1
|
Chihara D, Steiner RE, Nair R, Feng L, Ahmed S, Strati P, Malpica L, Griffith DP, Mathew SA, Montinez W, Masand G, Samaniego F, Rodriguez MA, Hagemeister FB, Fayad LE, Iyer SP, Nastoupil LJ, Neelapu SS, Flowers CR, Westin JR. Phase 2 trial of ibrutinib and nivolumab in patients with relapsed CNS lymphomas. Blood Adv 2025; 9:1485-1491. [PMID: 39908461 PMCID: PMC11985036 DOI: 10.1182/bloodadvances.2024014635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Treatment options are limited for both relapsed/refractory primary and secondary central nervous system (CNS) lymphoma and the prognosis remains poor. Previous studies have shown the activity of Bruton tyrosine kinase inhibitors and programmed death-1-targeted therapies in CNS lymphoma, and studies suggested potential synergy. Therefore, we conducted a phase 2 trial that combined ibrutinib with nivolumab for patients with relapsed/refractory CNS lymphoma. Patients received 560 mg oral ibrutinib daily with 240 mg IV nivolumab every 14 days (28 days per cycle). Patients who had partial or complete response after 6 cycles of treatment could continue therapy for up to 2 years unless progression or unacceptable toxicity occurred. A total of 18 patients were enrolled with a median age of 63 years (range, 43-88). The median number of previous lines of therapy was 2 (range, 1-4); 55% had refractory disease, 17% previously underwent stem cell transplant, and 11% previously underwent chimeric antigen receptor T-cell therapy. The best overall response rate was 78% and the best complete response rate was 50% (95% confidence interval, 26-74). The median progression-free survival and overall survival was 6.5 months and 21.0 months, respectively, and 3 patients continued to be in remission for >2 years. Treatment was generally well tolerated but 2 patients stopped treatment because of fatigue. Ibrutinib and nivolumab had reasonable safety and clinical activity in patients with refractory/relapsed CNS lymphoma and warrants further investigation. This trial was registered at www.ClinicalTrials.gov as #NCT03770416.
Collapse
Affiliation(s)
- Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raphael E. Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis Malpica
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donna P. Griffith
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shivon A. Mathew
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wirt Montinez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gita Masand
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria A. Rodriguez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis E. Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Raineri D, Mazzucca CB, Moia R, Bruna R, Kustrimovic N, Cappellano G, Bellan M, Perazzi M, Gaidano G, Chiocchetti A. Impairment of the T cell memory response in chronic lymphocytic leukemia patients after SARS-CoV-2 vaccination. Vaccine 2025; 48:126723. [PMID: 39827600 DOI: 10.1016/j.vaccine.2025.126723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
CLL patients face increased vulnerability to COVID-19 because of weakened immune systems from comorbidities and treatments. Therefore, the need for these patients of vaccination is of outermost importance. In our study we have evaluated T cell-mediated responses to COVID19 vaccines by performing the activation-induced markers (AIM) assay which allows to determine spike-specific CD4+ and CD8+ T cell responses. A CD4+ T cell memory response was registered in all healthy control (HC) (responders), while 28.60 % of CLL patients did not respond to the stimulation (non-responders). CD8+ T cell memory response was impaired in 61.90 % of CLL patients and in 33.33 % of HC. In addition, CLL responders showed a significant impairment of the magnitude of memory response in CD8 subset. Interestingly, impairment of the CD4+ AIM+ memory was associated to a more severe COVID-19 infection. Ibrutinib therapy had negative impact on IL-2 production by CD8+ cells, while the duration of the treatment positively affected the memory response. The majority of CLL patients don't respond well to vaccination, leaving clinicians in need of a reliable way to identify non-responders and assess the protection levels of those who do. Our findings suggest the AIM test as a promising method for screening and categorizing patients, potentially addressing this need.
