1
|
Benedicenti O, Dahle MK, Makvandi-Nejad S, Andresen AMS, Moldal T, Sindre H, Fosse JH. The Atlantic salmon gill transcriptional response to natural infection with HPR0-ISAV (Isavirus salaris) in three Norwegian smolt farms. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110096. [PMID: 39724996 DOI: 10.1016/j.fsi.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus that causes large economic losses in Atlantic salmon (Salmo salar L.) aquaculture. All virulent ISAV variants originally emerged from a non-virulent subtype, ISAV-HPR0. Transient ISAV-HPR0 infections are common in both freshwater and marine environments. ISAV-HPR0 infects juveniles, marine salmon at on-growing sites, and broodstock salmon. The shift in virulence from ISAV-HPR0 to the virulent HPRΔ is suggested to be a stochastic event that depends on the virus's replication frequency. Therefore, reducing the capacity to maintain ISAV-HPR0 infection within individual farms may limit the risk of emerging pathogenic ISAV variants and ISA disease. The absence of infection-related clinical signs and the lack of experimental models limit our understanding of ISAV-HPR0-host interactions. We characterise the host transcriptional response to natural ISAV-HPR0 infection, using Atlantic salmon gill tissues collected on three Norwegian smolt farms. The comparison of all infected (qPCR-positive) and non-infected (qPCR-negative) individuals revealed a classic antiviral response in the gills of ISAV-HPR0 infected fish in a site-independent transcriptomic analysis. Complementary analyses showed that the response to infection varied considerably between sites. Site-specific differences could be associated with a range of factors that are challenging to control in field studies, such as fish size, the stage of infection, and the presence of additional microorganisms. Our findings enhance our understanding of how Atlantic salmon respond to ISAV-HPR0 infection, pinpointing common HPR0-induced antiviral response genes. Future studies should investigate whether these candidate genes limit virus replication in the gill for risk of novel transitions to virulence.
Collapse
Affiliation(s)
| | - Maria K Dahle
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | | | | - Torfinn Moldal
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | - Hilde Sindre
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | |
Collapse
|
2
|
Madhun AS, Karlsbakk E, Skaala Ø, Solberg MF, Wennevik V, Harvey A, Meier S, Fjeldheim PT, Andersen KC, Glover KA. Most of the escaped farmed salmon entering a river during a 5-year period were infected with one or more viruses. JOURNAL OF FISH DISEASES 2024; 47:e13950. [PMID: 38555528 DOI: 10.1111/jfd.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Disease interactions between farmed and wild populations have been poorly documented for most aquaculture species, in part due to the complexities to study this. Here, we tested 567 farmed Atlantic salmon escapees, captured in a Norwegian river during 2014-2018, for five viral infections that are prevalent in global salmonid aquaculture. Over 90% of the escapees were infected with one or more viruses. Overall prevalences were: 75.7% for piscine orthoreovirus (PRV-1), 43.6% for salmonid alphavirus (SAV), 31.2% for piscine myocarditis virus (PMCV), 1.2% for infectious pancreatic necrosis virus (IPNV) and 0.4% for salmon anaemia virus (ISAV). A significantly higher prevalence of PMCV infection was observed in immature compared to mature individuals. The prevalence of both SAV and PMCV infections was higher in fish determined by fatty acid profiling to be 'recent' as opposed to 'early' escapees that had been in the wild for a longer period of time. This is the first study to establish a time-series of viral infection status of escapees entering a river with a native salmon population. Our results demonstrate that farmed escapees represent a continuous source of infectious agents which could potentially be transmitted to wild fish populations.
Collapse
Affiliation(s)
| | - Egil Karlsbakk
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Petersen PE, Dahl MM, Vest NMO, Jansen MD, Fosse JH, Falk K, Christiansen DH. Validation of a TaqMan one-step real-time RT-PCR assay targeting ISAV segment 7 spliced mRNA. J Virol Methods 2023; 321:114791. [PMID: 37562733 DOI: 10.1016/j.jviromet.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Infectious salmon anaemia virus (ISAV) can cause severe systemic infection in Atlantic salmon (Salmo salar L.), and a timely diagnosis is critical. Conventional real-time reverse transcription PCR (RT-qPCR) assays target unspliced RNA from either ISAV segment 7 or 8 and provide data on viral load. Here, we evaluate a TaqMan one-step RT-qPCR assay that detects explicitly a spliced messenger RNA (mRNA) of ISAV segment 7, thus providing evidence of active viral transcription. Assay performance was comparable with existing unspliced segment 7 and segment 8 assays. PCR efficiency as evaluated from dilutions of a synthetic DNA fragment was 98 % (R2 = 1.00). The assay also performed well on clinical heart samples with PCR efficiency of 108 % (R2 = 1.00). Finally, evaluation on kidney samples from experimental infection revealed higher levels of active transcription for high-virulent compared to low-virulent ISAV. At early, peak, and late infection, mean ratios of spliced to unspliced segment 7 RNA were 3.0 % (± 0.7), 1.7 % (± 0.3), and 1.5 % (± 0.1) for the low virulent and 9.4 % (± 2.2), 4.7 % (± 0.8), and 6.2 % (± 0.1) for the high virulent isolate, respectively. By detection and quantification of active ISAV transcription, this assay may provide a more detailed understanding of ISAV infection dynamics.
Collapse
Affiliation(s)
- Petra Elisabeth Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands.
