1
|
Park MY, Agoro R, Jankauskas SS, Le Henaff C, Sitara D. Phosphorus-independent role of FGF23 in erythropoiesis and iron homeostasis. PLoS One 2024; 19:e0315228. [PMID: 39666728 PMCID: PMC11637385 DOI: 10.1371/journal.pone.0315228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23. Mice were fed either a 1.2% or 1.65% phosphorus diet and compared to mice fed a control diet containing 0.6% of phosphorus. Moreover, we used two mouse models of hypophosphatemia-induced either by dietary intervention in the form of a low phosphorus (LP) diet (0.02% of Pi) or genetically in a mouse model of X-linked hypophosphatemia (XLH)-that had opposite FGF23 levels. Phosphorus supplementation appropriately increased FGF23 levels leading to excretion of excess phosphorus and normalization of serum phosphorus levels. We also found that a phosphorus-rich diet results in inflammation-induced hypoferremia associated with reduced iron export leading to tissue iron overload. Moreover, high phosphorus intake results in ineffective erythropoiesis caused by decreased production (decreased RBCs, hemoglobin, hematocrit, and erythroid progenitors in the bone marrow) and increased destruction of RBCs, leading to anemia despite increased EPO secretion. These complications occur through the actions of elevated FGF23 in the presence of normophosphatemia. Our data also show that LP diet induces a decrease in the serum concentrations of phosphorus and FGF23, resulting in increased RBC counts, hemoglobin concentration, and hematocrit compared to mice fed normal diet. Moreover, serum iron and transferrin saturation were increased and positively correlated with serum ferritin, liver ferritin protein and mRNA expression in mice fed LP diet. However, hyp mice, the murine model of XLH, exhibit hypophosphatemia and high serum FGF23 levels, along with low number of circulating RBCs, hemoglobin, and hematocrit compared to wild-type mice. In the bone marrow, hyp mice showed reduced number of erythroid progenitors and formed significantly less BFU-E colonies compared to control mice. Serum iron levels and transferrin saturation were also decreased in hyp mice in comparison to control mice. Taken together, our data show that FGF23 acts independent of phosphorus levels to regulate erythropoiesis and iron homeostasis.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Rafiou Agoro
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States of America
- Department of Medicine, Holman Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
2
|
Dou J, Chen X, Zhang J, Yang L, Lin J, Zhu W, Huang D, Tan X. P. Gingivalis induce macrophage polarization by regulating hepcidin expression in chronic apical periodontitis. Int Immunopharmacol 2024; 142:113139. [PMID: 39278061 DOI: 10.1016/j.intimp.2024.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Hepcidin, a central regulatory molecule of iron metabolism, is upregulated through the IL-6/STAT3 signaling pathway in inflammatory and infectious states, contributing to the pathogenesis of various diseases. In chronic apical periodontitis (CAP), Porphyromonas gingivalis (P. gingivalis) and its lipopolysaccharides (LPS) activate various immune responses in vivo, contributing to disease progression. This study evaluated the role and mechanism of hepcidin in P. gingivalis-induced bone tissue damage in CAP, focusing on its promotion of macrophage M1 polarization via the IL-6/STAT3 signaling pathway. METHODS We analyzed a GSE77459 dataset from the GEO database, containing data from inflammatory and normal dental pulp tissues. RT-qPCR and immunofluorescence staining were used to detect the expression of hepcidin in human CAP tissues and its relationship with macrophages. Mouse bone marrow derived macrophages (BMDMs) were cultured in vitro and stimulated with P. gingivalis LPS. The effects of Stattic on macrophage hepcidin expression, IL-6 expression, STAT3 phosphorylation, and macrophage polarization were detected by ELISA, western blotting, RT-qPCR, and flow cytometry, respectively. RESULTS Hepcidin expression in human inflammatory dental pulp tissues was upregulated via the IL-6/STAT3 pathway and correlated with macrophage polarization. Hepcidin-encoding genes were found to be highly expressed and primarily associated with M1 macrophages in CAP tissues. In vitro experiments revealed that P. gingivalis LPS stimulation induced macrophages to express hepcidin through the IL-6/STAT3 pathway and polarize to M1. Additionally, the IL-6/STAT3 pathway inhibitor Stattic suppressed these changes. CONCLUSIONS Our study demonstrates that in CAP, macrophages highly express hepcidin, which subsequently alters macrophage metabolism, regulates M1 polarization, and leads to bone tissue destruction.