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Riccardo Bruna
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Mattia Bellan
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy; Department of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy; Department of Internal Medicine, Rheumatology Unit, "AOU Maggiore della Carità", Novara, Italy
| | - Mattia Perazzi
- Department of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy; Department of Internal Medicine, Rheumatology Unit, "AOU Maggiore della Carità", Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
3
|
Jiang Q, Peng Y, Herling CD, Herling M. The Immunomodulatory Mechanisms of BTK Inhibition in CLL and Beyond. Cancers (Basel) 2024; 16:3574. [PMID: 39518015 PMCID: PMC11545099 DOI: 10.3390/cancers16213574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a pivotal role in B cell biology and function. As an essential component of the B cell receptor (BCR) signaling pathway, BTK is expressed not only in B cells but also in myeloid cells, including monocytes/macrophages, dendritic cells, neutrophils, and mast cells. BTK inhibitors (BTKis) have revolutionized the treatment of chronic lymphocytic leukemia (CLL) and other B cell malignancies. Besides their well-characterized role in inhibiting BCR signaling, BTKis also exert significant immunological influences outside the tumor cell that extend their therapeutic potential and impact on the immune system in different ways. This work elucidates the immunomodulatory mechanisms associated with BTK inhibition, focusing on CLL and other clinical contexts. We discuss how BTK inhibition affects various immune cells, including B cells, T cells, and macrophages. The effects of BTKis on the profiles of cytokines, also fundamental parts of the tumor microenvironment (TME), are summarized here as well. This review also appraises the implications of these immunomodulatory actions in the management of autoimmune diseases and infections. Summarizing the dual role of BTK inhibition in modulating malignant lymphocyte and immune cell functions, this paper highlights the broader potential clinical use of compounds targeting BTK.
Collapse
Affiliation(s)
- Qu Jiang
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Yayi Peng
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Carmen Diana Herling
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Marco Herling
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
5
|
Lewis RI, Vom Stein AF, Hallek M. Targeting the tumor microenvironment for treating double-refractory chronic lymphocytic leukemia. Blood 2024; 144:601-614. [PMID: 38776510 DOI: 10.1182/blood.2023022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT The introduction of BTK inhibitors and BCL2 antagonists to the treatment of chronic lymphocytic leukemia (CLL) has revolutionized therapy and improved patient outcomes. These agents have replaced chemoimmunotherapy as standard of care. Despite this progress, a new group of patients is currently emerging, which has become refractory or intolerant to both classes of agents, creating an unmet medical need. Here, we propose that the targeted modulation of the tumor microenvironment provides new therapeutic options for this group of double-refractory patients. Furthermore, we outline a sequential strategy for tumor microenvironment-directed combination therapies in CLL that can be tested in clinical protocols.
Collapse
Affiliation(s)
- Richard I Lewis
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Alexander F Vom Stein
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| |
Collapse
|
6
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Taghiloo S, Asgarian-Omran H. Current Approaches of Immune Checkpoint Therapy in Chronic Lymphocytic Leukemia. Curr Treat Options Oncol 2023; 24:1408-1438. [PMID: 37561383 DOI: 10.1007/s11864-023-01129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Increasing understanding of the complex interaction between leukemic and immune cells, which is responsible for tumor progression and immune evasion, has paved the way for the development of novel immunotherapy approaches in chronic lymphocytic leukemia (CLL). One of the well-known immune escape mechanisms of tumor cells is the up-regulation of immune checkpoint molecules. In recent years, targeting immune checkpoint receptors is the most clinically effective immunotherapeutic strategy for cancer treatment. In this regard, various immune checkpoint blockade (ICB) drugs are currently been investigating for their potential effects on improving anti-tumor immune response and clinical efficacy in the hematological malignancies; however, their effectiveness in patients with CLL has shown less remarkable success, and ongoing research is focused on identifying strategies to enhance the efficacy of ICB in CLL.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Gastrointestinal Cancer Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Li L, Zhao M, Kiernan CH, Castro Eiro MD, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Mueller YM, Katsikis PD. Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK. Front Immunol 2023; 14:1201415. [PMID: 37771591 PMCID: PMC10523025 DOI: 10.3389/fimmu.2023.1201415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Cytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. Methods We used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression. Results We found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. Discussion Our study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Li
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H. Kiernan
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Merel E. P. Wilmsen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dwin G. B. Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Harmen J. G. van de Werken
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus Medical Center (MC) Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Reddi RN, Rogel A, Gabizon R, Rawale DG, Harish B, Marom S, Tivon B, Arbel YS, Gurwicz N, Oren R, David K, Liu J, Duberstein S, Itkin M, Malitsky S, Barr H, Katz BZ, Herishanu Y, Shachar I, Shulman Z, London N. Sulfamate Acetamides as Self-Immolative Electrophiles for Covalent Ligand-Directed Release Chemistry. J Am Chem Soc 2023; 145:3346-3360. [PMID: 36738297 PMCID: PMC9936582 DOI: 10.1021/jacs.2c08853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/05/2023]
Abstract
Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.
