1
|
Sogut I, Kar F, Tanrikulu-Kucuk S, Gozden TT, Asena Can S, Kandil A. The Comparative Effects of Inulin and Bacillus clausii on LPS-Induced Endotoxemic Rat Liver. J INVEST SURG 2022; 35:1322-1328. [PMID: 35313790 DOI: 10.1080/08941939.2022.2052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND This paper sought to investigate the modifies of inulin and Bacillus clausii on the lipopolysaccharides (LPS) inducing oxidative stress signaling pathway in the endotoxemic rat model. METHODS Wistar albino male rats (n = 36), divided into six groups, were formed randomly in the following stages: the control group; the prebiotic group (Inulin; 500 mg/kg); the probiotic group (Bacillus clausii; 1x109 CFU); the LPS group (1.5 mg/kg) as the endotoxemic model; the prebiotic group + LPS; and the probiotic group + LPS as treatment groups. RESULTS The reactive oxygen species (ROS), advanced oxidation products of protein (AOPP), thiobarbituric acid reactive substances (TBARS), total oxidant status (TOS), oxidative stress index (OSI), and myeloperoxidase activity (MPO) levels increased in LPS-induced toxicity. Prebiotic treatment decreased LPS-induced hepatotoxicity on rat liver as observed in the decrease in the levels of oxidative stress parameters, such as ROS, TBARS, TOS, and OSI. The effect of the probiotic treatment on the ROS, AOPP, TOS, OSI levels was not statistically significant. However, it was determined that probiotic application was effective in the TBARS, TAS, and GSH levels. When the biochemical results of the prebiotic and probiotic treatment applications were compared, it was found that the prebiotic treatment was more effective on oxidative stress parameters (ROS, TBARS, TOS, and OSI). In addition, the histological damage score and MPO-staining results of the prebiotic treatment group were found to be more effective than the probiotic group. CONCLUSION In this first study, where inulin and Bacillus clausii spores are used against liver damage caused by LPS, inulin provides much more effective protection than Bacillus clausii spores.
Collapse
Affiliation(s)
- Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Fatih Kar
- Department of Basic Science, Faculty of Engineering and Natural Science, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sevda Tanrikulu-Kucuk
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Tarık Talha Gozden
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Sumeyye Asena Can
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Aslı Kandil
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Rakshit S, Nirala SK, Bhadauria M. Gallic Acid Protects from Acute Multiorgan Injury Induced by Lipopolysaccharide and D-galactosamine. Curr Pharm Biotechnol 2021; 21:1489-1504. [PMID: 32538720 DOI: 10.2174/1389201021666200615165732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Secondary metabolites of plants, the polyphenols, play a vital role in protection from many health problems in human beings. Structurally favored phytochemicals may be studied to protect multiorgan injury. At pharmacological doses, gallic acid is nontoxic to mammals and is generally absorbed in the intestine. AIMS In this present study, gallic acid was evaluated for its protective efficacy against Lipo Polysaccharide (LPS) and d-Galactosamine (D-GalN) induced multiorgan injury, i.e., liver, kidney and brain. METHODS Three different doses of gallic acid (5, 10 and 20 mg/kg p.o.) were administered to the experimental animals for 6 consecutive days, followed by exposure to LPS (50 μg/kg I.P.) and D-GalN (300 mg/kg I.P.) on the 6th day. RESULTS Exposure to LPS and D-GalN resulted in increased oxidative stress and proinflammatory cytokines. Altered hematology and serology due to LPS and D-GalN were restored towards control by gallic acid. Declined antioxidants such as reduced glutathione, superoxide dismutase and catalase due to injurious effects of LPS and D-GalN were rejuvenated by gallic acid. DISCUSSION Exposure to LPS and D-GalN severely increased lipid peroxidation, CYP2E1 activity and tissue lipids while lowered protein content. Gallic acid restored all these parameters towards control in dose dependent manner and 20 mg/kg dose provided the best protection. Histological study showed improved histoarchitecture of liver, kidney and brain that supported biochemical endpoints. CONCLUSION Gallic acid minimized oxidative stress and provided best protection at 20 mg/kg dose against LPS and D-GalN induced multi organ acute injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| | - Satendra K Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development Guru Ghasidas University, Bilaspur 495009 (C.G.), India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| |
Collapse
|
3
|
Protective effect of diosgenin on LPS/D-Gal-induced acute liver failure in C57BL/6 mice. Microb Pathog 2020; 146:104243. [DOI: 10.1016/j.micpath.2020.104243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022]
|
4
|
