAJA4 was specifically highly expressed in erythroleukemia and is associated with DNA methylation. Conclusion: DNAJA4 plays a crucial role for erythropoiesis and is regulated via DNA methylation. Dysregulation of DNAJA4 expression is associated with erythroid disorders.
Collapse
Affiliation(s)
- Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Fumin Xue
- Department of Gastroenterology, Children’s Hospital affiliated of Zhengzhou University, Zhengzhou, 450000, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| |
Collapse
|
19
|
In Vitro Study of Ineffective Erythropoiesis in Thalassemia: Diverse Intrinsic Pathophysiological Features of Erythroid Cells Derived from Various Thalassemia Syndromes. J Clin Med 2022; 11:jcm11185356. [PMID: 36143003 PMCID: PMC9504363 DOI: 10.3390/jcm11185356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Defective hemoglobin production and ineffective erythropoiesis contribute to the pathophysiology of thalassemia syndromes. Previous studies in the field of erythropoiesis mainly focused on the severe forms of thalassemia, such as β-thalassemia major, while mechanisms underlying the pathogenesis of other thalassemia syndromes remain largely unexplored. The current study aimed to investigate the intrinsic pathophysiological properties of erythroid cells derived from the most common forms of thalassemia diseases, including α-thalassemia (hemoglobin H and hemoglobin H-Constant Spring diseases) and β-thalassemia (homozygous β0-thalassemia and β0-thalassemia/hemoglobin E diseases), under an identical in vitro erythroid culture system. Cell proliferation capacity, differentiation velocity, cell death, as well as globin synthesis and the expression levels of erythropoiesis modifying factors were determined. Accelerated expansion was found in erythroblast cells derived from all types of thalassemia, with the highest degree in β0-thalassemia/hemoglobin E. Likewise, all types of thalassemia showed limited erythroid cell differentiation, but each of them manifested varying degrees of erythroid maturation arrest corresponding with the clinical severity. Robust induction of HSP70 transcripts, an erythroid maturation-related factor, was found in both α- and β-thalassemia erythroid cells. Increased cell death was distinctly present only in homozygous β0-thalassemia erythroblasts and associated with the up-regulation of pro-apoptotic (Caspase 9, BAD, and MTCH1) genes and down-regulation of the anti-apoptotic BCL-XL gene.
Collapse
|
20
|
Tzounakas VL, Anastasiadi AT, Karadimas DG, Velentzas AD, Anastasopoulou VI, Papageorgiou EG, Stamoulis K, Papassideri IS, Kriebardis AG, Antonelou MH. Early and Late-Phase 24 h Responses of Stored Red Blood Cells to Recipient-Mimicking Conditions. Front Physiol 2022; 13:907497. [PMID: 35721567 PMCID: PMC9198496 DOI: 10.3389/fphys.2022.907497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The 24-hour (24 h) post-transfusion survival of donor red blood cells (RBCs) is an important marker of transfusion efficacy. Nonetheless, within that period, donated RBCs may encounter challenges able to evoke rapid stress-responses. The aim of the present study was to assess the effect of exposure to plasma and body temperature upon stored RBCs under recipient-mimicking conditions in vitro from the first hours "post-transfusion" up to 24 h. For this purpose, packed RBCs from seven leukoreduced CPD/SAGM units were reconstituted with plasma of twenty-seven healthy individuals and incubated for 24 h at 37oC. Three units were additionally used to examine stress-responses in 3-hour intervals post mixing with plasma (n = 5) until 24 h. All experiments were performed in shortly-, medium-, and long-stored RBCs. Hemolysis, redox, morphology, membrane protein binding and vesiculation parameters were assessed. Even though spontaneous hemolysis was minimal post-reconstitution, it presented a time-dependent increase. A similar time-course profile was evident for the concentration of procoagulant extracellular vesicles and the osmotic fragility (shortly-stored RBCs). On the contrary, mechanical fragility and reactive oxygen species accumulation were characterized by increases in medium-stored RBCs, evident even from the first hours in the recipient-mimicking environment. Finally, exposure to plasma resulted in rapid improvement of morphology, especially in medium-stored RBCs. Overall, some RBC properties vary significantly during the first 24 h post-mixing, at levels different from both the storage ones and the standard end-of-24 h. Such findings may be useful for understanding the performance of RBCs and their possible clinical effects -especially on susceptible recipients- during the first hours post-transfusion.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios G Karadimas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanassios D Velentzas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Violetta I Anastasopoulou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