Collapse
Affiliation(s)
- Rambabu N. Reddi
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Rogel
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Gabizon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dattatraya Gautam Rawale
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Battu Harish
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shir Marom
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barr Tivon
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yamit Shorer Arbel
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Neta Gurwicz
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Roni Oren
- Department
of Veterinary Resources, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Keren David
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jingjing Liu
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Shirly Duberstein
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Life Sciences
Core Facilities, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Haim Barr
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Katz
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Yair Herishanu
- Sackler
Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Department
of Hematology, Tel Aviv Sourasky Medical
Center, Tel Aviv 6423906, Israel
| | - Idit Shachar
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Dept.
of Systems Immunology, The Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Nir London
- Dept.
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Feng L, Gao X, Jiao Z, Wang Z, Min F. BTK inhibitor combined with anti-PD-1 monoclonal antibody for the treatment of CD20-negative primary central nervous system lymphoma: A case report. Oncol Lett 2022; 25:48. [PMID: 36644138 PMCID: PMC9811622 DOI: 10.3892/ol.2022.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
CD20-negative diffuse large B-cell lymphoma (DLBCL) is a rare type of lymphoproliferative disorder characterized by a high degree of aggressiveness, a tendency for extranodal invasion and chemotherapeutic resistance. CD20-negative DLBCL originating from the nervous system is rarer. In primary central nervous system lymphoma (PCNSL), >90% of cases are histologically classified as DLBCL. The present study reports the case of a 65-year-old female with CD20-negative PCNSL, whose primary clinical symptom was a persistent headache. Serum tests for human immunodeficiency virus, Epstein-Barr virus-DNA, human herpesvirus 8, hepatitis B and hepatitis C were negative. Cranial magnetic resonance imaging suggested multiple intracranial occupancies. The neoplastic cells were found to be positive for CD19, CD79α, Bcl-2 (~92%) and c-Myc (~50%), while showing negative results for CD20, CD138, programmed cell death protein 1 (PD-1) and programmed cell death receptor 1 ligand 1 (PD-L1). The Ki-67 proliferation index was >80%. In the tumor microenvironment, <10% of the tumor-associated macrophages expressed PD-L1. The number of PD-1-positive tumor-infiltrating lymphocytes was 30-40 cells according to high-power field microscopy. The patient's disease progressed during methotrexate-based treatment, leading to a change in the treatment regimen to the Bruton tyrosine kinase inhibitor, zanubrutinib, combined with the anti-PD-1 monoclonal antibody tislelizumab. After two courses of the combined treatment, the patient achieved complete remission (CR) and continued to receive consolidation treatment. In the 20 months of follow-up since CR was achieved, the patient's general condition was good and the disease was in continuous remission. The present case report and literature review show that a combination of drugs targeting different mechanisms may be used to treat PCNSL to prolong patient survival time. The mechanism of the enhanced efficacy of a combination of the two drugs may be related to the enhancement of antitumor T-cell immune responses and reversal of T-cell immune metabolic dysfunctions by the inhibition of glycolysis.
Collapse
Affiliation(s)
- Lan Feng
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaohui Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zhiyun Jiao
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zheng Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Fenglin Min
- Department of Hematology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu 225012, P.R. China,Correspondence to: Dr Fenglin Min, Department of Hematology, Yangzhou Hospital of Traditional Chinese Medicine, 575 Wengchang Middle Road, Hanjiang, Yangzhou, Jiangsu 225012, P.R. China, E-mail:
| |
Collapse
|
12
|
Liu Y, Song Y, Yin Q. Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia. Front Immunol 2022; 13:962552. [PMID: 36059445 PMCID: PMC9437578 DOI: 10.3389/fimmu.2022.962552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.