Zhou RJ, Zhao Y, Fan K, Xie ML. Protective effect of apigenin on d-galactosamine/LPS-induced hepatocellular injury by increment of Nrf-2 nucleus translocation. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:929-936. [PMID: 31758207 DOI: 10.1007/s00210-019-01760-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Apigenin has a protective effect on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury through the increments of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) expressions, but its exact mechanisms are still uncertain. This study aimed to further verify its protective effect on hepatocytes and to determine its target of action. The results showed that after treatment of D-GalN/LPS-stimulated hepatocytes with 2.5-20 μM apigenin, the supernatant alanine aminotransferase, aspartate aminotransferasein, tumor necrosis factor-α, and malondialdehyde levels and intracellular nuclear factor-κB protein expression were decreased, while the supernatant superoxide dismutase (SOD) and catalase (CAT) levels, intracellular PPARγ and inhibitor of kappa B-alpha protein expressions, and nucleus Nrf-2 protein expression were increased. After pretreatment with BML-111 or GW9662, the apigenin-induced nucleus Nrf-2 or intracellular PPARγ protein expressions were completely inhibited, respectively, but the both pretreatment differently affected the protective effect of apigenin on hepatocytes. The former completely canceled the protective effect, whereas the latter did not. These findings further demonstrate that apigenin can exert a protective effect on D-GalN/LPS-induced hepatocellular injury via the increment of Nrf-2 nucleus translocation, which may increase the SOD and CAT levels and PPARγ protein expression and subsequently inhibit the inflammatory response.
Collapse
Affiliation(s)
- Rui-Jun Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
5
|
Bae J, Min YS, Nam Y, Lee HS, Sohn UD. Humulus japonicusExtracts Protect Against Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Rats. J Med Food 2018; 21:1009-1015. [DOI: 10.1089/jmf.2018.4178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jinhyung Bae
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Young Sil Min
- Department of Medical Plant Science, Jung Won University, Goesan-Gun, Korea
| | - Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Seok Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
6
|
Wang CL, Yang PS, Tsao JT, Jayakumar T, Wang MJ, Sheu JR, Chou DS. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study. Mol Med Rep 2017; 17:2061-2069. [PMID: 29138834 DOI: 10.3892/mmr.2017.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Collapse
Affiliation(s)
- Chiun-Lang Wang
- Department of Gynecology and Obstetrics, Min‑Sheng General Hospital, Taoyuan 33044, Taiwan, R.O.C
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan, R.O.C
| | - Jeng-Ting Tsao
- Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, R.O.C
| | - Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Duen-Suey Chou
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
7
|
Sheriff SA, Shaik Ibrahim S, Devaki T, Chakraborty S, Agarwal S, Pérez-Sánchez H. Lycopene Prevents Mitochondrial Dysfunction during d-Galactosamine/Lipopolysaccharide-Induced Fulminant Hepatic Failure in Albino Rats. J Proteome Res 2017; 16:3190-3199. [PMID: 28758404 DOI: 10.1021/acs.jproteome.7b00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Functional perturbation of mitochondria is associated with fulminant hepatic failure (FHF). d-Galactosamine/lipopolysaccharide (d-GalN/LPS)-induced FHF is a renowned model to evaluate the efficacy of hepatoprotective agents. Lycopene is an antioxidant and phytonutrient from the carotenoid family. The health benefits of lycopene are prominent against cancer and cardiovascular, lung, liver, and skin problems. Recent studies have demonstrated the hepatoprotective, antidyslipidemic, and antioxidant roles of lycopene. The current study was designed to appraise the ability of lycopene to prevent mitochondrial dysfunction during the d-GalN/LPS-induced FHF. The administration of d-GalN/LPS (300 mg and 30 μg/kg body weight, respectively) to the experimental rats induced several disturbances in mitochondrial function. The lipid peroxide and hydrogen peroxide levels were increased (p < 0.05). The activities of mitochondrial antioxidants, tricarboxylic acid (TCA) cycle, and electron transport chain enzymes and the cellular adenosine triphosphate (ATP) content were decreased (p < 0.05). Lycopene (10 mg/kg body weight for 6 days) pretreatment attenuated lipid peroxidation and prohibited the excessive synthesis of hydrogen peroxide. The d-GalN/LPS-induced impairment in ATP production and increased enzyme activities were effectively prevented by the lycopene administration. The lycopene-mediated mitochondrial protection was mainly ascribed to the strong antioxidant potential of this phytonutrient. Molecular modeling results obtained show evidence that lycopene inhibits several lipoxygenases and provides rationale for the observed prevention of lipid peroxidation in the mitochondrial membrane. The carotenoid lycopene combatted oxidative stress, scavenged free radicals, prevented ROS generation, and inhibited the toxic effects of d-GalN/LPS during FHF.