| | - Maria Marjunardóttir Dahl
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Nicolina Maria Ovadóttir Vest
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Mona Dverdal Jansen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Johanna Hol Fosse
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Debes Hammershaimb Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| |
Collapse
|
4
|
Aunsmo A, Martinsen L, Bruheim T, Sekkelsten-Kindt MM, Sandtrø A, Gaasø S, Braaen S, Rimstad E. Triploid Atlantic salmon (Salmo salar) may have increased risk of primary field outbreaks of infectious salmon anaemia. JOURNAL OF FISH DISEASES 2022; 45:1733-1743. [PMID: 35914108 PMCID: PMC9805046 DOI: 10.1111/jfd.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The impact that escaped farmed fish may have on wild populations is of major concern for Atlantic salmon (Salmo salar) farming. Triploid fish, being infertile, were originally introduced to mitigate the genetic impact of escaped fish. In the recent years, an increase in the number of infectious salmon anaemia (ISA) outbreaks in Norway has been observed, mainly in the northern parts, which is also where farming of triploid fish has been licensed. The present study investigated the susceptibility of triploid Atlantic salmon to ISA both by field observations and experimental infections. Based on field observations, we found an increased susceptibility, with 9.4 increased odds to primary ISA outbreaks in triploid fish versus diploid fish at production-site level, and a tendency of increased odds (3.4) of ISA in triploid fish at individual cage level at sited with primary outbreaks. At some sites, ISA outbreaks were only diagnosed in cages with triploid fish and not in cages with diploid fish. Primary ISA outbreaks are the source for further spread of the disease, and it is noteworthy that in an experimental trial we found significantly more viral RNA in non-ISA-vaccinated triploid than in non-ISA-vaccinated diploid fish at the peak of the infection. Interestingly, the notable differences of susceptibility to ISA for non-ISA vaccinated diploid and triploid fish observed in field were not repeated experimentally. The possible increased risk of ISA should be considered when evaluating the costs and benefits of triploid salmon in farming. It is recommended to keep triploid and diploid fish in biosecure separated sites, or that triploid fish are not farmed at all.
Collapse
Affiliation(s)
- Arnfinn Aunsmo
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Laxar Fiskeldi, Reykjavik, Iceland
| | | | | | | | - Ane Sandtrø
- PHARMAQ, Skogmo Industriområde, Overhalla, Norway
| | | | - Stine Braaen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Romero JF, Gardner IA, Hammell L, Groman D, Whelan D, O'Brien N, Hawkins LJ, Burnley H, Thakur K. Descriptive epidemiology of variants of infectious salmon anaemia virus in four Atlantic salmon farms in Newfoundland and Labrador, Canada. JOURNAL OF FISH DISEASES 2022; 45:919-930. [PMID: 35397120 DOI: 10.1111/jfd.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
An incursion of infectious salmon anaemia virus (ISAV) was detected in 2020 in southern Newfoundland, Canada. This resulted in an outbreak affecting four marine farms stocking Atlantic salmon (Salmo salar L.) vaccinated against ISAV. This study provides the first description of epidemiologic characteristics of an ISAV outbreak in 2020 and 2021, and detected ISAV variants at the population level. Fish kidneys were screened for ISAV by real-time RT-PCR and non-negative samples were submitted for genotyping and further diagnostic testing. Nine distinct ISAV variants were identified: five European and three North American (NA) HPRΔ ISAV, and one NA-HPR0 ISAV variant. A notable finding was the concurrent detection of both an HPR0 and an HPRΔ ISAV variant in one individual fish. In two farms, both European and NA variants were simultaneously detected, while in the other two farms either NA or European variants were identified, but not both together. Generally, mortality increases followed rises in ISAV prevalence and cycle threshold values on RT-PCR decreased with time. Epidemiologic descriptions of ISAV outbreaks in Atlantic Canada contributes to the understanding of local disease dynamics and identification of changes thereof. Such insights are essential for the strengthening of disease management plans.
Collapse
Affiliation(s)
- João F Romero
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ian A Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Larry Hammell
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - David Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Daryl Whelan
- Department of Fisheries, Forestry and Agriculture, Aquatic Animal Health Division, St. John's, Newfoundland and Labrador, Canada
| | - Nicole O'Brien
- Department of Fisheries, Forestry and Agriculture, Aquatic Animal Health Division, St. John's, Newfoundland and Labrador, Canada
| | | | - Holly Burnley
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Krishna Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
6
|
Christiansen DH, Petersen PE, Dahl MM, Vest N, Aamelfot M, Kristoffersen AB, Jansen MD, Matejusova I, Gallagher MD, Jónsson G, Rodriguez E, Fosse JH, Falk K. No Evidence of the Vertical Transmission of Non-Virulent Infectious Salmon Anaemia Virus (ISAV-HPR0) in Farmed Atlantic Salmon. Viruses 2021; 13:v13122428. [PMID: 34960697 PMCID: PMC8708482 DOI: 10.3390/v13122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
The nonvirulent infectious salmon anaemia virus (ISAV-HPR0) is the putative progenitor for virulent-ISAV, and a potential risk factor for the development of infectious salmon anaemia (ISA). Understanding the transmission dynamics of ISAV-HPR0 is fundamental to proper management and mitigation strategies. Here, we demonstrate that ISAV-HPR0 causes prevalent and transient infections in all three production stages of Atlantic salmon in the Faroe Islands. Phylogenetic analysis of the haemagglutinin-esterase gene from 247 salmon showed a clear geographical structuring into two significantly distinct HPR0-subgroups, which were designated G2 and G4. Whereas G2 and G4 co-circulated in marine farms, Faroese broodfish were predominantly infected by G2, and smolt were predominantly infected by G4. This infection pattern was confirmed by our G2- and G4-specific RT-qPCR assays. Moreover, the HPR0 variants detected in Icelandic and Norwegian broodfish were never detected in the Faroe Islands, despite the extensive import of ova from both countries. Accordingly, the vertical transmission of HPR0 from broodfish to progeny is uncommon. Phylogenetic and statistical analysis suggest that HPR0 persists in the smolt farms as “house-strains”, and that new HPR0 variants are occasionally introduced from the marine environment, probably by HPR0-contaminated sea-spray. Thus, high biosecurity—including water and air intake—is required to avoid the introduction of pathogens to the smolt farms.
Collapse
Affiliation(s)
- Debes Hammershaimb Christiansen
- National Reference Laboratory for Fish and Animal Diseases, Faroese Food and Veterinary Authority, 110 Torshavn, Faroe Islands; (P.E.P.); (M.M.D.); (N.V.)
