1
|
Ravn K, Cobuccio L, Muktupavela RA, Meisner J, Danielsen LS, Benros ME, Korneliussen TS, Sikora M, Willerslev E, Allentoft ME, Irving-Pease EK, Rasmussen S. Tracing the evolutionary history of the CCR5delta32 deletion via ancient and modern genomes. Cell 2025:S0092-8674(25)00417-9. [PMID: 40328257 DOI: 10.1016/j.cell.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
The chemokine receptor variant CCR5delta32 is linked to HIV-1 resistance and other conditions. Its evolutionary history and allele frequency (10%-16%) in European populations have been extensively debated. We provide a detailed perspective of the evolutionary history of the deletion through time and space. We discovered that the CCR5delta32 allele arose on a pre-existing haplotype consisting of 84 variants. Using this information, we developed a haplotype-aware probabilistic model to screen 934 low-coverage ancient genomes and traced the origin of the CCR5delta32 deletion to at least 6,700 years before the present (BP) in the Western Eurasian Steppe region. Furthermore, we present strong evidence for positive selection acting upon the CCR5delta32 haplotype between 8,000 and 2,000 years BP in Western Eurasia and show that the presence of the haplotype in Latin America can be explained by post-Columbian genetic exchanges. Finally, we point to complex CCR5delta32 genotype-haplotype-phenotype relationships, which demand consideration when targeting the CCR5 receptor for therapeutic strategies.
Collapse
Affiliation(s)
- Kirstine Ravn
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonardo Cobuccio
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Audange Muktupavela
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Schnell Danielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thorfinn Sand Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Centre for Ancient Environmental Genomics, University of Copenhagen, Copenhagen, Denmark; Department of Genetics, University of Cambridge, Cambridge, UK; MARUM, University of Bremen, Bremen, Germany
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Evan K Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mashayekhi P, Omrani MD, Amini AO, Omrani MA, Milani SG. Investigating the Potential Impact of CCR5-Δ32 Variant on COVID-19 Outcome: A Case-Control Study in Iranian Population. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1864-1870. [PMID: 39415865 PMCID: PMC11475173 DOI: 10.18502/ijph.v53i8.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 10/19/2024]
Abstract
Background The impact of CCR5-Δ32 on COVID-19 outcomes has been the focus of much research. This genetic variant may protect against SARS-CoV-2 infection, while others have produced conflicting results. Given the controversial results of previous research on different populations, we aimed to investigate the possible association between the CCR5-Δ32 variant and COVID-19 severity in an Iranian population. Methods This case-control study was conducted between 25th of April till 10th of October 2021 at Rasoul Akram Hospital of Iran University of Medical Sciences, Tehran, Iran. We investigated the association between CCR5-Δ32 genotype and COVID-19 severity in 200 unrelated Iranian patients. The patients were divided into 2 groups: 100 patients with severe COVID-19 (case group) and 100 patients with mild COVID-19 (control group). Genotyping of CCR5-Δ32 was performed using the polymerase chain reaction (PCR) technique. Results The frequency of CCR5-Δ32 allele was 11 in the case group and 16 in the control group. However, no significant association was found between this genetic variant and the clinical outcomes of COVID-19. Conclusion The CCR5-Δ32 variant cannot serve as a reliable predictive factor for identifying individuals prone to developing severe COVID-19 in Iranian population. Additionally, targeting CCR5 would not be a viable treatment approach for COVID-19 in Iranians.
Collapse
Affiliation(s)
- Parisa Mashayekhi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asma Olhosna Amini
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Ganbari Milani
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
5
|
Hubáček JA, Šedová L, Hellerová V, Adámková V, Tóthová V. Increased prevalence of the COVID-19 associated Neanderthal mutations in the Central European Roma population. Ann Hum Biol 2024; 51:2341727. [PMID: 38771659 DOI: 10.1080/03014460.2024.2341727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent COVID-19 has spread world-wide and become pandemic with about 7 million deaths reported so far. Interethnic variability of the disease has been described, but a significant part of the differences remain unexplained and may be attributable to genetic factors. AIM To analyse genetic factors potentially influencing COVID-19 susceptibility and severity in European Roma minority. SUBJECTS AND METHODS Two genetic determinants, within OAS-1 (2-prime,5-prime-oligoadenylate synthetase 1, a key protein in the defence against viral infection; it activates RNases that degrade viral RNAs; rs4767027 has been analysed) and LZTFL1 (leucine zipper transcription factor-like 1, expressed in the lung respiratory epithelium; rs35044562 has been analysed) genes were screened in a population-sample of Czech Roma (N = 302) and majority population (N = 2,559). RESULTS For both polymorphisms, Roma subjects were more likely carriers of at least one risky allele for both rs4767027-C (p < 0.001) and rs35044562-G (p < 0.00001) polymorphism. There were only 5.3% Roma subjects without at least one risky allele in comparison with 10.1% in the majority population (p < 0.01). CONCLUSIONS It is possible that different genetic background plays an important role in increased prevalence of COVID-19 in the Roma minority.