Collapse
|
13
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
14
|
CLL-Derived Extracellular Vesicles Impair T-Cell Activation and Foster T-Cell Exhaustion via Multiple Immunological Checkpoints. Cells 2022; 11:cells11142176. [PMID: 35883619 PMCID: PMC9320608 DOI: 10.3390/cells11142176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell–T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.
Collapse
|
15
|
Jebaraj BMC, Müller A, Dheenadayalan RP, Endres S, Roessner PM, Seyfried F, Walliser C, Wist M, Qi J, Tausch E, Mertens D, Fox JA, Debatin KM, Meyer LH, Taverna P, Seiffert M, Gierschik P, Stilgenbauer S. Evaluation of vecabrutinib as a model for noncovalent BTK/ITK inhibition for treatment of chronic lymphocytic leukemia. Blood 2022; 139:859-875. [PMID: 34662393 DOI: 10.1182/blood.2021011516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
Covalent Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop as the result of a mutation in cysteine 481 of BTK (C481S), which prevents irreversible binding of the drugs. In the present study we performed preclinical characterization of vecabrutinib, a next-generation noncovalent BTK inhibitor that has ITK-inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wild-type BTK. In the murine Eμ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, whereas the naive populations were increased. Of importance, vecabrutinib treatment significantly reduced the frequency of regulatory CD4+ T cells in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on the activation and proliferation of isolated T cells. Lastly, combination treatment with vecabrutinib and venetoclax augmented treatment efficacy, significantly improved survival, and led to favorable reprogramming of the microenvironment in the murine Eμ-TCL1 model. Thus, noncovalent BTK/ITK inhibitors, such as vecabrutinib, may be efficacious in C481S BTK mutant CLL while preserving the T-cell immunomodulatory function of ibrutinib.
Collapse
Affiliation(s)
- Billy Michael Chelliah Jebaraj
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Annika Müller
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | | | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | - Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | - Jialei Qi
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Eugen Tausch
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
| | - Daniel Mertens
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
- Cooperation Unit "Mechanisms of Leukemogenesis", German Cancer Research Center, Heidelberg, Germany
| | - Judith A Fox
- Sunesis Pharmaceuticals, Inc., South San Francisco, CA; and
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Pietro Taverna
- Sunesis Pharmaceuticals, Inc., South San Francisco, CA; and
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, Ulm University Medical Center, Ulm, Germany
- Comprehensive Cancer Center Ulm, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Interleukin-10 receptor signaling promotes the maintenance of a PD-1 int TCF-1 + CD8 + T cell population that sustains anti-tumor immunity. Immunity 2021; 54:2825-2841.e10. [PMID: 34879221 DOI: 10.1016/j.immuni.2021.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
T cell exhaustion limits anti-tumor immunity and responses to immunotherapy. Here, we explored the microenvironmental signals regulating T cell exhaustion using a model of chronic lymphocytic leukemia (CLL). Single-cell analyses identified a subset of PD-1hi, functionally impaired CD8+ T cells that accumulated in secondary lymphoid organs during disease progression and a functionally competent PD-1int subset. Frequencies of PD-1int TCF-1+ CD8+ T cells decreased upon Il10rb or Stat3 deletion, leading to accumulation of PD-1hi cells and accelerated tumor progression. Mechanistically, inhibition of IL-10R signaling altered chromatin accessibility and disrupted cooperativity between the transcription factors NFAT and AP-1, promoting a distinct NFAT-associated program. Low IL10 expression or loss of IL-10R-STAT3 signaling correlated with increased frequencies of exhausted CD8+ T cells and poor survival in CLL and in breast cancer patients. Thus, balance between PD-1hi, exhausted CD8+ T cells and functional PD-1int TCF-1+ CD8+ T cells is regulated by cell-intrinsic IL-10R signaling, with implications for immunotherapy.