- Correspondence:
| | - Petra Elisabeth Petersen
- National Reference Laboratory for Fish and Animal Diseases, Faroese Food and Veterinary Authority, 110 Torshavn, Faroe Islands; (P.E.P.); (M.M.D.); (N.V.)
| | - Maria Marjunardóttir Dahl
- National Reference Laboratory for Fish and Animal Diseases, Faroese Food and Veterinary Authority, 110 Torshavn, Faroe Islands; (P.E.P.); (M.M.D.); (N.V.)
| | - Nicolina Vest
- National Reference Laboratory for Fish and Animal Diseases, Faroese Food and Veterinary Authority, 110 Torshavn, Faroe Islands; (P.E.P.); (M.M.D.); (N.V.)
| | - Maria Aamelfot
- Norwegian Veterinary Institute, 0454 Oslo, Norway; (M.A.); (A.B.K.); (M.D.J.); (J.H.F.); (K.F.)
| | | | - Mona Dverdal Jansen
- Norwegian Veterinary Institute, 0454 Oslo, Norway; (M.A.); (A.B.K.); (M.D.J.); (J.H.F.); (K.F.)
| | - Iveta Matejusova
- Marine Scotland Science, Marine Laboratory, Aberdeen AB11 9DB, UK;
| | - Michael D. Gallagher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Gísli Jónsson
- Icelandic Food and Veterinary Authority, 220 Hafnarfjordur, Iceland;
| | | | - Johanna Hol Fosse
- Norwegian Veterinary Institute, 0454 Oslo, Norway; (M.A.); (A.B.K.); (M.D.J.); (J.H.F.); (K.F.)
| | - Knut Falk
- Norwegian Veterinary Institute, 0454 Oslo, Norway; (M.A.); (A.B.K.); (M.D.J.); (J.H.F.); (K.F.)
| |
Collapse
|
7
|
Aldrin M, Huseby RB, Bang Jensen B, Jansen MD. Evaluating effects of different control strategies for Infectious Salmon Anaemia (ISA) in marine salmonid farming by scenario simulation using a disease transmission model. Prev Vet Med 2021; 191:105360. [PMID: 33989910 DOI: 10.1016/j.prevetmed.2021.105360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Infectious salmon anaemia (ISA) is an important viral disease causing economic losses and reduced welfare in farmed Atlantic salmon. Here, we present a spatio-temporal stochastic model for the spread of ISA between and within marine aquaculture farms. The model is estimated on historical production data for all marine salmonid farms in Norway from 2004 to February 2019. In this time 142 outbreaks of ISA occurred. We find that transmission from infected neighbouring farms accounts for around 50% of the infections, whereas transmission from "non-specified sources" accounts for around 40%. We hypothesise that the most important of the latter are viruses mutating from the non-virulent ISAV HPR0 to the virulent ISAV HPRdel. The model is used for scenario simulation, or what-if analysis, to investigate the effects of potential strategies to combat ISA, including screening, vaccination and culling. Changing from the current strategy of culling farms with detected ISA-outbreaks to mandatory screening and culling when virus is detected will reduce the fraction of cohorts with a clinical ISA outbreak from 3.8 to 0.36%. Introducing mandatory vaccination would have approximately the same effect as the current stamping-out strategy. The scenario simulation is a useful tool for deciding on appropriate mitigation measures.
Collapse
Affiliation(s)
- M Aldrin
- Norwegian Computing Center, P.O.Box 114 Blindern, N-0314 Oslo, Norway
| | - R B Huseby
- Norwegian Computing Center, P.O.Box 114 Blindern, N-0314 Oslo, Norway
| | - B Bang Jensen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway.
| | - M D Jansen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
8
|
Ojeda N, Cárdenas C, Marshall S. Interaction of the Amino-Terminal Domain of the ISAV Fusion Protein with a Cognate Cell Receptor. Pathogens 2020; 9:pathogens9060416. [PMID: 32471165 PMCID: PMC7350309 DOI: 10.3390/pathogens9060416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
The infectious salmon anemia virus (ISAV), etiological agent of the disease by the same name, causes major losses to the salmon industry. Classified as a member of the Orthomyxoviridae family, ISAV is characterized by the presence of two surface glycoproteins termed hemagglutinin esterase (HE) and fusion protein (F), both of them directly involved in the initial interaction of the virus with the target cell. HE mediates receptor binding and destruction, while F promotes the fusion process of the viral and cell membranes. The carboxy-terminal end of F (F2) possesses canonical structural characteristics of a type I fusion protein, while no functional properties have been proposed for the amino-terminal (F1) region. In this report, based on in silico modeling, we propose a tertiary structure for the F1 region, which resembles a sialic acid binding domain. Furthermore, using recombinant forms of both HE and F proteins and an in vitro model system, we demonstrate the interaction of F with a cell receptor, the hydrolysis of this receptor by the HE esterase, and a crucial role for F1 in the fusion mechanism. Our interpretation is that binding of F to its cell receptor is fundamental for membrane fusion and that the esterase in HE modulates this interaction.
Collapse
|
9
|
Rimstad E, Markussen T. Infectious salmon anaemia virus-molecular biology and pathogenesis of the infection. J Appl Microbiol 2020; 129:85-97. [PMID: 31885186 DOI: 10.1111/jam.14567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Aquaculture has a long history in many parts of the world, but it is still young at an industrial scale. Marine fish farming in open nets of a single fish species at high densities compared to their wild compatriots opens a plethora of possible infections. Infectious salmon anaemia (ISA) is an example of disease that surfaced after large-scale farming of Atlantic salmon (Salmo salar) appeared. Here, a review of the molecular biology of the ISA virus (ISAV) with emphasis on its pathogenicity is presented. The avirulent HPR0 variant of ISAV has resisted propagation in cell cultures, which has restricted the ability to perform in vivo experiments with this variant. The transition from avirulent HPR0 to virulent HPRΔ has not been methodically studied under controlled experimental conditions, and the triggers of the transition from avirulent to virulent forms have not been mapped. Genetic segment reassortment, recombination and mutations are important mechanisms in ISAV evolution, and for the development of virulence. In the 25 years since the ISAV was identified, large amounts of sequence data have been collected for epidemiologic and transmission studies, however, the lack of good experimental models for HPR0 make the risk evaluation of the presence of this avirulent, ubiquitous variant uncertain. This review summarizes the current knowledge related to molecular biology and pathogenicity of this important aquatic orthomyxovirus.