Collapse
Affiliation(s)
- Sheik Abdulazeez Sheriff
- Department of Biochemistry, University of Madras , Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Shaikhussain Shaik Ibrahim
- Department of Computer Science and Engineering, Government College of Engineering , Salem, Tamilnadu 627 007, India
| | - Thiruvengadam Devaki
- Department of Biochemistry, University of Madras , Guindy Campus, Chennai, Tamilnadu 600 025, India
| | - Sandipan Chakraborty
- Department of Microbiology, University of Calcutta , 35 Ballygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Subhash Agarwal
- Bioinformatics Division, National Institute of Cancer Prevention and Research (NICPR-ICMR) , I-7, Sector-39, Noida, Uttar Pradesh 201301, India
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM) , Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
8
|
Chester K, Paliwal S, Khan W, Ahmad S. UPLC-ESI-MS/MS and HPTLC Method for Quantitative Estimation of Cytotoxic Glycosides and Aglycone in Bioactivity Guided Fractions of Solanum nigrum L. Front Pharmacol 2017; 8:434. [PMID: 28729835 PMCID: PMC5498608 DOI: 10.3389/fphar.2017.00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Solanum nigrum L., is traditionally used for the management of the various liver disorders. Investigating the effect of polarity based fractionation of S. nigrum for its hepatoprotective effect on Hep G2 cells in vitro to provide base of its activity by quantifying in steroidal glycosides responsible for hepatoprotective potential. A new UPLC-ESI-MS/MS method following a high performance thin layer chromatography (HPTLC) has been developed and validated for quantification of steroidal glycosides and aglycone (solasonine, solamargine, and solasodine, respectively). The in vitro antioxidant potential, total phenolics, and flavonoid content were also determined in different fractions. The newly developed UPLC-ESI-MS/MS and HPTLC methods were linear (r2 ≥ 0.99), precise, accurate, and showing recovery more than 97%. The n-butanol enriched fraction of S. nigrum berries was found to be the most potent hepatoprotective fraction against all other fractions as it showed significantly (p < 0.01) better in vitro anti-oxidant potential than other fractions. Quantification by both methods revealed that, content of steroidal glycosides and aglycones are more than 20% in n-butanol fraction as compared to other fractions. The screened steroidal glycoside n-butanol enriched fraction underwent bioefficacy studies against D-galactosamine and H2O2 induced toxicity in HepG2 cell line showing significant (p < 0.05) liver protection. However, developed method can be used for the quality control analysis with respect to targeted metabolites and it can be explored for the pharmacokinetic and pharmacodynamic analysis in future.
Collapse
Affiliation(s)
| | | | - Washim Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard UniversityNew Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard UniversityNew Delhi, India
| |
Collapse
|
9
|
Ryul Ahn H, Kim KA, Kang SW, Lee JY, Kim TJ, Jung SH. Persimmon Leaves (Diospyros kaki) Extract Protects Optic Nerve Crush-Induced Retinal Degeneration. Sci Rep 2017; 7:46449. [PMID: 28425487 PMCID: PMC5397840 DOI: 10.1038/srep46449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 03/20/2017] [Indexed: 01/27/2023] Open
Abstract
Retinal ganglion cell (RGC) death is part of many retinal diseases. Here, we report that the ethanol extract of Diospyros kaki (EEDK) exhibits protective properties against retinal degeneration, both in vitro and in vivo. Upon exposure to cytotoxic compounds, RGC-5 cells showed approximately 40% cell viability versus the control, while pre-treatment with EEDK markedly increased cell viability in a concentration-dependent manner. Further studies revealed that cell survival induced by EEDK was associated with decreased levels of apoptotic proteins, such as poly (ADP-ribose) polymerase, p53, and cleaved caspase-3. In addition to apoptotic pathways, we demonstrated that expression levels of antioxidant-associated proteins, such as superoxide dismutase-1, glutathione S-transferase, and glutathione peroxidase-1, were positively modulated by EEDK. In a partial optic nerve crush mouse model, EEDK had similar ameliorating effects on retinal degeneration resulting from mechanical damages. Therefore, our results suggest that EEDK may have therapeutic potential against retinal degenerative disorders, such as glaucoma.