Collapse
Affiliation(s)
- Jinge Dou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182 Guangdong, China
| | - Jinglan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanling Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Park MY, Tu CL, Perie L, Verma N, Serdan TDA, Shamsi F, Shapses S, Heffron S, Gamallo-Lana B, Mar AC, Alemán JO, Mueller E, Chang W, Sitara D. Targeted Deletion of Fibroblast Growth Factor 23 Rescues Metabolic Dysregulation of Diet-induced Obesity in Female Mice. Endocrinology 2024; 165:bqae141. [PMID: 39446375 PMCID: PMC11538792 DOI: 10.1210/endocr/bqae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/07/2024]
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-secreted protein widely recognized as a critical regulator of skeletal and mineral metabolism. However, little is known about the nonskeletal production of FGF23 and its role in tissues other than bone. Growing evidence indicates that circulating FGF23 levels rise with a high-fat diet (HFD) and they are positively correlated with body mass index (BMI) in humans. In the present study, we show for the first time that increased circulating FGF23 levels in obese humans correlate with increased expression of adipose Fgf23 and both positively correlate with BMI. To understand the role of adipose-derived Fgf23, we generated adipocyte-specific Fgf23 knockout mice (AdipoqFgf23Δfl/Δfl) using the adiponectin-Cre driver, which targets mature white, beige, and brown adipocytes. Our data show that targeted ablation of Fgf23 in adipocytes prevents HFD-fed female mice from gaining body weight and fat mass while preserving lean mass but has no effect on male mice, indicating the presence of sexual dimorphism. These effects are observed in the absence of changes in food and energy intake. Adipose Fgf23 inactivation also prevents dyslipidemia, hyperglycemia, and hepatic steatosis in female mice. Moreover, these changes are associated with decreased respiratory exchange ratio and increased brown fat Ucp1 expression in knockout mice compared to HFD-fed control mice (Fgf23fl/fl). In conclusion, this is the first study highlighting that targeted inactivation of Fgf23 is a promising therapeutic strategy for weight loss and lean mass preservation in humans.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Sue Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ 08903, USA
| | - Sean Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - José O Alemán
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Despina Sitara
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Papastergiou E, Rallis D, Papagianni A, Cholevas V, Katzilakis N, Siomou E, Stiakaki E, Makis A. Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections. BIOLOGY 2024; 13:728. [PMID: 39336155 PMCID: PMC11428972 DOI: 10.3390/biology13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
We intend to evaluate the association of intact Fibroblast Growth Factor 23 (i-FGF23), a phosphaturic hormone that contributes to anemia of inflammation, with markers of iron homeostasis, inflammation, and bone mineral metabolism in acute pediatric infections. Seventy-nine children, aged 1 month-13 years, out of which forty-two were males and thirty-seven females, participated in this study. Children with diseases and nutrient deficiencies causing anemia were excluded. Twenty-six patients had bacterial infections, twenty-six had viral infections, and twenty-seven children served as healthy controls. Complete blood count, markers of inflammation, iron and mineral metabolism, serum hepcidin, and i-FGF23 were compared between the groups. Thirty-nine percent of patients with bacterial infection and twelve percent of patients with viral infection presented characteristics of anemia of inflammation (p < 0.001). Ninety-two percent of patients with bacterial infection and eighty-one percent of patients with viral infection had functional iron deficiency (p < 0.001). Hepcidin was significantly positively correlated with the duration of fever, markers of inflammation, and negatively with iron, mineral metabolism parameters, and i-FGF23. i-FGF23 was positively correlated with iron metabolism parameters and negatively with the duration of fever, markers of inflammation, and hepcidin. Hepcidin levels increase, whereas i-FGF23 levels decrease in acute pediatric infections. Further research is required to understand the role of FGF23 in the hepcidin-ferroportin axis and for hepcidin in the diagnosis of bacterial infections and mineral metabolism.
Collapse
Affiliation(s)
- Eleni Papastergiou
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Afroditi Papagianni
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios Cholevas
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Postgraduate Program “Hematology-Oncology in Childhood and Adolescence” of Medical School, University of Crete, 71003 Heraklion, Greece
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Laboratory of Child Health, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Ay B, Cyr SM, Klovdahl K, Zhou W, Tognoni CM, Iwasaki Y, Rhee EP, Dedeoglu A, Simic P, Bastepe M. Gα11 deficiency increases fibroblast growth factor 23 levels in a mouse model of familial hypocalciuric hypercalcemia. JCI Insight 2024; 9:e178993. [PMID: 38530370 PMCID: PMC11141917 DOI: 10.1172/jci.insight.178993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1β levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.