Collapse
Affiliation(s)
- E Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - T Markussen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
10
|
Madhun AS, Mæhle S, Wennevik V, Karlsbakk E. Prevalence and genotypes of infectious salmon anaemia virus (ISAV) in returning wild Atlantic salmon (Salmo salar L.) in northern Norway. JOURNAL OF FISH DISEASES 2019; 42:1217-1221. [PMID: 31192460 PMCID: PMC6851747 DOI: 10.1111/jfd.13021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Affiliation(s)
| | - Stig Mæhle
- Institute of Marine ResearchBergenNorway
| | | | - Egil Karlsbakk
- Institute of Marine ResearchBergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
11
|
Nylund A, Brattespe J, Plarre H, Kambestad M, Karlsen M. Wild and farmed salmon (Salmo salar) as reservoirs for infectious salmon anaemia virus, and the importance of horizontal- and vertical transmission. PLoS One 2019; 14:e0215478. [PMID: 30990853 PMCID: PMC6467415 DOI: 10.1371/journal.pone.0215478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
The infectious salmon anaemia virus (ISAV) is an important pathogen on farmed salmon in Europe. The virus occurs as low- and high virulent variants where the former seem to be a continuous source of new high virulent ISAV. The latter are controlled in Norway by stamping out infected populations while the former are spreading uncontrolled among farmed salmon. Evidence of vertical transmission has been presented, but there is still an ongoing discussion of the importance of circulation of ISAV via salmon brood fish. The only known wild reservoirs are in trout (Salmo trutta) and salmon (Salmo salar). This study provides the first ISAV sequences from wild salmonids in Norway and evaluates the importance of this reservoir with respect to outbreaks of ISA among farmed salmon. Phylogenetic analyses of the surface protein hemagglutinin-esterase gene from nearly all available ISAV from Norway, Faeroe Islands, Scotland, Chile and wild salmonids in Norway show that they group into four major clades. Including virulent variants in the analysis show that they belong in the same four clades supporting the hypothesis that there is a high frequency of transition from low to high virulent variants in farmed populations of salmon. There is little support for a hypothesis suggesting that the wild salmonids feed the virus into farmed populations. This study give support to earlier studies that have documented local horizontal transmission of high virulent ISAV, but the importance of transition from low- to high virulent variants has been underestimated. Evidence of vertical transmission and long distance spreading of ISAV via movement of embryos and smolt is presented. We recommend that the industry focus on removing the low virulent ISAV from the brood fish and that ISAV-free brood fish salmon are kept in closed containment systems (CCS).
Collapse
Affiliation(s)
- Are Nylund
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
- * E-mail:
| | - Jarle Brattespe
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | - Heidrun Plarre
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | - Martha Kambestad
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | | |
Collapse
|
12
|
Cárdenas C, Ojeda N, Labra Á, Marshall SH. Molecular features associated with the adaptive evolution of Infectious Salmon Anemia Virus (ISAV) in Chile. INFECTION GENETICS AND EVOLUTION 2018; 68:203-211. [PMID: 30592977 DOI: 10.1016/j.meegid.2018.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023]
Abstract
Infectious salmon anemia virus (ISAV) is an Orthomyxovirus challenging salmon production, with a particular impact in Chile. During 2007-2010 a devastating and of unexpected consequences epizootic event almost destroyed a blooming industry in the country. The event was caused by an aggressive variant with a distinctive deletion in Segment 6, one of the eight genomic segments of the virus. After the outburst, although the infective viral variant seemed to have disappeared, a non-infective variant, not previously reported, was discovered and is characterized by a complete, non-deleted coding segment 6, which has prevailed in the fish population until now. This variant, known as HPR0, appears to be the ancestor strain of ISAV from which novel infective variants are generated. Additional variations in segment 5 have also been associated with the virulence observed in the field, an analysis of the differences in these two protein coding segments has been performed. It appears to us that a combinatorial effect exists between the features displayed by segments 5 and 6 which modulate the intensity of viral outbursts. As a result, a theoretical integrative model is presented which explains the different degree of virulence observed in the field based only on molecular data, this could help estimating the intensity of damage a given variant might exert over a productive farm.
Collapse
Affiliation(s)
- Constanza Cárdenas
- Núcleo de Biotecnología Curauma Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Álvaro Labra
- Laboratorio de referencia ISAV - OIE- Sernapesca, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo de Biotecnología Curauma Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Laboratorio de referencia ISAV - OIE- Sernapesca, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
13
|
Lyngstad TM, Qviller L, Sindre H, Brun E, Kristoffersen AB. Risk Factors Associated With Outbreaks of Infectious Salmon Anemia (ISA) With Unknown Source of Infection in Norway. Front Vet Sci 2018; 5:308. [PMID: 30574509 PMCID: PMC6292176 DOI: 10.3389/fvets.2018.00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The occurrence of infectious salmon anemia (ISA) outbreaks in marine farmed Atlantic salmon constitutes a recurring challenge in Norway. Here, we aim to identify risk factors associated with ISA outbreaks with an unknown source of infection (referred to as primary ISA outbreaks). Primary ISA outbreaks are here defined by an earlier published transmission model. We explored a wide range of possible risk factors with logistic regression analysis, trying to explain occurrence of primary ISA with available data from all Norwegian farm sites from 2004 to June 2017. Explanatory variables included site latitude and a range of production and disease data. The mean annual risk of having a primary outbreak of ISA in Norway was 0.7% during this study period. We identified the occurrence of infectious pancreatic necrosis (IPN), having a stocking period longer than 2 months, having the site located at high latitude and high fish density (biomass per cage volume) in the first six months after transfer to sea site as significant risk factors (p < 0.05). We have identified factors related to management routines, other disease problems, and latitude that may help to understand the hitherto unidentified drivers behind the emergence of primary ISA outbreaks. Based on our findings, we also provide management advice that may reduce the incidence of primary ISA outbreaks.