Collapse
Affiliation(s)
- Hong Ryul Ahn
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Kyung-A Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Suk Woo Kang
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Joo Young Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Tae-Jin Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Hoon Jung
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Liu H, Li Q, Wang Y, Hong H, Chen M, Wang Y, Hong F, Yang S. Elevated nitric oxide levels associated with hepatic cell apoptosis during liver injury. Hepatol Res 2017; 47:178-185. [PMID: 27489194 DOI: 10.1111/hepr.12783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022]
Abstract
Hepatic injury is a major event in liver surgery such as liver transplantation and it always leads to hepatic cell apoptosis. Nitric oxide (NO) is a key signaling regulation molecule. Many researchers have shown that increased NO level can influence liver cell apoptosis by promoting or inhibiting the relative signaling pathways that are involved in the caspase family, Bax/Bcl-2, mitochondria, oxidative stress, death receptors, and mitogen-activated protein kinases. Elucidating the relationships between NO and hepatic cell apoptosis is necessary for ameliorating prognosis of liver surgery. This article reviews the newest research progress in the relationships between higher NO levels and hepatic cell apoptosis in liver injury.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Qian Li
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Ying Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Huimin Hong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Mengting Chen
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Yingyi Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Department of Experimental Teaching, Nanchang University, Nanchang, China
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Hashem RM, Hassanin KM, Rashed LA, Mahmoud MO, Hassan MG. Effect of silibinin and vitamin E on the ASK1-p38 MAPK pathway in D-galactosamine/lipopolysaccharide induced hepatotoxicity. Exp Biol Med (Maywood) 2016; 241:1250-7. [PMID: 26941058 DOI: 10.1177/1535370216636719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/02/2016] [Indexed: 11/15/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), a redox-sensor mitogen-activated protein kinase kinase kinase (MAPKKK) that activates p38 MAPK pathways in oxidative stress-induced hepatotoxicity in D-galactosamine/lipopolysaccharide (D-GalN/LPS) model, is a key central pathway in which specific targeting of ASK1 deactivation is of a great therapeutic potential. We tested the effect of silibinin and vitamin E in curative and prophylactic manner of treatment on the negative modulators of ASK1, thioredoxin1 (Trx1), thioredoxin reductase1 (TrxR1), and the protein phosphatase (PP5), whereas they have previously proven to have hepatoprotective effect. Either curative or prophylactic silibinin and vitamin E groups significantly decreased ASK1 and p38 MAPK levels through increasing the gene expression of Trx1, TrxR1, and PP5 to reduce the oxidative stress as demonstrated by decreasing the levels of NADPH oxidase 4 (NOX4), TBARS and conjugated diene with a concomitant increase in the levels of GSH, CAT, and SOD. These results were confirmed by histopathology examination which illustrated progressive degenerative changes of hepatocytes such as hydropic degeneration, vacuolation, pyknosis, karyolysis, and loss of architecture of some cells in D-GalN/LPS treatment, and these features were alleviated with silibinin and vitamin E administration. In conclusion, silibinin and vitamin E decreased ASK1-p38 MAPK pathway through deactivating the upstream signalling ASK1 molecule via increasing the levels of Trx1 and TrxR1 as well as the PP5 to alleviate in D-GalN/LPS induced hepatotoxicity.
Collapse
Affiliation(s)
- Reem M Hashem
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Kamel Ma Hassanin
- Department of Biochemistry, Faculty of Veterinary Medicine, Minia University, El Minia, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed G Hassan
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Choi JW, Kim IH, Kim YM, Lee MK, Nam TJ. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep 2016; 13:3110-4. [PMID: 26935645 DOI: 10.3892/mmr.2016.4932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of Pyropia yezoensis glycoprotein (PYGP) on hepatic antioxidative enzyme activity and mitogen-activated protein kinase (MAPK) phosphorylation in a rat model of D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity. Glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured to determine the severity of hepatotoxicity. Treatment with D‑GalN/LPS significantly increased the GOT, GPT and lipid peroxidation levels, and decreased the antioxidant capacity of the rats. Treatment with PYGP (150 and 300 mg/kg/body weight) decreased the levels of GOT, GPT and lipid peroxidation levels. The activities of antioxidative enzymes, including catalase, glutathione S‑transferase and glutathione were upregulated following PYGP treatment. Furthermore, D‑GalN/LPS‑induced MAPK phosphorylation, and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression were downregulated by PYGP. These results indicated that PYGP may exert hepatoprotective effects via the upregulation of antioxidative enzymes, and the downregulation of the MAPK signaling pathway and iNOS and COX-2 expression.
