1
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
3
|
Kim JY, Kim JY, Kim JH, Jung H, Lee WT, Lee JE. Restorative Mechanism of Neural Progenitor Cells Overexpressing Arginine Decarboxylase Genes Following Ischemic Injury. Exp Neurobiol 2019; 28:85-103. [PMID: 30853827 PMCID: PMC6401554 DOI: 10.5607/en.2019.28.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) following ischemic stroke is a promising potential therapeutic strategy, but lacks efficacy for human central nervous system (CNS) therapeutics. In a previous in vitro study, we reported that the overexpression of human arginine decarboxylase (ADC) genes by a retroviral plasmid vector promoted the neuronal differentiation of mouse NPCs. In the present study, we focused on the cellular mechanism underlying cell proliferation and differentiation following ischemic injury, and the therapeutic feasibility of NPCs overexpressing ADC genes (ADC-NPCs) following ischemic stroke. To mimic cerebral ischemia in vitro , we subjected the NPCs to oxygen-glucose deprivation (OGD). The overexpressing ADC-NPCs were differentiated by neural lineage, which was related to excessive intracellular calcium-mediated cell cycle arrest and phosphorylation in the ERK1/2, CREB, and STAT1 signaling cascade following ischemic injury. Moreover, the ADC-NPCs were able to resist mitochondrial membrane potential collapse in the increasingly excessive intracellular calcium environment. Subsequently, transplanted ADC-NPCs suppressed infarct volume, and promoted neural differentiation, synapse formation, and motor behavior performance in an in vivo tMCAO rat model. The results suggest that ADC-NPCs are potentially useful for cell replacement therapy following ischemic stroke.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
4
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
5
|
Barua S, Kim JY, Lee JE. Role of Agmatine on Neuroglia in Central Nervous System Injury. BRAIN & NEUROREHABILITATION 2019. [DOI: 10.12786/bn.2019.12.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Bhatti FU, Mehmood A, Latief N, Zahra S, Cho H, Khan SN, Riazuddin S. Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis. Osteoarthritis Cartilage 2017; 25:321-331. [PMID: 27693502 DOI: 10.1016/j.joca.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Oxidative stress is a major obstacle against cartilage repair in osteoarthritis (OA). Anti-oxidant agents can play a vital role in addressing this issue. We evaluated the effect of Vitamin E preconditioning in improving the potential of mesenchymal stem cells (MSCs) to confer resistance against oxidative stress prevailing during OA. METHODS Vitamin E pretreated MSCs were exposed to oxidative stress in vitro by hydrogen peroxide (H2O2) and also implanted in surgically-induced rat model of OA. Analysis was done in terms of cell proliferation, apoptosis, cytotoxicity, chondrogenesis and repair of cartilage tissue. RESULTS Vitamin E pretreatment enabled MSCs to counteract H2O2-induced oxidative stress in vitro. Proliferative markers, proliferating cell nuclear antigen (PCNA) and Ki67 were up-regulated, along with the increase in the viability of MSCs. Expression of transforming growth factor-beta (TGFβ) was also increased. Reduction of apoptosis, expression of vascular endothelial growth factor (VEGF) and caspase 3 (Casp3) genes, and lactate dehydrogenase (LDH) release were also observed. Transplantation of Vitamin E pretreated MSCs resulted in increased proteoglycan contents of cartilage matrix. Increased expression of chondrogenic markers, Aggrecan (Acan) and collagen type-II alpha (Col2a1) accompanied by decreased expression of collagen type-I alpha (Col1a1) resulted in increased differentiation index that signifies the formation of hyaline cartilage. Further, there was an increased expression of PCNA and TGFβ genes along with a decreased expression of Casp3 and VEGF genes with increased histological score. CONCLUSION Taken together results of this study demonstrated that Vitamin E pretreated MSCs have an improved ability to impede the progression of OA and thus increased potential to treat OA.
Collapse
Affiliation(s)
- F U Bhatti
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA.
| | - A Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - N Latief
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Zahra
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - H Cho
- University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA; Veterans Affairs Medical Center, Memphis, TN, USA.
| | - S N Khan
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.
| | - S Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
7
|
Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells Int 2016; 2016:4956063. [PMID: 27242906 PMCID: PMC4868914 DOI: 10.1155/2016/4956063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies.
