1
|
Paoletti N, Supuran CT. Benzothiazole derivatives in the design of antitumor agents. Arch Pharm (Weinheim) 2024; 357:e2400259. [PMID: 38873921 DOI: 10.1002/ardp.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.
Collapse
Affiliation(s)
- Niccolò Paoletti
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
2
|
Camerini E, Amsen D, Kater AP, Peters FS. The complexities of T-cell dysfunction in chronic lymphocytic leukemia. Semin Hematol 2024; 61:163-171. [PMID: 38782635 DOI: 10.1053/j.seminhematol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.
Collapse
Affiliation(s)
- Elena Camerini
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Landsteiner Laboratory for Blood Cell Research at Sanquin, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Smith AL, Skupa SA, Eiken AP, Reznicek TE, Schmitz E, Williams N, Moore DY, D’Angelo CR, Kallam A, Lunning MA, Bociek RG, Vose JM, Mohamed E, Mahr AR, Denton PW, Powell B, Bollag G, Rowley MJ, El-Gamal D. BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia. JCI Insight 2024; 9:e177054. [PMID: 38775157 PMCID: PMC11141939 DOI: 10.1172/jci.insight.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nolan Williams
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Avyakta Kallam
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Matthew A. Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - R. Gregory Bociek
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julie M. Vose
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Eslam Mohamed
- College of Medicine and College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Ben Powell
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| |
Collapse
|
4
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, Li W, Yang B, Ding L. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B 2024; 14:1951-1964. [PMID: 38799637 PMCID: PMC11119508 DOI: 10.1016/j.apsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024] Open
Abstract
Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.
Collapse
Affiliation(s)
- Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| |
Collapse
|
5
|
Fernandez Botana I, Gonder S, Klapp V, Moussay E, Paggetti J. Eμ-TCL1 adoptive transfer mouse model of chronic lymphocytic leukemia. Methods Cell Biol 2024; 188:109-129. [PMID: 38880520 DOI: 10.1016/bs.mcb.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eμ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eμ-TCL1 model, employing the adoptive transfer of Eμ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eμ-TCL1 model in their research.
Collapse
Affiliation(s)
- Iria Fernandez Botana
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
6
|
Gyau BB, Deaglio S. A 2A receptor signaling drives cisplatin-mediated hippocampal neurotoxicity and cognitive defects in mice. Purinergic Signal 2023; 19:591-593. [PMID: 36639514 PMCID: PMC10754773 DOI: 10.1007/s11302-023-09919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Affiliation(s)
- Benjamin B Gyau
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, 10126, Turin, Italy.
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| |
Collapse
|
7
|
Mohammadian Gol T, Kim M, Sinn R, Ureña-Bailén G, Stegmeyer S, Gratz PG, Zahedipour F, Roig-Merino A, Antony JS, Mezger M. CRISPR-Cas9-Based Gene Knockout of Immune Checkpoints in Expanded NK Cells. Int J Mol Sci 2023; 24:16065. [PMID: 38003255 PMCID: PMC10671270 DOI: 10.3390/ijms242216065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Miso Kim
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Ralph Sinn
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Guillermo Ureña-Bailén
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Sarah Stegmeyer
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Paul Gerhard Gratz
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Fatemeh Zahedipour
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | | | - Justin S. Antony
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Markus Mezger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| |
Collapse
|
8
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
9
|
Wang L, Zhang W, Zhang J, Zheng M, Pan X, Guo H, Ding L. Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:567-577. [PMID: 37916308 PMCID: PMC10630057 DOI: 10.3724/zdxbyxb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Tumors in which the microenvironment is characterized by lack of immune cell infiltration are referred as "cold tumors" and typically exhibit low responsiveness to immune therapy. Targeting the factors contributing to "cold tumors" formation and converting them into "hot tumors" is a novel strategy for improving the efficacy of immunotherapy. Adenosine, a hydrolysis product of ATP, accumulates with a significantly higher concentration in the tumor microenvironments compared with normal tissue and exerts inhibitory effects on tumor-specific adaptive immunity. Tumor cells, dendritic cells, macrophages, and T cells express abundant adenosine receptors on their surfaces. The binding of adenosine to these receptors initiates downstream signaling pathways that suppress tumor antigen presentation and immune cell activation, consequently dampening adaptive immune responses against tumors. Adenosine down-regulates the expression of major histocompatibility complex Ⅱ and co-stimulatory factors on dendritic cells and macrophages, thereby inhibiting antigen presentation to T cells. Adenosine also inhibits ligand-receptor binding and transmembrane signaling on T cells, concomitantly suppressing the secretion of anti-tumor cytokines and impairing T cell activation. Furthermore, adenosine hinders effector T cell trafficking to tumor sites and infiltration by inhibiting chemokine secretion and KCa3.1 channels. Additionally, adenosine promotes the secretion of immunosuppressive cytokines, increases immune checkpoint protein expression, and enhances the activity of immunosuppressive cells, collectively curbing cytotoxic T cell-mediated tumor cell killing. Given the immunosuppressive role of adenosine in adaptive antitumor immunity, several inhibitors targeting adenosine generation or adenosine receptor blockade are currently in preclinical or clinical development with the aim of enhancing the effectiveness of immunotherapies. This review provides an overview of the inhibitory effects of adenosine on adaptive antitumor immunity, elucidate the molecular mechanisms involved, and summarizes the latest advances in application of adenosine inhibition strategies for antitumor immunotherapy.