Collapse
Affiliation(s)
- Jeong-Wook Choi
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Young-Min Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
13
|
Liu H, Zhang W, Dong S, Song L, Zhao S, Wu C, Wang X, Liu F, Xie J, Wang J, Wang Y. Protective effects of sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:69-78. [PMID: 26494508 DOI: 10.1016/j.jep.2015.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/18/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) berries have been traditionally used to treat gastric disorders, cardiovascular problems, and liver injuries in oriental medicinal system. This study aimed to explore the protective effects and mechanisms of the polysaccharide extracts of Sea buckthorn (HRP) berries against lipopolysaccharide (LPS) and d-galactosamine hydrochloride (d-GalN)-induced acute liver failure in mice. MATERIALS AND METHODS HRP was isolated by hot-water extraction and characterized by HPLC and infrared spectrum analysis. The total carbohydrate, uronic acid and protein contents of HRP were measured by a spectrophotometric method. Mice were orally administrated with HRP (50, 100, 200mg/kg) once daily for 14 consecutive days prior to the challenge with LPS (50 μg/kg) and d-GalN (300 mg/kg). Animals of positive control group were intraperitoneally injected with dexamethasone (10mg/kg). Mice were sacrificed at 8h after LPS/d-GalN injection. RESULTS Pretreatment with HRP significantly inhibited LPS/d-GalN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which were accompanied by alleviated liver injuries and reduced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HRP was also found to reduce malondialdehyde (MDA) content and to restore superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities. Furthermore, HRP supplementation dose-dependently inhibited the expression of Toll-like receptor 4 (TLR4), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated mitogen activated protein kinase 38 (p-p38 MAPK) in the liver of LPS/d-GalN challenged mice. Pretreatment with HRP also inhibited LPS/d-GalN-induced activation and translocation of nuclear factor-κB (NF-κB). CONCLUSIONS This study indicates that pretreatment with HRP protects against LPS/d-GalN-induced liver injury in mice via suppressing the TLR4-NF-κB signaling pathway. Sea buckthorn may be a hopeful drug for prevention of acute live injury.
Collapse
Affiliation(s)
- Huan Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wei Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shichao Dong
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Liang Song
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shimin Zhao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Chunyan Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Xue Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Fang Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Jiming Xie
- Clinical Laboratory, Hospital of Inner Mongolia, Hohhot 010010, PR China
| | - Jinling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| |
Collapse
|
14
|
Farghali H, Canová NK, Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. PHARMACEUTICAL BIOLOGY 2015; 53:781-791. [PMID: 25489628 DOI: 10.3109/13880209.2014.950387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT We focused on certain plant active constituents considered to be the most promising/studied for liver disease and that were critically investigated from the basic science point of view and, to some extent, the clinical one. Due to insufficient pharmacological data, most of the herbal formulations containing these molecules cannot be recommended for the treatment of liver disease. OBJECTIVE To present the most promising compounds tested experimentally and/or clinically and describe in brief popular models in experimental testing of potential hepatoprotective compounds. METHODS A literature search using Web of Science (WOS), PubMed, and Google search was performed. RESULTS Focusing on a few herbal hepatoprotective active constituents is useful to health professionals working in the field of therapeutics to develop evidence-based hepatoprotective agents by conducting research on pure chemical structures or on molecular modifications using computational chemistry. This review demonstrates that multi-pathways in the liver pathobiology can be interrupted at one or more levels by natural hepatoprotective studied, such as interference with the oxidative stress at multiple levels to reduce reactive oxygen/nitrogen species, resulting in ameliorating hepatotoxicity. CONCLUSION Hepatoprotective constituents of herbal medications are poorly absorbed after oral administration; methods that can improve their bioavailability are being developed. It is recommended that controlled prospective double-blind multicenter studies on isolated active plant constituents, or on related newly designed molecules after structural modifications, should be performed. This effort will lead to expanding the existing, limited drugs for the vast majority of liver diseases.