Collapse
|
8
|
GU YAJUN, LI TAO, DING YANLING, SUN LINGXIAN, TU TAO, ZHU WEI, HU JIABO, SUN XIAOCHUN. Changes in mesenchymal stem cells following long-term culture in vitro. Mol Med Rep 2016; 13:5207-15. [DOI: 10.3892/mmr.2016.5169] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
|
9
|
Sun X, Song W, Liu L. Enzymatic production of agmatine by recombinant arginine decarboxylase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Wang J, Zhao YM, Zhang B, Guo CY. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells. Indian J Pharm Sci 2015; 77:163-9. [PMID: 26009648 PMCID: PMC4442464 DOI: 10.4103/0250-474x.156553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 10/30/2014] [Accepted: 03/15/2015] [Indexed: 11/04/2022] Open
Abstract
Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration.
Collapse
Affiliation(s)
- J. Wang
- Department of Pharmacy, HeBei North University, Zhangjiakou, 075000, China
| | - Y. M. Zhao
- Department of Pharmacy, HeBei North University, Zhangjiakou, 075000, China
| | - B. Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of HeBei North University, Zhangjiakou, 075000, China
| | - C. Y. Guo
- Department of Pharmacy, HeBei North University, Zhangjiakou, 075000, China
| |
Collapse
|
11
|
Park YM, Han SH, Seo SK, Park KA, Lee WT, Lee JE. Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury. Cytotherapy 2015; 17:25-37. [DOI: 10.1016/j.jcyt.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
|
12
|
Hong S, Son MR, Yun K, Lee WT, Park KA, Lee JE. Retroviral expression of human arginine decarboxylase reduces oxidative stress injury in mouse cortical astrocytes. BMC Neurosci 2014; 15:99. [PMID: 25156824 PMCID: PMC4150973 DOI: 10.1186/1471-2202-15-99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In physiologic and pathologic conditions of the central nervous system (CNS), astrocytes are a double-edged sword. They not only support neuronal homeostasis but also contribute to increases in neuronal demise. A large body of experimental evidence has shown that impaired astrocytes play crucial roles in the pathologic process of cerebral ischemia; therefore, astrocytes may represent a breakthrough target for neuroprotective therapeutic strategies. Agmatine, an endogenous polyamine catalyzed from L-arginine by arginine decarboxylase (ADC), is a neuromodulator and it protects neurons/glia against various injuries. RESULTS In this investigation, agmatine-producing mouse cortical astrocytes were developed through transduction of the human ADC gene. Cells were exposed to oxygen-glucose deprivation (OGD) and restored to a normoxic glucose-supplied condition. Intracellular levels of agmatine were measured by high performance liquid chromatography. Cell viability was evaluated by Hoechest/propidium iodide nuclear staining and lactate dehydrogenase assay. Expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase s (MMPs) were assessed by a reverse transcription polymerase chain reaction, Western immunoblots, and immunofluorescence. We confirmed that ADC gene-expressed astrocytes produce a great amount of agmatine. These cells were highly resistant to not only OGD but also restoration, which mimicked ischemia-reperfusion injury in vivo. The neuroprotective effects of ADC seemed to be related to its ability to attenuate expression of iNOS and MMPs. CONCLUSION Our findings imply that astrocytes can be reinforced against oxidative stress by endogenous agmatine production through ADC gene transduction. The results of this study provide new insights that may lead to novel therapeutic approaches to reduce cerebral ischemic injuries.
Collapse
Affiliation(s)
- Samin Hong
- />Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Son
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Kyungeun Yun
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Won Taek Lee
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Kyung Ah Park
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jong Eun Lee
- />Brain Korea 21 Project for Medical Science, and Brain Research Institute, Department of Anatomy, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
13
|
Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE. Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 2014; 55:689-699. [PMID: 24719136 PMCID: PMC3990080 DOI: 10.3349/ymj.2014.55.3.689] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. MATERIALS AND METHODS We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 μL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. RESULTS Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. CONCLUSION Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Eun Hur
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Wonsuk Yang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jin Cho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Min Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|