Collapse
Affiliation(s)
- Longsheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wenxin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
11
|
Jia W, Huang Z, Zhou L, Liou YC, Di Virgilio F, Ulrich H, Illes P, Zhang W, Huang C, Tang Y. Purinergic signalling in cancer therapeutic resistance: From mechanisms to targeting strategies. Drug Resist Updat 2023; 70:100988. [PMID: 37413937 DOI: 10.1016/j.drup.2023.100988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Purinergic signalling, consisting of extracellular purines and purinergic receptors, modulates cell proliferation, invasion and immunological reaction during cancer progression. Here, we focus on current evidence that suggests the crucial role of purinergic signalling in mediating cancer therapeutic resistance, the major obstacle in cancer treatment. Mechanistically, purinergic signalling can modulate the tumor microenvironment (TME), epithelial-mesenchymal transition (EMT) and anti-tumor immunity, thus affecting drug sensitivity of tumor cells. Currently, some agents attempting to target purinergic signalling either in tumor cells or in tumor-associated immune cells are under preclinical or clinical investigation. Moreover, nano-based delivery technologies significantly improve the efficacy of agents targeting purinergic signalling. In this review article, we summarize the mechanisms of purinergic signalling in promoting cancer therapeutic resistance and discuss the potentials and challenges of targeting purinergic signalling in future cancer treatment.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117573, Singapore
| | | | - Henning Ulrich
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Institute of TCM-Based Stress Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
12
|
Brum da Silva Nunes V, Kehl Dias C, Nathali Scholl J, Nedel Sant'Ana A, de Fraga Dias A, Granero Farias M, Alegretti AP, Sosnoski M, Esteves Daudt L, Bohns Michalowski M, Oliveira Battastini AM, Paz AA, Figueiró F. Lymphocytes from B-acute lymphoblastic leukemia patients present differential regulation of the adenosinergic axis depending on risk stratification. Discov Oncol 2022; 13:143. [PMID: 36581667 PMCID: PMC9800668 DOI: 10.1007/s12672-022-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Although risk-stratified chemotherapy regimens improve B-cell acute lymphoblastic leukemia (B-ALL) clinical outcome, relapse occurs in a significant number of cases. The identification of new therapeutic targets as well as prognostic and diagnostic biomarkers can improve B-ALL patients' clinical outcomes. Purinergic signaling is an important pathway in cancer progression, however the expression of ectonucleotidases and their impact on immune cells in B-ALL lacks exploration. We aimed to analyze the expression of ectonucleotidases in B-ALL patients' lymphocyte subpopulations. METHODS Peripheral blood samples from 15 patients diagnosed with B-ALL were analyzed. Flow cytometry was used to analyze cellularity, expression level of CD38, CD39, and CD73, and frequency of [Formula: see text], and [Formula: see text] in lymphocyte subpopulations. Plasma was used for cytokines (by CBA kit) and adenine nucleosides/nucleotides detection (by HPLC). RESULTS Comparing B-ALL patients to health donors, we observed an increase of CD4 + and CD8 + T-cells. In addition, a decrease in CD38 expression in B and Treg subpopulations and an increase in CD39+ CD73+ frequency in Breg and CD8+ T-cells. Analyzing cytokines and adenine nucleosides/nucleotides, we found a decrease in TNF, IL-1β, and ADO concentrations, together with an increase in AMP in B-ALL patients' plasma. CONCLUSION As immunomodulators, the expression of ectonucleotidases might be associated with activation states, as well as the abundance of different cellular subsets. We observed a pro-tumor immunity expression profile in B-ALL patients at diagnosis, being associated with cell exhaustion and immune evasion in B-ALL.