Collapse
Affiliation(s)
- Birol Ay
- Endocrine Unit, Department of Medicine, and
| | | | | | - Wen Zhou
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M. Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Eugene P Rhee
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, USA
| | - Petra Simic
- Endocrine Unit, Department of Medicine, and
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Courbon G, Thomas JJ, Martinez-Calle M, Wang X, Spindler J, Von Drasek J, Hunt-Tobey B, Mehta R, Isakova T, Chang W, Creemers JWM, Ji P, Martin A, David V. Bone-derived C-terminal FGF23 cleaved peptides increase iron availability in acute inflammation. Blood 2023; 142:106-118. [PMID: 37053547 PMCID: PMC10356820 DOI: 10.1182/blood.2022018475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammation leads to functional iron deficiency by increasing the expression of the hepatic iron regulatory peptide hepcidin. Inflammation also stimulates fibroblast growth factor 23 (FGF23) production by increasing both Fgf23 transcription and FGF23 cleavage, which paradoxically leads to excess in C-terminal FGF23 peptides (Cter-FGF23), rather than intact FGF23 (iFGF23) hormone. We determined that the major source of Cter-FGF23 is osteocytes and investigated whether Cter-FGF23 peptides play a direct role in the regulation of hepcidin and iron metabolism in response to acute inflammation. Mice harboring an osteocyte-specific deletion of Fgf23 showed a ∼90% reduction in Cter-FGF23 levels during acute inflammation. Reduction in Cter-FGF23 led to a further decrease in circulating iron in inflamed mice owing to excessive hepcidin production. We observed similar results in mice showing impaired FGF23 cleavage owing to osteocyte-specific deletion of Furin. We next showed that Cter-FGF23 peptides bind members of the bone morphogenetic protein (BMP) family, BMP2 and BMP9, which are established inducers of hepcidin. Coadministration of Cter-FGF23 and BMP2 or BMP9 prevented the increase in Hamp messenger RNA and circulating hepcidin levels induced by BMP2/9, resulting in normal serum iron levels. Finally, injection of Cter-FGF23 in inflamed Fgf23KO mice and genetic overexpression of Cter-Fgf23 in wild type mice also resulted in lower hepcidin and higher circulating iron levels. In conclusion, during inflammation, bone is the major source of Cter-FGF23 secretion, and independently of iFGF23, Cter-FGF23 reduces BMP-induced hepcidin secretion in the liver.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John Von Drasek
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA
| | | | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
7
|
Ovejero D, Michel Z, Cataisson C, Saikali A, Galisteo R, Yuspa SH, Collins MT, de Castro LF. Murine models of HRAS-mediated cutaneous skeletal hypophosphatemia syndrome suggest bone as the FGF23 excess source. J Clin Invest 2023; 133:e159330. [PMID: 36943390 PMCID: PMC10145192 DOI: 10.1172/jci159330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a mosaic RASopathy characterized by the association of dysplastic skeletal lesions, congenital skin nevi of epidermal and/or melanocytic origin, and FGF23-mediated hypophosphatemia. The primary physiological source of circulating FGF23 is bone cells. However, several reports have suggested skin lesions as the source of excess FGF23 in CSHS. Consequently, without convincing evidence of efficacy, many patients with CSHS have undergone painful removal of cutaneous lesions in an effort to normalize blood phosphate levels. This study aims to elucidate whether the source of FGF23 excess in CSHS is RAS mutation-bearing bone or skin lesions. Toward this end, we analyzed the expression and activity of Fgf23 in two mouse models expressing similar HRAS/Hras activating mutations in a mosaic-like fashion in either bone or epidermal tissue. We found that HRAS hyperactivity in bone, not skin, caused excess of bioactive intact FGF23, hypophosphatemia, and osteomalacia. Our findings support RAS-mutated dysplastic bone as the primary source of physiologically active FGF23 excess in patients with CSHS. This evidence informs the care of patients with CSHS, arguing against the practice of nevi removal to decrease circulating, physiologically active FGF23.
Collapse
Affiliation(s)
- Diana Ovejero
- Musculoskeletal Research Unit, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Zachary Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amanda Saikali
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Rebeca Galisteo
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Michael T. Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Luis F. de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol 2023; 19:185-193. [PMID: 36624273 DOI: 10.1038/s41581-022-00665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.