21
|
Ren K, Li E, Ji P. Proteome remodeling and organelle clearance in mammalian terminal erythropoiesis. Curr Opin Hematol 2022; 29:137-143. [PMID: 35441599 DOI: 10.1097/moh.0000000000000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The differentiation from colony forming unit-erythroid (CFU-E) cells to mature enucleated red blood cells is named terminal erythropoiesis in mammals. Apart from enucleation, several unique features during these developmental stages include proteome remodeling and organelle clearance that are important to achieve hemoglobin enrichment. Here, we review the recent advances in the understanding of novel regulatory mechanisms in these processes, focusing on the master regulators that link these major events during terminal erythropoiesis. RECENT FINDINGS Comprehensive proteomic studies revealed a mismatch of protein abundance to their corresponding transcript abundance, which indicates that the proteome remodeling is regulated in a complex way from transcriptional control to posttranslational modifications. Key regulators in organelle clearance were also found to play critical roles in proteome remodeling. SUMMARY These studies demonstrate that the complexity of terminal erythropoiesis is beyond the conventional transcriptomic centric perspective. Posttranslational modifications such as ubiquitination are critical in terminal erythroid proteome remodeling that is also closely coupled with organelle clearance.
Collapse
Affiliation(s)
- Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
22
|
Nisaa K, Ben-Zvi A. Chaperone networks are shaped by cellular differentiation and identity. Trends Cell Biol 2021; 32:470-474. [PMID: 34863585 DOI: 10.1016/j.tcb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
Chaperone expression is developmentally regulated, establishing tissue-specific networks. However, the molecular basis underlying this specificity is mainly unknown. Recent evidence suggests that chaperone network rewiring is mediated, in part, by differentiation transcription factors to fit the proteome folding demands, with implications for the tissue-specific manifestation of protein misfolding diseases.
Collapse
Affiliation(s)
- Khairun Nisaa
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
23
|
Tsolaki VDC, Georgiou-Siafis SK, Tsamadou AI, Tsiftsoglou SA, Samiotaki M, Panayotou G, Tsiftsoglou AS. Hemin accumulation and identification of a heme-binding protein clan in K562 cells by proteomic and computational analysis. J Cell Physiol 2021; 237:1315-1340. [PMID: 34617268 DOI: 10.1002/jcp.30595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
Heme (iron protoporphyrin IX) is an essential regulator conserved in all known organisms. We investigated the kinetics of intracellular accumulation of hemin (oxidized form) in human transformed proerythroid K562 cells using [14 C]-hemin and observed that it is time and temperature-dependent, affected by the presence of serum proteins, as well as the amphipathic/hydrophobic properties of hemin. Hemin-uptake exhibited saturation kinetics as a function of the concentration added, suggesting the involvement of a carrier-cell surface receptor-mediated process. The majority of intracellular hemin accumulated in the cytoplasm, while a substantial portion entered the nucleus. Cytosolic proteins isolated by hemin-agarose affinity column chromatography (HACC) were found to form stable complexes with [59 Fe]-hemin. The HACC fractionation and Liquid chromatography-mass spectrometry analysis of cytosolic, mitochondrial, and nuclear protein isolates from K562 cell extracts revealed the presence of a large number of hemin-binding proteins (HeBPs) of diverse ontologies, including heat shock proteins, cytoskeletal proteins, enzymes, and signaling proteins such as actinin a4, mitogen-activated protein kinase 1 as well as several others. The subsequent computational analysis of the identified HeBPs using HemoQuest confirmed the presence of various hemin/heme-binding motifs [C(X)nC, H, Y] in their primary structures and conformations. The possibility that these HeBPs contribute to a heme intracellular trafficking protein network involved in the homeostatic regulation of the pool and overall functions of heme is discussed.
Collapse
Affiliation(s)
- Vasiliki-Dimitra C Tsolaki
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Sofia K Georgiou-Siafis
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Athina I Tsamadou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Stefanos A Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - George Panayotou
- Institute of Bioinnovation, B.S.R.C. "Alexander Fleming", Vari, Attiki, Greece
| | - Asterios S Tsiftsoglou
- Department of Pharmacy, Laboratory of Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| |
Collapse
|