Collapse
|
17
|
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton's tyrosine kinase in the immune system and disease. Immunology 2021; 164:722-736. [PMID: 34534359 PMCID: PMC8561098 DOI: 10.1111/imm.13416] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B-cell biology and function, highlighted by its position as a critical component of the B-cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BTK has been elucidated to be a driving factor not only in lymphoproliferative disorders but also in autoimmune diseases and response to infection. To extort this role, BTK inhibitors such as ibrutinib have been developed to target BTK in other diseases. However, due to rising levels of resistance, the urgency to develop new inhibitors with alternative modes of targeting BTK is high. To meet this demand, an expanding list of BTK inhibitors is currently being trialled. In this review, we synopsize recent discoveries regarding BTK and its role within different immune cells and pathways. Additionally, we discuss the broad significance and relevance of BTK for various diseases ranging from haematology and rheumatology to the COVID-19 pandemic. Overall, BTK signalling and its targetable nature have emerged as immensely important for a wide range of clinical applications. The development of novel, more specific and less toxic BTK inhibitors could be revolutionary for a significant number of diseases with yet unmet treatment needs.
Collapse
Affiliation(s)
- Charlotte McDonald
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Charalampos Xanthopoulos
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Efterpi Kostareli
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
18
|
Ibrutinib protects T cells in patients with CLL from proliferation-induced senescence. J Transl Med 2021; 19:473. [PMID: 34809665 PMCID: PMC8609739 DOI: 10.1186/s12967-021-03136-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023] Open
Abstract
Background The development of Bruton’s tyrosine kinase inhibitors (BTKi) for the treatment of chronic lymphocytic leukaemia (CLL) has provided a highly effective and relatively non-toxic alternative to conventional chemotherapy. Some studies have shown that BTKi can also lead to improvements in T cell immunity in patients despite in vitro analyses suggesting an immunosuppressive effect of BTKi on T cell function. Methods In this study, we examined both the in vitro effect and long-term in vivo effect of two clinically available BTKi, ibrutinib and zanubrutinib. Additional in vitro assessments were undertaken for a third BTKi, acalabrutinib. Immune subset phenotyping, cytokine secretion, T cell degranulation and proliferation assays were performed on peripheral blood mononuclear cells isolated from untreated CLL patients, and CLL patients on long-term (> 12 months) BTKi treatment. Results Similar to prior studies we observed that long-term BTKi treatment normalises lymphocyte subset frequency and reduces PD-1 expression on T cells. We also observed that T cells from patients taken prior to BTKi therapy showed an abnormal hyper-proliferation pattern typical of senescent T cells, which was normalised by long-term BTKi treatment. Furthermore, BTKi therapy resulted in reduced expression of the T cell exhaustion markers PD-1, TIM3 and LAG3 in late generations of T cells undergoing proliferation. Conclusions Collectively, these findings indicate that there are critical differences between the in vitro effects of BTKi on T cell function and the effects derived from long-term BTKi exposure in vivo. Overall long-term exposure to BTKi, and particularly ibrutinib, resulted in improved T cell fitness in part due to suppressing the abnormal hyper-proliferation of CLL T cells and the associated development of T cell senescence. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03136-2.
Collapse
|
19
|
Combined ibrutinib and venetoclax treatment vs single agents in the TCL1 mouse model for chronic lymphocytic leukemia. Blood Adv 2021; 5:5410-5414. [PMID: 34555843 PMCID: PMC9153000 DOI: 10.1182/bloodadvances.2021004861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The covalent inhibitor of Bruton's tyrosine kinase ibrutinib and the specific Bcl-2 inhibitor venetoclax are both highly efficacious single agent drugs in the treatment of chronic lymphocytic leukemia (CLL). Based on their complementary modes of action, ibrutinib and venetoclax are hypothesized to act in synergistic fashion. Currently, it is unclear whether combined treatment is indeed superior to continuous single agent treatment, and what mechanisms could underlie resistance to combination treatment. In addition, effects of such treatment on the skewed T cell compartment characteristic for CLL are as yet unknown. In the murine Eµ-TCL1 adoptive transfer model, resembling aggressive CLL, we found that combined treatment resulted in deepest responses with longest duration due to a combination of decreased proliferation and increased induction of apoptosis. In addition, alterations in T cell subsets were most prominent upon combination treatment with increased naïve cells and reduced effector memory cells. Remarkably, effects of single agents but also combination treatment were eventually interrupted by relapse, and we found downregulation of BIM expression as a plausible cause of acquired drug resistance. Nevertheless, in this murine model, combination of venetoclax and ibrutinib has increased efficacy over single agents accompanied by a restoration of the T cell compartment.