Collapse
Affiliation(s)
- Hassan Farghali
- First Faculty of Medicine, Institute of Pharmacology, Charles University in Prague , Czech Republic and
| | | | | |
Collapse
|
15
|
Khan J, Saraf S, Saraf S. Preparation and evaluation of luteolin–phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage. Pharm Dev Technol 2015; 21:475-86. [DOI: 10.3109/10837450.2015.1022786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R. Lipopolysaccharide-induced inflammatory liver injury in mice. Lab Anim 2015; 49:37-46. [DOI: 10.1177/0023677215570087] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given.
Collapse
Affiliation(s)
- K Hamesch
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - E Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - P Strnad
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH University Aachen, Aachen, Germany
| | - R Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
17
|
KEMELO MK, WOJNAROVÁ L, KUTINOVÁ CANOVÁ N, FARGHALI H. D-Galactosamine/Lipopolysaccharide-Induced Hepatotoxicity Downregulates Sirtuin 1 in Rat Liver: Role of Sirtuin 1 Modulation in Hepatoprotection. Physiol Res 2014; 63:615-23. [DOI: 10.33549/physiolres.932761] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
D-Galactosamine/Lipopolysaccharide (D-GalN/LPS) is a well known model of hepatotoxicity that closely resembles acute liver failure (ALF) seen clinically. The role of sirtuin 1 in this model has not yet been documented. However, there have been a number of studies about the cytoprotective effects of resveratrol, a SIRT1 activator, in the liver. This study was aimed at elucidating the roles of SIRT1 protein expression or catalytic activity in D-GalN/LPS model of hepatotoxicity. ALF was induced in male Wistar rats by intraperitoneal injection of D-GalN and LPS. Some groups of animals were pretreated with resveratrol and/or EX-527 (SIRT1 inhibitor). The effects of these treatments were evaluated by biochemical and Western blot studies. D-GalN/LPS treatment was able to induce hepatotoxicity and significantly increase all markers of liver damage and lipid peroxidation. A dramatic decrease of SIRT1 levels in response to D-GalN/LPS treatment was also documented. Resveratrol pretreatment attenuated D-GalN/LPS-induced hepatotoxicity. EX-527 blocked the cytoprotective effects of resveratrol. However, both resveratrol and EX-527 pretreatments did not exhibit any significant effect on SIRT1 protein expression. Collectively, these results suggest that downregulation of SIRT1 expression is involved in the cytotoxic effects of D-GalN/LPS model and SIRT1 activity contributes to the cytoprotective effects of resveratrol in the liver.
Collapse
Affiliation(s)
- M. K. KEMELO
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
18
|
Quan J, Jin M, Xu H, Qiu D, Yin X. BRP, a polysaccharide fraction isolated from Boschniakia rossica, protects against galactosamine and lipopolysaccharide induced hepatic failure in mice. J Clin Biochem Nutr 2014; 54:181-9. [PMID: 24895481 PMCID: PMC4042147 DOI: 10.3164/jcbn.13-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/25/2013] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to investigate the hepatoprotective effect of BRP, a polysaccharide fraction isolated from Boschniakia rossica, against galactosamine and lipopolysaccharide induced fulminant hepatic failure. Mice were injected with a single dose of galactosamine/lipopolysaccharide with or without pretreatment of BRP. Results showed marked reduction of hepatic necrosis, serum marker enzymes and levels of tumor necrosis factor-α and interleukin-6 in BRP pretreated mice when compared with galactosamine/lipopolysaccharide-challenged mice. Mice pretreated with BRP decreased the activation of caspases-3 and caspase-8, and showed a reduced level of DNA fragmentation of liver cells. BRP also reduced hepatic lipid peroxidation, increased potential of hepatic antioxidative defense system, and reduced hepatic nitric oxide level which was elevated by galactosamine/lipopolysaccharide injection. Immunoblot analysis showed down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 proteins of liver tissues in BRP pretreated group when compared with galactosamine/lipopolysaccharide-challenged group. Furthermore, treatment with galactosamine/lipopolysaccharide markedly increased toll-like receptor 4, nuclear level of nuclear factor-κB, and phosphorylation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in liver tissues. However, these increases were attenuated by pretreatment with BRP. The results suggest that BRP alleviates galactosamine/lipopolysaccharide-induced liver injury by enhancing antioxidative defense system, suppressing inflammatory responses and reducing apoptotic signaling.