Collapse
Affiliation(s)
| | | | | | - Edgar Brun
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|
14
|
Gagné N, LeBlanc F. Overview of infectious salmon anaemia virus (ISAV) in Atlantic Canada and first report of an ISAV North American-HPR0 subtype. JOURNAL OF FISH DISEASES 2018; 41:421-430. [PMID: 28782809 DOI: 10.1111/jfd.12670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The infectious salmon anaemia virus (ISAV) is an important viral disease of farmed Atlantic salmon that has caused considerable financial losses for salmon farmers around the world, including Atlantic Canada. It is listed as a notifiable disease by the World Organization for Animal Health, and to this day, culling of infected cages or farms remains the current practice in many countries to mitigate the spread of the virus. In Atlantic Canada, ISAV was first detected in 1996 and continues to be detected. While some outbreaks seemed to have arisen from isolated infections of unknown source, others were local clusters resulting from horizontal spread of infection. This study provides a description of the detected ISAV isolates in Atlantic Canada between 2012 and 2016, and explores the phylogenetic relatedness between these ISAV isolates. A key finding is the detection for the first time of a North American-HPR0 ISAV subtype, which was predicted to exist for many years. Through phylogenetic analysis, a scenario emerges with at least three separate incursions of ISAV in Atlantic Canada. An initial ISAV introduction follows a genotypic separation between North America and Europe which resulted in the NA and EU genotypes known today; this separation predates the salmon aquaculture industry. The second incursion of ISAV from Europe to North America led to a sublineage in Atlantic Canada consisting of EU-HPR∆ isolates detected in Nova Scotia and New Brunswick, and the predominant form of ISAV-HPR0 (EU). Finally, we observed what could be the third and most recent incursion of ISAV in Newfoundland, in the form of an isolate highly similar to ISAV EU-HPR0 isolates found in the Faroe Islands and the one isolate from Norway.
Collapse
Affiliation(s)
- N Gagné
- Fisheries and Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | - F LeBlanc
- Fisheries and Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| |
Collapse
|
15
|
Gustafson LL, Creekmore LH, Snekvik KR, Ferguson JA, Warg JV, Blair M, Meyers TR, Stewart B, Warheit KI, Kerwin J, Goodwin AE, Rhodes LD, Whaley JE, Purcell MK, Bentz C, Shasa D, Bader J, Winton JR. A systematic surveillance programme for infectious salmon anaemia virus supports its absence in the Pacific Northwest of the United States. JOURNAL OF FISH DISEASES 2018; 41:337-346. [PMID: 29159889 DOI: 10.1111/jfd.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States.
Collapse
Affiliation(s)
| | | | - K R Snekvik
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - J A Ferguson
- Fish Pathology Laboratory, Division of Commercial Fisheries, Alaska Department of Fish and Game, Anchorage, AK, USA
| | | | - M Blair
- USFWS Idaho Fish Health Center, Orofino, ID, USA
| | - T R Meyers
- Twin Lakes Fish Pathology Laboratory, Division of Commercial Fisheries, Alaska Department of Fish and Game, Juneau, AK, USA
| | - B Stewart
- Northwest Indian Fisheries Commission, Olympia, WA, USA
| | - K I Warheit
- Fish Program, Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - J Kerwin
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - A E Goodwin
- Pacific Region, U.S. Fish and Wildlife Service, Portland, OR, USA
| | - L D Rhodes
- National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | - J E Whaley
- National Marine Fisheries Service, NOAA, Silver Spring, MD, USA
| | - M K Purcell
- USGS Western Fisheries Research Center, Seattle, WA, USA
| | - C Bentz
- Fish Pathology Laboratory, Division of Commercial Fisheries, Alaska Department of Fish and Game, Anchorage, AK, USA
| | - D Shasa
- USDA, APHIS, VS, Fort Collins, CO, USA
| | - J Bader
- U.S. Fish and Wildlife Service Headquarters, Falls Church, VA, USA
| | - J R Winton
- USGS Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Bellec L, Louboutin L, Cabon J, Castric J, Cozien J, Thiéry R, Morin T. Molecular evolution and phylogeography of infectious hematopoietic necrosis virus with a focus on its presence in France over the last 30 years. J Gen Virol 2017; 98:2438-2446. [PMID: 28874229 DOI: 10.1099/jgv.0.000894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is among the most important pathogens affecting the salmonid industry. Here, we investigated the molecular evolution and circulation of isolates from 11 countries or regions all over the world, with a special focus on the epidemiological situation in France. The phylogeography, time to the most recent common ancestor (TMRCA) and nucleotide substitution rate were studied using 118 full-length glycoprotein gene sequences isolated from 9 countries (5 genogroups) over a period of 47 years. The TMRCA dates back to 1943, with the L genogroup identified as the likely root (67 %), which is consistent with the first report of this pathogen in the USA. A Bayesian inference approach was applied to the partial glycoprotein gene sequences of 88 representative strains isolated in France over the period 1987-2015. The genetic diversity of these 88 sequences showed mean nucleotide and amino-acid identities of 97.1 and 97.8 %, respectively, and a d N/d S ratio (non-synonymous to synonymous mutations) of 0.25, indicating purifying selection. The French viral populations are divided into eight sub-clades and four individual isolates, with a clear spatial differentiation, suggesting the predominant role of local reservoirs in contamination. The atypical 'signatures' of some isolates underlined the usefulness of molecular phylogeny for epidemiological investigations that track the spread of IHNV.
Collapse
Affiliation(s)
- Laure Bellec
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France.,IFREMER, Centre Brest, REM/EEP/LMEE, UMR6197, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Jeanne Castric
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cozien
- IFREMER, Laboratoire Santé Environnement et Microbiologie (PDG-RBE-SG2M-LSEM), Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Richard Thiéry
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Sophia Antipolis Laboratory, 06902 Sophia-Antipolis, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| |
Collapse
|
17
|
Christiansen DH, McBeath AJA, Aamelfot M, Matejusova I, Fourrier M, White P, Petersen PE, Falk K. First field evidence of the evolution from a non-virulent HPR0 to a virulent HPR-deleted infectious salmon anaemia virus. J Gen Virol 2017; 98:595-606. [PMID: 28475029 DOI: 10.1099/jgv.0.000741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The putatively non-virulent subtype of infectious salmon anaemia virus (ISAV), ISAV-HPR0, is proposed to act as a progenitor and reservoir for all virulent ISAVs and thus represent a potential risk factor for the emergence of infectious salmon anaemia (ISA) disease. Here, we provide the first evidence of genetic and functional evolution from an ISAV-HPR0 variant (FO/07/12) to a low-virulent ISAV virus (FO/121/14) in a Faroese Atlantic salmon marine farm. The FO/121/14 virus infection was not associated with specific clinical signs of ISA and was confined to a single net-pen, while various ISAV-HPR0 subtypes were found circulating in most epidemiologically linked marine and freshwater farms. Sequence analysis of all eight segments revealed that the FO/121/14 virus was identical, apart from a substitution in the fusion (F) gene (Q266L) and a deletion in the haemagglutinin-esterase (HE) gene, to the FO/07/12 variant from a freshwater farm, which supplied smolts exclusively to the FO/121/14-positive net-pen. An immersion challenge with the FO/121/14 virus induced a systemic infection in Atlantic salmon associated with a low mortality and mild clinical signs confirming its low pathogenicity. Our results demonstrate that mutations in the F protein and deletions in the highly polymorphic region (HPR) of the HE protein represent a minimum requirement for ISAV to gain virulence and to switch cell tropism from a localized epithelial infection to a systemic endotheliotropic infection. This documents that ISAV-HPR0 represents a reservoir and risk factor for the emergence of ISA disease.