Collapse
|
20
|
Svanberg R, Janum S, Patten PEM, Ramsay AG, Niemann CU. Targeting the tumor microenvironment in chronic lymphocytic leukemia. Haematologica 2021; 106:2312-2324. [PMID: 33882636 PMCID: PMC8409023 DOI: 10.3324/haematol.2020.268037] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development, growth, and survival of the malignant B-cell clone in chronic lymphocytic leukemia (CLL). Within the proliferation niches of lymph nodes, bone marrow, and secondary lymphoid organs, a variety of phenotypically and functionally altered cell types, including T cells, natural killer cells, monocytes/macrophages, endothelial and mesenchymal stroma cells, provide crucial survival signals, along with CLL-cellinduced suppression of antitumor immune responses. The B-cell receptor pathway plays a pivotal role in mediating the interaction between CLL cells and the TME. However, an increasing number of additional components of the multifactorial TME are being discovered. Although the majority of therapeutic strategies employed in CLL hitherto have focused on targeting the leukemic cells, emerging evidence implies that modulation of microenvironmental cells and CLL-TME interactions by novel therapeutic agents significantly affect their clinical efficacy. Thus, improving our understanding of CLL-TME interactions and how they are affected by current therapeutic agents may improve and guide treatment strategies. Identification of novel TME interactions may also pave the road for the development of novel therapeutic strategies targeting the TME. In this review, we summarize current evidence on the effects of therapeutic agents on cells and interactions within the TME. With a growing demand for improved and personalized treatment options in CLL, this review aims at inspiring future exploration of smart drug combination strategies, translational studies, and novel therapeutic targets in clinical trials.
Collapse
Affiliation(s)
| | - Sine Janum
- Department of Clinical Haemato-oncology, Bartholomew's Hospital, Barts Health Trust, London
| | - Piers E M Patten
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | | |
Collapse
|
21
|
Rezazadeh H, Astaneh M, Tehrani M, Hossein-Nataj H, Zaboli E, Shekarriz R, Asgarian-Omran H. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8 + T cells in early clinical stages of chronic lymphocytic leukemia. Immunol Res 2021; 68:269-279. [PMID: 32710227 DOI: 10.1007/s12026-020-09146-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blocking antibodies targeting immune checkpoint molecules achieved invaluable success in tumor therapy and amazing clinical responses in a variety of cancers. Although common treatment protocols have improved overall survival in patients with chronic lymphocytic leukemia (CLL), they continue to relapse and progress. In the present in vitro study, the application of anti-PD-1 and anti-TIM-3 blocking antibodies was studied to restore the function of exhausted CD8+ T cells in CLL. CD8+ T cells were isolated from peripheral blood of 20 patients with CLL, treated with blocking antibodies, and cocultured with mitomycin-frozen non-CD8+ T cell fraction as target cells. Cultures were stimulated with anti-CD3/CD28 antibodies to assess the proliferation of CD8+ T cells by MTT and stimulated with PMA/ionomycin to measure the levels of CD107a expression and cytokine production by flow cytometry and ELISA, respectively. Our results showed that the blockade of PD-1 and TIM-3 does not improve the proliferation of CD8+ T cells in CLL patients. No significant difference was found between control and blocked groups in terms of degranulation properties and production of IFN-γ, TNF-α, IL-2, and IL-10 by CD8+ T cells. We observed that pre-treatment of CD8+ T cells with blocking antibodies in CLL patients at early clinical stages had no effects on restoring their functional properties. Further in vitro and in vivo complementary studies are required to more explore the utility of checkpoint inhibitors for CLL patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/immunology
- Cell Proliferation/drug effects
- Coculture Techniques
- Cytokines/metabolism
- Drug Screening Assays, Antitumor
- Female
- Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- Neoplasm Staging
- Primary Cell Culture
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Hadiseh Rezazadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Astaneh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hossein-Nataj
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ramin Shekarriz
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, Arseni L, Gaupel AC, Kilpert F, Krötschel M, Arnold SJ, Sellner L, Colomer D, Stilgenbauer S, Dietrich S, Lichter P, Izcue A, Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:2311-2324. [PMID: 33526861 PMCID: PMC8324479 DOI: 10.1038/s41375-021-01136-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interferon-gamma