Collapse
Affiliation(s)
- Jishu Quan
- Department of Biochemistry and Molecular Biology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China ; Department of Physiology and Pathophysiology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Meihua Jin
- Department of Biochemistry and Molecular Biology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Huixian Xu
- The Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133000, China
| | - Delai Qiu
- Department of Physiology and Pathophysiology, Medical College of Yanbian University, Yanji, Jilin Province 133000, China
| | - Xuezhe Yin
- The Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133000, China
| |
Collapse
|
19
|
Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:118-133. [PMID: 24322620 DOI: 10.1016/j.etap.2013.08.015] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 06/03/2023]
Abstract
Liver is a primary organ involved in biotransformation of food and drugs. Hepatic diseases are a major worldwide problem. Hepatic disorders are mainly caused by toxic chemicals (alcohol), xenobiotics (carbon tetrachloride, chlorinated hydrocarbons and gases CO₂ and O₂) anticancer (azathioprine, doxorubicin, cisplatin), immunosuppressant (cyclosporine), analgesic anti-inflammatory (paracetamol, thioacetamide), anti-tubercular (isoniazid, rifampicin) drugs, biologicals (Bacillus-Calmette-Guerin vaccine), radiations (gamma radiations), heavy metals (cadmium, arsenic), mycotoxin (aflatoxin), galactosamine, lipopolysaccharides, etc. Various risk factors for hepatic injury include concomitant hepatic diseases, age, gender, alcoholism, nutrition and genetic polymorphisms of cytochrome P450 enzymes have also been emphasized. The present review enumerates various in vivo animal models and in vitro methods of hepatic injury using diverse toxicants, their probable metabolic pathways, and numerous biochemical changes viz. serum biomarkers enzymes, liver function, oxidative stress associated events like free radicals formation, lipid peroxidation, enzyme antioxidants and participation of cytokines (tumour necrosis factor-α, transforming growth factor-β, tumour necrosis factor-related apoptosis inducing ligand), and other biomolecules (Fas and C-jun N-terminal kinase) are also discussed. The underlying cellular, molecular, immunological, and biochemical mechanism(s) of action responsible for liver damage (toxicity) are also been discussed. This review should be immensely useful for researchers especially for phytochemists, pharmacologists and toxicologists working on hepatotoxicity, hepatotoxic chemicals and drugs, hepatoprotective agents and drug research organizations involved especially in phytopharmaceuticals and other natural products.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India
| | - Satish K Mandlik
- Sinhgad College of Pharmacy, S. No. 44/1, Vadgaon (Bk.), Off Sinhgad Road, Pune 411 041, Maharashtra, India
| | - Suresh R Naik
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India.
| |
Collapse
|
20
|
Feng B, Wu S, Liu F, Gao Y, Dong F, Wei L. Metabonomic analysis of liver tissue from BALB/c mice with D-galactosamine/lipopolysaccharide-induced acute hepatic failure. BMC Gastroenterol 2013; 13:73. [PMID: 23627910 PMCID: PMC3644245 DOI: 10.1186/1471-230x-13-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 04/22/2013] [Indexed: 12/11/2022] Open
Abstract
Background Compared with biofluids, target tissues and organs more directly reflect the pathophysiological state of a disease process. In this study, a D-galactosamine (GalN) / lipopolysaccharide (LPS)-induced mouse model was constructed to investigate metabonomics of liver tissue and directly characterize metabolic changes in acute liver failure (ALF). Methods After pretreatment of liver tissue, gas chromatography coupled to time-of-flight mass spectrometry (GC/TOFMS) was used to separate and identify the liver metabolites. Partial least squares – discriminant analysis models were constructed to separate the ALF and control groups and to find those compounds whose liver levels differed significantly between the two groups. Results Distinct clustering was observed between the ALF and control mice. Fifty-eight endogenous metabolites were identified. Compared with the control mice, many metabolites, including sugars, amino acids, fatty acids, and organic acids, underwent significant changes in the ALF group, some of which differed from changes observed in plasma. Significant reduction of some important intermediate metabolites indicates that production of ketone bodies, the tricarboxylic acid and urea cycles, gluconeogenesis, glycolysis and pentose phosphate pathways are inhibited after GalN/LPS administration. Conclusions GC/TOFMS can be a powerful technique to perform metabonomic studies of liver tissue. GalN/LPS treatment can severely disturb substance metabolism in the liver, with different effects on metabolites compared with those observed in the plasma.