Collapse
Affiliation(s)
- Vitória Brum da Silva Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Camila Kehl Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Juliete Nathali Scholl
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Alexia Nedel Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Amanda de Fraga Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Ana Paula Alegretti
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Monalisa Sosnoski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Liane Esteves Daudt
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Mariana Bohns Michalowski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
13
|
Allard D, Chrobak P, Bareche Y, Allard B, Tessier P, Bergeron MA, Johnson NA, Stagg J. CD73 Promotes Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14133130. [PMID: 35804900 PMCID: PMC9264813 DOI: 10.3390/cancers14133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Many patients with chronic lymphocytic leukemia (CLL) still fail current therapies. CD73 is a novel therapeutic target for solid tumors, but its role in CLL remains unclear. The aim of our study was to investigate the therapeutic potential of targeting CD73 in CLL. Using genetically engineered mice, our study reports a pro-leukemic role for CD73 in an autochthonous mouse model of CLL. Furthermore, we observed an association between PD-L1 expression on CLL cells and adenosine signaling according to sex. Our findings provide a rationale for targeting CD73 in CLL in combination with anti-PD-1/PD-L1 immunotherapies and suggest that sex may contribute to responses to adenosine-targeting agents. Abstract The ecto-nucleotidase CD73 is an important immune checkpoint in tumor immunity that cooperates with CD39 to hydrolyze pro-inflammatory extracellular ATP into immunosuppressive adenosine. While the role of CD73 in immune evasion of solid cancers is well established, its role in leukemia remains unclear. To investigate the role of CD73 in the pathogenesis of chronic lymphocytic leukemia (CLL), Eµ-TCL1 transgenic mice that spontaneously develop CLL were crossed with CD73−/− mice. Disease progression in peripheral blood and spleen, and CLL markers were evaluated by flow cytometry and survival was compared to CD73-proficient Eµ-TCL1 transgenic mice. We observed that CD73 deficiency significantly delayed CLL progression and prolonged survival in Eµ-TCL1 transgenic mice, and was associated with increased accumulation of IFN-γ+ T cells and effector-memory CD8+ T cells. Neutralizing IFN-γ abrogated the survival advantage of CD73-deficient Eµ-TCL1 mice. Intriguingly, the beneficial effects of CD73 deletion were restricted to male mice. In females, CD73 deficiency was uniquely associated with the upregulation of CD39 in normal lymphocytes and sustained high PD-L1 expression on CLL cells. In vitro studies revealed that adenosine signaling via the A2a receptor enhanced PD-L1 expression on Eµ-TCL1-derived CLL cells, and a genomic analysis of human CLL samples found that PD-L1 correlated with adenosine signaling. Our study, thus, identified CD73 as a pro-leukemic immune checkpoint in CLL and uncovered a previously unknown sex bias for the CD73-adenosine pathway.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Priscilla Tessier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marjorie A. Bergeron
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie A. Johnson
- Department of Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada;
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
14
|
Ferrari D, Gessi S, Merighi S, Nigro M, Travagli A, Burns JS. Potentiating Cancer Immune Therapy via Nanomaterials and Purinergic Signaling. Front Cell Dev Biol 2022; 10:893709. [PMID: 35602602 PMCID: PMC9114640 DOI: 10.3389/fcell.2022.893709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
16
|
Peters FS, Strefford JC, Eldering E, Kater AP. T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica 2021; 106:1234-1243. [PMID: 33691381 PMCID: PMC8586819 DOI: 10.3324/haematol.2020.267914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular immunotherapeutic approaches such as chimeric antigen receptor (CAR) T-cell therapy in chronic lymphocytic leukemia (CLL) thus far have not met the high expectations. Therefore it is essential to better understand the molecular mechanisms of CLLinduced T-cell dysfunction. Even though a significant number of studies are available on T-cell function and dysfunction in CLL patients, none examine dysfunction at the epigenomic level. In non-malignant T-cell research, epigenomics is widely employed to define the differentiation pathway into T-cell exhaustion. Additionally, metabolic restrictions in the tumor microenvironment that cause T-cell dysfunction are often mediated by epigenetic changes. With this review paper we argue that understanding the epigenetic (dys)regulation in T cells of CLL patients should be leveled to the knowledge we currently have of the neoplastic B cells themselves. This will permit a complete understanding of how these immune cell interactions regulate T- and B-cell function. Here we relate the cellular and phenotypic characteristics of CLL-induced T-cell dysfunction to epigenetic studies of T-cell regulation emerging from chronic viral infection and tumor models. This paper proposes a framework for future studies into the epigenetic regulation of CLL-induced Tcell dysfunction, knowledge that will help to guide improvements in the utility of autologous T-cell based therapies in CLL.
Collapse
Affiliation(s)
- Fleur S Peters
- Experimental Immunology; Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and.
| | - Jonathan C Strefford
- Departments of Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eric Eldering
- Experimental Immunology; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands
| | - Arnon P Kater
- Departments of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Cancer Center Amsterdam, Amsterdam, the Netherlands; Departments of Amsterdam Institute of Infection and Immunity, Amsterdam, the Netherlands; Departments of Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, the Netherlands and
| |
Collapse
|