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Prognosis
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Llaó Cid
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Cellzome, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology Research Unit (URBC)-Namur Research Institute of Life Science (Narilis), University of Namur, Namur, Belgium
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Kilpert
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Essen University Hospital, Institute of Human Genetics, Genome Informatics, Essen, Germany
| | - Marit Krötschel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BioMed X Institute, Heidelberg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Leopold Sellner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Vlachonikola E, Stamatopoulos K, Chatzidimitriou A. T Cell Defects and Immunotherapy in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:3255. [PMID: 34209724 PMCID: PMC8268526 DOI: 10.3390/cancers13133255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/31/2022] Open
Abstract
In the past few years, independent studies have highlighted the relevance of the tumor microenvironment (TME) in cancer, revealing a great variety of TME-related predictive markers, as well as identifying novel therapeutic targets in the TME. Cancer immunotherapy targets different components of the immune system and the TME at large in order to reinforce effector mechanisms or relieve inhibitory and suppressive signaling. Currently, it constitutes a clinically validated treatment for many cancers, including chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes with great dependency on microenvironmental signals. Although immunotherapy represents a promising therapeutic option with encouraging results in CLL, the dysfunctional T cell compartment remains a major obstacle in such approaches. In the scope of this review, we outline the current immunotherapeutic treatment options in CLL in the light of recent immunogenetic and functional evidence of T cell impairment. We also highlight possible approaches for overcoming T cell defects and invigorating potent anti-tumor immune responses that would enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Genetics and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anastasia Chatzidimitriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece; (E.V.); (K.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
24
|
van Bruggen JAC, Martens AWJ, Tonino SH, Kater AP. Overcoming the Hurdles of Autologous T-Cell-Based Therapies in B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2020; 12:cancers12123837. [PMID: 33353234 PMCID: PMC7765898 DOI: 10.3390/cancers12123837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary The activity of novel therapies that utilize patient’s own T-cells to induce remission of B-cell non-Hodgkin lymphoma (B-NHL), including chronic lymphocytic leukemia (CLL), is still suboptimal. In this review, we summarize the clinical efficacy of T-cell-based therapies in B-NHL and provide a biologic rationale for the observed (lack of) responses. We describe and compare the acquired T-cell dysfunctions that occur in the different subtypes of B-NHL. Furthermore, we discuss new insights that could enhance the efficacy of T-cell-based therapies for B-NHL and CLL. Abstract The next frontier towards a cure for B-cell non-Hodgkin lymphomas (B-NHL) is autologous cellular immunotherapy such as immune checkpoint blockade (ICB), bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T-cells. While highly successful in various solid malignancies and in aggressive B-cell leukemia, this clinical success is often not matched in B-NHL. T-cell subset skewing, exhaustion, expansion of regulatory T-cell subsets, or other yet to be defined mechanisms may underlie the lack of efficacy of these treatment modalities. In this review, a systematic overview of results from clinical trials is given and is accompanied by reported data on T-cell dysfunction. From these results, we distill the underlying pathways that might be responsible for the observed differences in clinical responses towards autologous T-cell-based cellular immunotherapy modalities between diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). By integration of the clinical and biological findings, we postulate strategies that might enhance the efficacy of autologous-based cellular immunotherapy for the treatment of B-NHL.
Collapse
Affiliation(s)
- Jaco A. C. van Bruggen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Anne W. J. Martens
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Sanne H. Tonino
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Hematology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.A.C.v.B.); (A.W.J.M.); (S.H.T.)
- Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Maharaj K, Powers JJ, Mediavilla-Varela M, Achille A, Gamal W, Quayle S, Jones SS, Sahakian E, Pinilla-Ibarz J. HDAC6 Inhibition Alleviates CLL-Induced T-Cell Dysfunction and Enhances Immune Checkpoint Blockade Efficacy in the Eμ-TCL1 Model. Front Immunol 2020; 11:590072. [PMID: 33329575 PMCID: PMC7719839 DOI: 10.3389/fimmu.2020.590072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Cancer Biology PhD Program, University of South Florida & H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alex Achille
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Simon S Jones
- Regenacy Pharmaceuticals, Inc., Waltham, MA, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
26
|
Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, Coscia M. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:594556. [PMID: 33312177 PMCID: PMC7708380 DOI: 10.3389/fimmu.2020.594556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a wide range of tumor-induced alterations, which affect both the innate and adaptive arms of the immune response, and accumulate during disease progression. In recent years, the development of targeted therapies, such as the B-cell receptor signaling inhibitors and the Bcl-2 protein inhibitor venetoclax, has dramatically changed the treatment landscape of CLL. Despite their remarkable anti-tumor activity, targeted agents have some limitations, which include the development of drug resistance mechanisms and the inferior efficacy observed in high-risk patients. Therefore, additional treatments are necessary to obtain deeper responses and overcome drug resistance. Allogeneic hematopoietic stem cell transplantation (HSCT), which exploits immune-mediated graft-versus-leukemia effect to eradicate tumor cells, currently represents the only potentially curative therapeutic option for CLL patients. However, due to its potential toxicities, HSCT can be offered only to a restricted number of younger and fit patients. The growing understanding of the complex interplay between tumor cells and the immune system, which is responsible for immune escape mechanisms and tumor progression, has paved the way for the development of novel immune-based strategies. Despite promising preclinical observations, results from pilot clinical studies exploring the safety and efficacy of novel immune-based therapies have been sometimes suboptimal in terms of long-term tumor control. Therefore, further advances to improve their efficacy are needed. In this context, possible approaches include an earlier timing of immunotherapy within the treatment sequencing, as well as the possibility to improve the efficacy of immunotherapeutic agents by administering them in combination with other anti-tumor drugs. In this review, we will provide a comprehensive overview of main immune defects affecting patients with CLL, also describing the complex networks leading to immune evasion and tumor progression. From the therapeutic standpoint, we will go through the evolution of immune-based therapeutic approaches over time, including i) agents with broad immunomodulatory effects, such as immunomodulatory drugs, ii) currently approved and next-generation monoclonal antibodies, and iii) immunotherapeutic strategies aiming at activating or administering immune effector cells specifically targeting leukemic cells (e.g. bi-or tri-specific antibodies, tumor vaccines, chimeric antigen receptor T cells, and checkpoint inhibitors).
Collapse
Affiliation(s)
- Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Salvetti
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elia Boccellato
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mario Boccadoro
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
27
|
Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia 2020; 34:2012-2024. [PMID: 32457353 PMCID: PMC8318881 DOI: 10.1038/s41375-020-0873-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy, which is associated with profound alterations and defects in the immune system and a prevalent dependency on the microenvironmental niche. An abnormal T-cell compartment in the blood of CLL patients was already reported 40 years ago. Since then, our knowledge of T-cell characteristics in CLL has grown steadily, but the question of whether T-cells act as pro-tumoral bystander cells or possess anti-tumoral activity is still under debate. Increased numbers of CD4+ T-helper cell subsets are present in the blood of CLL patients, and T-helper cell cytokines have been shown to stimulate CLL cell survival and proliferation in vitro. In line with this, survival and growth of CLL cells in murine xenograft models have been shown to rely on activated CD4+ T-cells. This led to the hypothesis that T-cells are tumor-supportive in CLL. In recent years, evidence for an enrichment of antigen-experienced CD8+ T-cells in CLL has accumulated, and these cells have been shown to control leukemia in a CLL mouse model. Based on this, it was suggested that CD8+ T-cells recognize CLL-specific antigens and exert an anti-leukemia function. As described for other cancer entities, T-cells in CLL express multiple inhibitory receptors, such as PD-1, and lose their functional capacity, leading to an exhaustion phenotype which has been shown to be more severe in T-cells from secondary lymphoid organs compared with peripheral blood. This exhausted phenotype has been suggested to be causative for the poor response of CLL patients to CAR T-cell therapies. In addition, T-cells have been shown to be affected by drugs that are used to treat CLL, which likely impacts therapy response. This review provides an overview of the current knowledge about alterations of T-cells in CLL, including their distribution, function, and exhaustion state in blood and lymphoid organs, and touches also on the topic of how CLL drugs impact on the T-cell compartment and recent results of T-cell-based immunotherapy. We will discuss potential pathological roles of T-cell subsets in CLL and address the question of whether they foster progression or control of disease.
Collapse
Affiliation(s)
- Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|