Collapse
Affiliation(s)
- Bo Feng
- Hepatology Institute, Peking University People's Hospital, No 11 Xizhimen South Street, Beijing 100044, PR China
| | | | | | | | | | | |
Collapse
|
21
|
The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia 2013; 87:20-6. [PMID: 23537890 DOI: 10.1016/j.fitote.2013.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate potential hepatoprotective capabilities of quercetin in relation to its modulation of the HO-1 and NOS-2 activities in an experimental model of fulminant liver failure. Liver insult was induced by in vivo administration of D-galactosamine (d-GalN, 400 mg/kg, i.p.) and lipopolysaccharide (LPS, 10 μg/kg, i.p.). The effects of quercetin (50 mg/kg, i.p) on D-GalN toxicity was evaluated by standard biochemical, RT-PCR and Western blot methods. Administration of d-GalN/LPS combination resulted in significantly higher plasma levels of aminotransferases, as well as increased mRNA and protein expressions of both HO-1 and NOS-2 enzymes. Quercetin exhibited cytoprotective effects on the liver, as evidenced by decreased aminotransferase plasma levels. Additionally, quercetin treatment in D-GalN/LPS treated rats significantly increased HO-1 mRNA and its protein expressions. On the contrary, quercetin did not exhibit any significant effects on the levels of nitrites, and NOS-2 mRNA and protein expressions in D-GalN/LPS treated rats. Quercetin when given alone did not have any significant changes on liver enzymes nor HO-1 and NOS-2 mRNA and protein expressions. It can be concluded that the quercetin's induction of HO-1 and its byproducts, without concomitant NOS-2 activity reduction, is among mechanisms contributing to the hepatoprotective effect in D-GalN/LPS hepatotoxicity.
Collapse
|
22
|
FARGHALI H, KUTINOVÁ CANOVÁ N, LEKIĆ N. Resveratrol and Related Compounds as Antioxidants With an Allosteric Mechanism of Action in Epigenetic Drug Targets. Physiol Res 2013; 62:1-13. [DOI: 10.33549/physiolres.932434] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The present review is intended to focus on naturally occurring cytoprotective agents such as resveratrol (trans-3,4’,5-trihydroxystilbene) and other related compounds, probably with similar molecular mechanisms of action and high capacity to find applications in medical fields. Several physiological aspects have been ascribed to resveratrol and similar compounds. Resveratrol, among others, has been recently described as a silent information regulator T1 (SIRT1) activator that increases AMP-activated protein kinase (AMPK) phosphorylation and reduces the oxidative damage biomarkers during aging in laboratory settings. The reports on resveratrol and other SIRT1 activators from various sources are encouraging. The pharmacological strategies for modulation of sirtuins by small molecules through allosteric mechanisms should gain a greater momentum including human research. Resveratrol and resveratrol-like molecules seem to fulfill the requirement of a new horizon in drug research since these molecules cover a growing research means as antioxidants with allosteric mechanism in epigenetic drug targets. However, one should keep in mind the challenges of extrapolation of basic research into clinical results. Overall, the issue of sirtuins in biology and disease provides an insight on therapeutic potentials of sirtuin-based therapeutics and demonstrates the high complexity of drug-targeting these modalities for human applications.
Collapse
Affiliation(s)
- H. FARGHALI
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
23
|
Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int Immunopharmacol 2013; 15:30-7. [DOI: 10.1016/j.intimp.2012.10.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/18/2022]
|
24
|
Sasakawa Y, Kominami A, Yamamoto K, Nakaoka F, Nakamura M, Nakao M, Abe M, Fukuhama C, Kagawa K. Effects of globin digest and its active ingredient Trp-Thr-Gln-Arg on galactosamine/lipopolysaccharide-induced liver injury in ICR mice. Life Sci 2011; 90:190-9. [PMID: 22154906 DOI: 10.1016/j.lfs.2011.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/20/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice. MAIN METHODS The effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages. KEY FINDINGS WTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver. SIGNIFICANCE These findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.
Collapse
Affiliation(s)
- Yuka Sasakawa
- MG Pharma Inc., 7-7-25, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|