Collapse
Affiliation(s)
- Debes H Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | | | | | | | | | - Patricia White
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland
| | - Petra E Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
18
|
Abbadi M, Fusaro A, Ceolin C, Casarotto C, Quartesan R, Dalla Pozza M, Cattoli G, Toffan A, Holmes EC, Panzarin V. Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy. Front Microbiol 2016; 7:1306. [PMID: 27602026 PMCID: PMC4994472 DOI: 10.3389/fmicb.2016.01306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022] Open
Abstract
Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n = 108) and IHNV (n = 89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10−4 nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control.
Collapse
Affiliation(s)
- Miriam Abbadi
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Alice Fusaro
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Chiara Ceolin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Claudia Casarotto
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Rosita Quartesan
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Manuela Dalla Pozza
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Giovanni Cattoli
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Anna Toffan
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| | - Edward C Holmes
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney Sydney, NSW, Australia
| | - Valentina Panzarin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie Padova, Italy
| |
Collapse
|
19
|
Chemical Synthesis and In Vitro Evaluation of a Phage Display-Derived Peptide Active against Infectious Salmon Anemia Virus. Appl Environ Microbiol 2016; 82:2563-2571. [PMID: 26896129 DOI: 10.1128/aem.00184-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Infectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significant in vitro antiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens. IMPORTANCE Identifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this pathogen has made prophylactic control extremely difficult. The identified antiviral peptide efficiently impairs ISAV infection in vitro by specifically blocking hemagglutinin-esterase, a pivotal surface protein of this virus. Peptide synthesis could further modify the primary structure of the identified peptide to improve specific activity and stability. The present results form the foundation for developing a new pharmacological treatment against ISAV.
Collapse
|
20
|
Localised Infection of Atlantic Salmon Epithelial Cells by HPR0 Infectious Salmon Anaemia Virus. PLoS One 2016; 11:e0151723. [PMID: 26999815 PMCID: PMC4801213 DOI: 10.1371/journal.pone.0151723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Infectious salmon anaemia (ISA) is an important, systemic viral disease of farmed Atlantic salmon, Salmo salar L. Endothelial cells are the main target cells for highly virulent HPR-deleted ISA virus (ISAV) types. Here we examine the pathogenesis of non-virulent ISAV HPR0 infections, presenting evidence of an epithelial tropism for this virus type, including actual infection and replication in the epithelial cells. Whereas all HPR0 RT-qPCR positive gills prepared for cryosection tested positive by immunohistochemistry (IHC) and immunofluorescent labelling, only 21% of HPR0 RT-qPCR positive formalin-fixed paraffin-embedded gills were IHC positive, suggesting different methodological sensitivities. Only specific epithelial cell staining was observed and no staining was observed in endothelial cells of positive gills. Furthermore, using an ISAV segment 7 RT-PCR assay, we demonstrated splicing of HPR0, suggesting initial activation of the replication machinery in the epithelial gill cells. Immunological responses were investigated by the expression of interferon-related genes (e.g. Mx and γIP) and by ELISA for presence of anti-ISAV antibodies on samples taken sequentially over several months during an episode of transient HPR0 infection. All fish revealed a variable, but increased expression of the immunological markers in comparison to normal healthy fish. Taken together, we conclude that HPR0 causes a localized epithelial infection of Atlantic salmon.
Collapse
|
21
|
Kibenge MJ, Iwamoto T, Wang Y, Morton A, Routledge R, Kibenge FS. Discovery of variant infectious salmon anaemia virus (ISAV) of European genotype in British Columbia, Canada. Virol J 2016; 13:3. [PMID: 26732772 PMCID: PMC4702313 DOI: 10.1186/s12985-015-0459-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022] Open
Abstract
Background Infectious salmon anaemia (ISA) virus (ISAV) belongs to the genus Isavirus, family Orthomyxoviridae. ISAV occurs in two basic genotypes, North American and European. The European genotype is more widespread and shows greater genetic variation and greater virulence variation than the North American genotype. To date, all of the ISAV isolates from the clinical disease, ISA, have had deletions in the highly polymorphic region (HPR) on ISAV segment 6 (ISAV-HPRΔ) relative to ISAV-HPR0, named numerically from ISAV-HPR1 to over ISAV-HPR30. ISA outbreaks have only been reported in farmed Atlantic salmon, although ISAV has been detected by RT-PCR in wild fish. It is recognized that asymptomatically ISAV-infected fish exist. There is no universally accepted ISAV RT-qPCR TaqMan® assay. Most diagnostic laboratories use the primer-probe set targeting a 104 bp-fragment on ISAV segment 8. Some laboratories and researchers have found a primer-probe set targeting ISAV segment 7 to be more sensitive. Other researchers have published different ISAV segment 8 primer-probe sets that are highly sensitive. Methods In this study, we tested 1,106 fish tissue samples collected from (i) market-bought farmed salmonids and (ii) wild salmon from throughout British Columbia (BC), Canada, for ISAV using real time RT-qPCR targeting segment 8 and/or conventional RT-PCR with segment 8 primers and segment 6 HPR primers, and by virus isolation attempts using Salmon head kidney (SHK-1 and ASK-2) cell line monolayers. The sequences from the conventional PCR products were compared by multiple alignment and phylogenetic analyses. Results Seventy-nine samples were “non-negative” with at least one of these tests in one or more replicates. The ISAV segment 6 HPR sequences from the PCR products matched ISAV variants, HPR5 on 29 samples, one sample had both HPR5 and HPR7b and one matched HPR0. All sequences were of European genotype. In addition, alignment of sequences of the conventional PCR product segment 8 showed they had a single nucleotide mutation in the region of the probe sequence and a 9-nucleotide overlap with the reverse primer sequence of the real time RT-qPCR assay. None of the classical ISAV segment 8 sequences in the GenBank have this mutation in the probe-binding site of the assay, suggesting the presence of a novel ISAV variant in BC. A phylogenetic tree of these sequences showed that some ISAV sequences diverted early from the classical European genotype sequences, while others have evolved separately. All virus isolation attempts on the samples were negative, and thus the samples were considered “negative” in terms of the threshold trigger set for Canadian federal regulatory action; i.e., successful virus isolation in cell culture. Conclusions This is the first published report of the detection of ISAV sequences in fish from British Columbia, Canada. The sequences detected, both of ISAV-HPRΔ and ISAV-HPR0 are of European genotype. These sequences are different from the classical ISAV segment 8 sequences, and this difference suggests the presence of a new ISAV variant of European genotype in BC. Our results further suggest that ISAV-HPRΔ strains can be present without clinical disease in farmed fish and without being detected by virus isolation using fish cell lines. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0459-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Molly Jt Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada.