Collapse
|
9
|
Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study. Biomedicines 2022; 10:biomedicines10092092. [PMID: 36140193 PMCID: PMC9495431 DOI: 10.3390/biomedicines10092092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac dysfunction is an important prognostic predictor of cardiovascular mortality in patients on hemodialysis (HD). Erythropoietin (EPO) has been reported to improve cardiac function by binding to the EPO receptor (EPOR) on cardiomyocytes. This study investigated whether anti-EPOR antibodies were associated with left ventricular cardiac function in patients undergoing HD. This multicenter, cross-sectional observational study included 377 patients (median age, 70 years; 267 (70.8%) males) with chronic kidney disease (CKD) undergoing stable maintenance HD. Serum levels of anti-EPOR antibodies were measured, and echocardiography was used to assess the left ventricular mass index (LVMI) and left ventricular ejection fraction (LVEF). Anti-EPOR antibodies were found in 17 patients (4.5%). LVMI was greater (median of 135 g/m2 vs. 115 g/m2, p = 0.042), and the prevalence of LVEF < 50% was higher (35.3% vs. 15.6%, p = 0.032) in patients with anti-EPOR antibodies than in those without. Multivariable linear regression and logistic regression analysis (after adjusting for known risk factors of heart failure) revealed that anti-EPOR antibodies were independently associated with LVMI (coefficient 16.2%; 95% confidence interval (CI) 1.0−35.0%, p = 0.043) and LVEF <50% (odds ratio 3.20; 95% CI 1.05−9.73, p = 0.041). Thus, anti-EPOR antibody positivity was associated with left ventricular dysfunction in patients undergoing HD.
Collapse
|
10
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
11
|
Liesen MP, Noonan ML, Ni P, Agoro R, Hum JM, Clinkenbeard EL, Damrath JG, Wallace JM, Swallow EA, Allen MR, White KE. Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD. Physiol Rep 2022; 10:e15307. [PMID: 35656701 PMCID: PMC9163801 DOI: 10.14814/phy2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.
Collapse
Affiliation(s)
- Michael P. Liesen
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Megan L. Noonan
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Pu Ni
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rafiou Agoro
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Julia M. Hum
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Erica L. Clinkenbeard
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - John G. Damrath
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Joseph M. Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Matthew R. Allen
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth E. White
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
12
|
Hanudel MR, Czaya B, Wong S, Jung G, Chua K, Qiao B, Gabayan V, Ganz T. Renoprotective effects of ferric citrate in a mouse model of chronic kidney disease. Sci Rep 2022; 12:6695. [PMID: 35461329 PMCID: PMC9035171 DOI: 10.1038/s41598-022-10842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn chronic kidney disease, ferric citrate has been shown to be an effective phosphate binder and source of enteral iron; however, the effects of ferric citrate on the kidney have been less well-studied. Here, in Col4α3 knockout mice—a murine model of progressive chronic kidney disease, we evaluated the effects of five weeks of 1% ferric citrate dietary supplementation. As expected, ferric citrate lowered serum phosphate concentrations and increased serum iron levels in the Col4α3 knockout mice. Consistent with decreased enteral phosphate absorption and possibly improved iron status, ferric citrate greatly reduced circulating fibroblast growth factor 23 levels. Interestingly, ferric citrate also lessened systemic inflammation, improved kidney function, reduced albuminuria, and decreased kidney inflammation and fibrosis, suggesting renoprotective effects of ferric citrate in the setting of chronic kidney disease. The factors mediating possible ferric citrate renoprotection, the mechanisms by which they may act, and whether ferric citrate affects chronic kidney disease progression in humans deserves further study.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a bone- and bone marrow-derived hormone that is critical to maintain phosphate homeostasis. The principal actions of FGF23 are to reduce serum phosphate levels by decreasing kidney phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. FGF23 deficiency causes hyperphosphatemia and ectopic calcifications, while FGF23 excess causes hypophosphatemia and skeletal defects. Excess FGF23 also correlates with kidney disease, where it is associated with increased morbidity and mortality. Accordingly, FGF23 levels are tightly regulated, but the mechanisms remain incompletely understood. RECENT FINDINGS In addition to bone mineral factors, additional factors including iron, erythropoietin, inflammation, energy, and metabolism regulate FGF23. All these factors affect Fgf23 expression, while some also regulate FGF23 protein cleavage. Conversely, FGF23 may have a functional role in regulating these biologic processes. Understanding the bi-directional relationship between FGF23 and non-bone mineral factors is providing new insights into FGF23 regulation and function.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jodie L Babitt
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Alshwaiyat NM, Ahmad A, Wan Hassan WMR, Al-Jamal HAN. Association between obesity and iron deficiency (Review). Exp Ther Med 2021; 22:1268. [PMID: 34594405 PMCID: PMC8456489 DOI: 10.3892/etm.2021.10703] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a risk factor for several comorbidities and complications, including iron deficiency anemia. Iron deficiency anemia is a serious global public health problem, with a worldwide prevalence. The high prevalence of obesity in combination with iron deficiency incidence observed in different age and sex categories suggests an association between obesity and iron status. Obesity may disrupt iron homeostasis, resulting in iron deficiency anemia. The association between obesity and iron deficiency may be due to increased hepcidin levels mediated by chronic inflammation. Hepcidin is a small peptide hormone that functions as a negative regulator of intestinal iron absorption. Significant body weight loss in overweight and obese individuals decreases chronic inflammation and serum hepcidin levels, resulting in improved iron status due to increased iron absorption. However, further randomized controlled trials are required to confirm this effect.