| | - Tokinori Iwamoto
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada. .,Current address: Diagnostic Services Unit, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada.
| | - Yingwei Wang
- Department of Computer Science, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada.
| | - Alexandra Morton
- Raincoast Research Society, Box 399, 390 1st Street, Sointula, BC, V0N 3E0, Canada.
| | - Richard Routledge
- Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby, B.C., V5A 1S6, Canada.
| | - Frederick Sb Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada.
| |
Collapse
|
22
|
Garver KA, Johnson SC, Polinski MP, Bradshaw JC, Marty GD, Snyman HN, Morrison DB, Richard J. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation. PLoS One 2016; 11:e0146229. [PMID: 26730591 PMCID: PMC4701501 DOI: 10.1371/journal.pone.0146229] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America—a region now considered endemic for PRV but without manifestation of HSMI—in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.
Collapse
Affiliation(s)
- Kyle A. Garver
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada
- * E-mail:
| | - Stewart C. Johnson
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada
| | - Mark P. Polinski
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada
| | - Julia C. Bradshaw
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada
| | - Gary D. Marty
- Animal Health Centre, Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Heindrich N. Snyman
- Animal Health Centre, Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | | | - Jon Richard
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada
| |
Collapse
|
23
|
McBeath A, Aamelfot M, Christiansen DH, Matejusova I, Markussen T, Kaldhusdal M, Dale OB, Weli SC, Falk K. Immersion challenge with low and highly virulent infectious salmon anaemia virus reveals different pathogenesis in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2015; 38:3-15. [PMID: 24820820 DOI: 10.1111/jfd.12253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
The salmonid orthomyxovirus infectious salmon anaemia virus (ISAV) causes disease of varying severity in farmed Atlantic salmon, Salmo salar L. Field observations suggest that host factors, the environment and differences between ISAV strains attribute to the large variation in disease progression. Variation in host mortality and dissemination of ISAV isolates with high and low virulence (based on a previously published injection challenge) were investigated using immersion challenge. Virus dissemination was determined using real-time PCR and immunohistochemistry in several organs, including blood. Surprisingly, the low virulent virus (LVI) replicated and produced nucleoprotein at earlier time points post-infection compared to the virus of high virulence (HVI). This was particularly noticeable in the gills as indicated by different viral load profiles. However, the HVI reached a higher maximum viral load in all tested organs and full blood. This was associated with a higher mortality of 100% as compared to 20% in the LVI group by day 23 post-infection. Immersion challenge represented a more natural infection method and suggested that specific entry routes into the fish may be of key importance between ISAV strains. The results suggest that a difference in virulence is important for variations in virus dissemination and pathogenesis (disease development).
Collapse
Affiliation(s)
- A McBeath
- Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Policy, phylogeny, and the parasite. Trends Parasitol 2014; 30:274-81. [DOI: 10.1016/j.pt.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/20/2022]
|
25
|
Cárdenas C, Carmona M, Gallardo A, Labra A, Marshall SH. Coexistence in field samples of two variants of the infectious salmon anemia virus: a putative shift to pathogenicity. PLoS One 2014; 9:e87832. [PMID: 24498206 PMCID: PMC3907575 DOI: 10.1371/journal.pone.0087832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022] Open
Abstract
Genetic reassortment plays an important role in the evolution of several segmented RNA viruses and in the epidemiology of their associated diseases. In particular, orthomyxoviruses show rapid fluctuation in the proportion of viral variants coexisting in an infected individual, especially under strong selective pressure. This is particularly relevant in salmon production carried out under confined and stressful conditions where one of the most feared pathogenic agents is the Infectious Salmon Anemia Virus, an orthomyxovirus family member whose biological behavior is only recently beginning to be understood. Pathogenicity of the virus has been mainly associated with deletions of the HPR region in coding segment 6 and the presence or absence of a specific insertion in a key region in coding segment 5. In this study we report, for the first time in Chile, the coexistence of two variants in fully asymptomatic fish. Of five samples analyzed, two were identified as the non-pathogenic variant, HPR0, and two as the highly pathogenic HPR7b variant, though with no clinical signs detectable in the fish. Interestingly, one of the samples unequivocally carried both variants, again without any clinical signs. Considering that in none of the samples the typical insertion in coding segment 5 was detected, it is our impression that this may represent a shift from the non-pathogenic HPR0 variant towards the highly infective HPR7b variant. If this were the case, the transition may be triggered first by deleting the corresponding sequence of the HPR region of segment 6, followed by the putative insertion in segment 5 to generate a virulent strain.