Collapse
Affiliation(s)
- Naseem Mohammad Alshwaiyat
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia
| | - Aryati Ahmad
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Wan Mohd Razin Wan Hassan
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Terengganu, Terengganu 21300, Malaysia
| |
Collapse
|
15
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
16
|
Jung YS, Kim YH, Radhakrishnan K, Kim J, Lee IK, Cho SJ, Kim DK, Dooley S, Lee CH, Choi HS. Orphan nuclear receptor ERRγ regulates hepatic TGF-β2 expression and fibrogenic response in CCl4-induced acute liver injury. Arch Toxicol 2021; 95:3071-3084. [DOI: https:/doi.org/10.1007/s00204-021-03112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/22/2021] [Indexed: 09/18/2023]
|
17
|
Hanudel MR. The author replies. Kidney Int 2021; 100:709-710. [PMID: 34420664 DOI: 10.1016/j.kint.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
18
|
Hypoxia-inducible factor prolyl hydroxylase inhibitor, C-terminal fibroblast growth factor 23 fragments, and hepcidin. Kidney Int 2021; 100:709. [PMID: 34420665 DOI: 10.1016/j.kint.2021.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
|
19
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
20
|
Orphan nuclear receptor ERRγ regulates hepatic TGF-β2 expression and fibrogenic response in CCl 4-induced acute liver injury. Arch Toxicol 2021; 95:3071-3084. [PMID: 34191077 DOI: 10.1007/s00204-021-03112-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Acute liver injury results from the complex interactions of various pathological processes. The TGF-β superfamily plays a crucial role in orchestrating fibrogenic response. In contrast to TGF-β1, a role of TGF-β2 in hepatic fibrogenic response has not been fully investigated. In this study, we showed that TGF-β2 gene expression and secretion are induced in the liver of CCl4 (1 ml/kg)-treated WT mice. Studies with hepatocyte specific ERRγ knockout mice or treatment with an ERRγ-specific inverse agonist, GSK5182 (40 mg/kg), indicated that CCl4-induced hepatic TGF-β2 production is ERRγ dependent. Moreover, IL6 was found as upstream signal to induce hepatic ERRγ and TGF-β2 gene expression in CCl4-mediated acute toxicity model. Over-expression of ERRγ was sufficient to induce hepatic TGF-β2 expression, whereas ERRγ depletion markedly reduces IL6-induced TGF-β2 gene expression and secretion in vitro and in vivo. Promoter assays showed that ERRγ directly binds to an ERR response element in the TGF-β2 promoter to induce TGF-β2 transcription. Finally, GSK5182 diminished CCl4-induced fibrogenic response through inhibition of ERRγ-mediated TGF-β2 production. Taken together, these results firstly demonstrate that ERRγ can regulate the TGF-β2-mediated fibrogenic response in a mouse model of CC14-induced acute liver injury.