Collapse
Affiliation(s)
- Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fraunhofer Chile Research, Santiago, Chile
| | | | | | - Alvaro Labra
- Laboratorio de Patógenos Acuícolas, Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Servicio Nacional de Pesca y Acuicultura, Valparaíso, Chile
| | - Sergio H. Marshall
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Laboratorio de Patógenos Acuícolas, Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, campus Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fraunhofer Chile Research, Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Markussen T, Sindre H, Jonassen CM, Tengs T, Kristoffersen AB, Ramsell J, Numanovic S, Hjortaas MJ, Christiansen DH, Dale OB, Falk K. Ultra-deep pyrosequencing of partial surface protein genes from infectious Salmon Anaemia virus (ISAV) suggest novel mechanisms involved in transition to virulence. PLoS One 2013; 8:e81571. [PMID: 24303056 PMCID: PMC3841194 DOI: 10.1371/journal.pone.0081571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/14/2013] [Indexed: 11/22/2022] Open
Abstract
Uncultivable HPR0 strains of infectious salmon anaemia viruses (ISAVs) infecting gills are non-virulent putative precursors of virulent ISAVs (vISAVs) causing systemic disease in farmed Atlantic salmon (Salmo salar). The transition to virulence involves two molecular events, a deletion in the highly polymorphic region (HPR) of the hemagglutinin-esterase (HE) gene and a Q266→L266 substitution or insertion next to the putative cleavage site (R267) in the fusion protein (F). We have performed ultra-deep pyrosequencing (UDPS) of these gene regions from healthy fish positive for HPR0 virus carrying full-length HPR sampled in a screening program, and a vISAV strain from an ISA outbreak at the same farming site three weeks later, and compared the mutant spectra. As the UDPS data shows the presence of both HE genotypes at both sampling times, and the outbreak strain was unlikely to be directly related to the HPR0 strain, this is the first report of a double infection with HPR0s and vISAVs. For F amplicon reads, mutation frequencies generating L266 codons in screening samples and Q266 codons in outbreak samples were not higher than at any random site. We suggest quasispecies heterogeneity as well as RNA structural properties are linked to transition to virulence. More specifically, a mechanism where selected single point mutations in the full-length HPR alter the RNA structure facilitating single- or sequential deletions in this region is proposed. The data provides stronger support for the deletion hypothesis, as opposed to recombination, as the responsible mechanism for generating the sequence deletions in HE.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| | - Hilde Sindre
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | | | - Torstein Tengs
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | | | - Jon Ramsell
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Sanela Numanovic
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Monika J. Hjortaas
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Debes H. Christiansen
- National Reference Laboratory for Fish Diseases, Food and Veterinary Authority, Torshavn, Faroe Islands
| | - Ole Bendik Dale
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Knut Falk
- Department of Health Surveillance, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
27
|
Godoy MG, Kibenge MJT, Suarez R, Lazo E, Heisinger A, Aguinaga J, Bravo D, Mendoza J, Llegues KO, Avendaño-Herrera R, Vera C, Mardones F, Kibenge FSB. Infectious salmon anaemia virus (ISAV) in Chilean Atlantic salmon (Salmo salar) aquaculture: emergence of low pathogenic ISAV-HPR0 and re-emergence of virulent ISAV-HPR∆: HPR3 and HPR14. Virol J 2013; 10:344. [PMID: 24268071 PMCID: PMC4222741 DOI: 10.1186/1743-422x-10-344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
ABSTACT Infectious salmon anaemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. ISA is caused by virulent ISAV strains with deletions in a highly polymorphic region (HPR) of the hemagglutinin-esterase (HE) protein (designated virulent ISAV-HPR∆). This study shows the historic dynamics of ISAV-HPR∆ and ISAV-HPR0 in Chile, the genetic relationship among ISAV-HPR0 reported worldwide and between ISAV-HPR0 and ISAV-HPR∆ in Chile, and reports the 2013 ISA outbreak in Chile. The first ISA outbreak in Chile occurred from mid-June 2007 to 2010 and involved the virulent ISAV-HPR7b, which was then replaced by a low pathogenic ISAV-HPR0 variant. We analyzed this variant in 66 laboratory-confirmed ISAV-HPR0 cases in Chile in comparison to virulent ISAV-HPR∆ that caused two new ISA outbreaks in April 2013. Multiple alignment and phylogenetic analysis of HE sequences from all ISAV-HPR0 viruses allowed us to identify three genomic clusters, which correlated with three residue patterns of ISAV-HPR0 (360PST362, 360PAN362 and 360PAT362) in HPR. The virus responsible for the 2013 ISAV-HPR∆ cases in Chile belonged to ISAV-HPR3 and ISAV-HPR14, and in phylogenetic analyses, both clustered with the ISAV-HPR0 found in Chile. The ISAV-HPR14 had the ISAV-HPR0 residue pattern 360PAT362, which is the only type of ISAV-HPR0 variant found in Chile. This suggested to us that the 2013 ISAV-HPR∆ re-emerged from ISAV-HPR0 that is enzootic in Chilean salmon aquaculture and were not new introductions of virulent ISAV-HPR∆ to Chile. The clinical presentations and diagnostic evidence of the 2013 ISA cases indicated a mixed infection of ISAV with the ectoparasite Caligus rogercresseyi and the bacterium Piscirickettsia salmonis, which underscores the need for active ISAV surveillance in areas where ISAV-HPR0 is enzootic, to ensure early detection and control of new ISA outbreaks, as it is considered a risk factor. This is the first report of ISA linked directly to the presence of ISAV-HPR0, and provides strong evidence supporting the contention that ISAV-HPR0 shows a strong relationship to virulent ISAV-HPR∆ viruses and the possibility that it could mutate to virulent ISAV-HPR∆.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Diego de Almagro Norte 1013, No. 8, Puerto Montt, Chile
- Facultad de Ciencias, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt, Chile
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Molly JT Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I., C1A 4P3, Canada
| | - Rudy Suarez
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Diego de Almagro Norte 1013, No. 8, Puerto Montt, Chile
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Eduardo Lazo
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | | | - Javier Aguinaga
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Diego Bravo
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Julio Mendoza
- Mainstream Chile S.A, Av. Diego Portales 2000, piso 10 y 11, Puerto Montt, Chile
| | - Katerina O Llegues
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Diego de Almagro Norte 1013, No. 8, Puerto Montt, Chile
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Rubén Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Cristian Vera
- ETECMA, Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
| | - Fernando Mardones
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Frederick SB Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|
28
|
Tello M, Vergara F, Spencer E. Genomic adaptation of the ISA virus to Salmo salar codon usage. Virol J 2013; 10:223. [PMID: 23829271 PMCID: PMC3706250 DOI: 10.1186/1743-422x-10-223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/01/2013] [Indexed: 01/09/2023] Open
Abstract
Background The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Methods Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Results Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Conclusions Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of host genes. This is probably due to its recent emergence among farmed Salmon populations.
Collapse
Affiliation(s)
- Mario Tello
- Centro de Biotecnología Acuícola, Laboratorio de Virología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| | | | | |
Collapse
|
29
|
|