Collapse
|
21
|
Iwasaki T, Fujimori A, Nakanishi T, Okada S, Hanawa N, Hasuike Y, Kuragano T. Saccharated ferric oxide attenuates haematopoietic response induced by epoetin beta pegol in patients undergoing haemodialysis. BMC Nephrol 2021; 22:124. [PMID: 33832448 PMCID: PMC8034147 DOI: 10.1186/s12882-021-02320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Decreased erythropoietin levels and impaired iron metabolism due to excessive hepcidin levels are responsible for renal anaemia in patients undergoing haemodialysis. Recently, erythroferrone (ERFE) has been identified as a factor that regulates hepcidin. In addition, fibroblast growth factor 23 (FGF23), which has been recognized as a phosphorus-regulating hormone, appears to be involved in haematopoietic regulation. Clarification of the detailed mechanism of haematopoiesis could lead to the improvement of renal anaemia treatment. Methods Epoetin beta pegol (CERA) was administered to patients undergoing haemodialysis at week 0, and the same amount of CERA with saccharated ferric oxide (SFO) was administered at week 4. The changes in haematopoiesis-related biomarkers, including ERFE, intact FGF23 (iFGF23), C-terminal FGF23 (cFGF23), and inflammatory markers, were examined. Results Administration of CERA increased ERFE levels, decreased hepcidin levels, and stimulated iron usage for haematopoiesis, leading to an increase in reticulocytes (Ret) and haemoglobin (Hb). Simultaneous administration of SFO with CERA (CERA + SFO) significantly attenuated the responses of ERFE, Ret, and Hb compared with CERA alone. Although iFGF23 levels were not affected by either CERA or CERA + SFO, cFGF23 was significantly elevated from baseline after CERA. Since cFGF23 levels were not affected by CERA + SFO, cFGF23 levels after CERA + SFO were significantly lower than those after CERA alone. The ratio of iFGF23 to cFGF23 (i/cFGF23 ratio) was significantly higher after CERA + SFO than that after CERA alone. In addition, high-sensitivity C-reactive protein (hsCRP) levels were significantly higher after CERA + SFO than after CERA alone. Conclusion Administration of SFO suppressed haematopoietic responses induced by CERA. Elevation of i/cFGF23 ratio and hsCRP could account for the inhibitory effects of SFO on haematopoiesis. Trial registration This study was registered with the University Hospital Medical Information Network (ID UMIN000016552). Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02320-2.
Collapse
Affiliation(s)
- Takahide Iwasaki
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Akira Fujimori
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan.
| | - Takeshi Nakanishi
- Department of Internal Medicine (Nephrology), Sumiyoshigawa Hospital, 5-6-7 Konan-cho, Higashinada-ku, Kobe, 658-0084, Japan
| | - Shioko Okada
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan
| | - Nobuto Hanawa
- Department of Nephrology, Konan Medical Centre, 1-5-16 Kamokogahara, Higashinada-ku, Kobe, 658-0064, Japan
| | - Yukiko Hasuike
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Takahiro Kuragano
- Internal Medicine (Nephrology and Dialysis), Hyogo College of Medicine, Mukogawa-cho, Nishinomiya City, Hyogo, 663-8501, Japan
| |
Collapse
|
22
|
Finberg KE. Ironing out an approach to alleviate the hypoferremia of acute inflammation. Haematologica 2021; 106:326-328. [PMID: 33522782 PMCID: PMC7849331 DOI: 10.3324/haematol.2020.266627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/14/2022] Open
|
23
|
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Bryan B Ho
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Maxwell KD, Chuang J, Chaudhry M, Nie Y, Bai F, Sodhi K, Liu J, Shapiro JI. The potential role of Na-K-ATPase and its signaling in the development of anemia in chronic kidney disease. Am J Physiol Renal Physiol 2020; 320:F234-F242. [PMID: 33356956 DOI: 10.1152/ajprenal.00244.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most prominent diseases affecting our population today. According to the Factsheet published by Centers for Disease Control and Prevention (CDC), it effects approximately 15% of the total population in the United States in some way, shape, or form. Within the myriad of symptomatology associated with CKD, one of the most prevalent factors in terms of affecting quality of life is anemia. Anemia of CKD cannot be completely attributed to one mechanism or cause, but rather has a multifactorial origin in the pathophysiology of CKD. While briefly summarizing well-documented risk factors, this review, as a hypothesis, aims to explore the possible role of Na-K-ATPase and its signaling function [especially recent identified reactive oxygen species (ROS) amplification function] in the interwoven mechanisms of development of the anemia of CKD.
Collapse
Affiliation(s)
- Kyle D Maxwell
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Justin Chuang
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Muhammad Chaudhry
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Ying Nie
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Fang Bai
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Komal Sodhi
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia.,Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Liu
- Department of Biomsedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Joseph I Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
25
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|