Collapse
Affiliation(s)
- Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Šedová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Věra Hellerová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Věra Adámková
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Valérie Tóthová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
7
|
Sayın Kocakap DB, Kaygusuz S, Aksoy E, Şahin Ö, Baççıoğlu A, Ekici A, Kalpaklıoğlu AF, Ekici MS, Gül S, Kaçmaz B, Ayaşlıoğlu Açıkgöz E, Alyılmaz Bekmez S, Rouse BT, Azkur AK. Adverse effect of VEGFR-2 (rs1870377) polymorphism on the clinical course of COVID-19 in females and males in an age-dependent manner. Microbes Infect 2023; 25:105188. [PMID: 37499788 DOI: 10.1016/j.micinf.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The COVID-19 pandemic has affected people worldwide with varying clinical presentations ranging from mild to severe or fatal, and studies have found that age, gender, and some comorbidities can influence the severity of the disease. It would be valuable to have genetic markers that might help predict the likely outcome of infection. For this objective, genes encoding VEGFR-2 (rs1870377), CCR5Δ32 (rs333), and TLR3 (rs5743313) were analyzed for polymorphisms in the peripheral blood of 160 COVID-19 patients before COVID-19 vaccine was available in Türkiye. We observed that possession of the VEGFR-2 rs1870377 mutant allele increased the risk of severe/moderate disease in females and subjects ≥65 years of age, but was protective in males <65 years of age. Other significant results were that the CCR5Δ32 allele was protective against severe disease in subjects ≥65 years of age, while TLR3 rs5743313 polymorphism was found to be protective against severe/moderate illness in males <65 years of age. The VEGFR-2 rs1870377 mutant allele was a risk factor for severe/moderate disease, particularly in females over the age of 65. These findings suggest that genetic polymorphisms have an age- and sex-dependent influence on the severity of COVID-19, and the VEGFR-2 rs1870377 mutant allele could be a potential predictor of disease severity.
Collapse
Affiliation(s)
| | - Sedat Kaygusuz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Ömer Şahin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Ayşe Baççıoğlu
- Department of Allergy and Immunology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye; Department of Pulmonary Diseases, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Aydanur Ekici
- Department of Pulmonary Diseases, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Ayşe Füsun Kalpaklıoğlu
- Department of Allergy and Immunology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye; Department of Pulmonary Diseases, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Mehmet Savaş Ekici
- Department of Pulmonary Diseases, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Serdar Gül
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Birgül Kaçmaz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Ergin Ayaşlıoğlu Açıkgöz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Sibel Alyılmaz Bekmez
- Department of Medical Genetics, Faculty of Medicine, Kırıkkale University, Kırıkkale, Türkiye
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ahmet Kürşat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Türkiye.
| |
Collapse
|
8
|
Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clin Immunol 2023; 255:109741. [PMID: 37611838 PMCID: PMC10631514 DOI: 10.1016/j.clim.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The evolution of drug-resistant viral strains and anatomical and cellular reservoirs of HIV pose significant clinical challenges to antiretroviral therapy. CCR5 is a coreceptor critical for HIV host cell fusion, and a homozygous 32-bp gene deletion (∆32) leads to its loss of function. Interestingly, an allogeneic HSCT from an HIV-negative ∆32 donor to an HIV-1-infected recipient demonstrated a curative approach by rendering the recipient's blood cells resistant to viral entry. Ex vivo gene editing tools, such as CRISPR/Cas9, hold tremendous promise in generating allogeneic HSC grafts that can potentially replace allogeneic ∆32 HSCTs. Here, we review antiretroviral therapeutic challenges, clinical successes, and failures of allogeneic and allogeneic ∆32 HSCTs, and newer exciting developments within CCR5 editing using CRISPR/Cas9 in the search to cure HIV.
Collapse
Affiliation(s)
- Amber Khan
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Hubacek JA, Philipp T, Adamkova V, Majek O, Dusek L. ABCA3 and LZTFL1 Polymorphisms and Risk of COVID-19 in the Czech Population. Physiol Res 2023; 72:539-543. [PMID: 37795896 PMCID: PMC10634566 DOI: 10.33549/physiolres.935108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2 infection, which causes the respiratory disease COVID-19, has spread rapidly from Wuhan, China, since 2019, causing nearly 7 million deaths worldwide in three years. In addition to clinical risk factors such as diabetes, hypertension, and obesity, genetic variability is an important predictor of disease severity and susceptibility. We analyzed common polymorphisms within the LZTFL1 (rs11385942) and ABCA3 (rs13332514) genes in 519 SARS-CoV-2-positive subjects (164 asymptomatic, 246 symptomatic, and 109 hospitalized COVID-19 survivors) and a population-based control group (N?=?2,592; COVID-19 status unknown). Rare ABCA3 AA homozygotes (but not A allele carriers) may be at a significantly increased risk of SARS-CoV-2 infection [P?=?0.003; OR (95 % CI); 3.66 (1.47-9.15)]. We also observed a borderline significant difference in the genotype distribution of the LZTFL1 rs11385942 polymorphism (P?=?0.04) between the population sample and SARS-CoV-2-positive subjects. In agreement with previous studies, a nonsignificantly higher frequency of minor allele carriers was detected among hospitalized COVID-19 subjects. We conclude that a common polymorphism in the ABCA3 gene may be a significant predictor of susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- J A Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
10
|
Hubáček JA, Philipp T, Májek O, Dlouhá D, Adámková V, Dušek L. CD14 Polymorphism Is Not Associated with SARS-CoV-2 Infection in Central European Population. Folia Biol (Praha) 2023; 69:181-185. [PMID: 38583179 DOI: 10.14712/fb2023069050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A 2021 in silico study highlighted an association between the CD14 polymorphism rs2569190 and increased susceptibility to SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19). The aim of our study was to confirm this finding. We analysed the CD14 polymorphism (C→T; rs2569190) in 516 individuals who tested positive for SARS-CoV-2, with differing disease severity (164 asymptomatic, 245 symptomatic, and 107 hospitalized). We then compared these patients with a sample from the general population consisting of 3,037 individuals using a case-control study design. In comparison with carriers of the C allele, TT homozygotes accounted for 21.7 % of controls and 20.5 % in SARS-CoV-2-positive individuals (P = 0.48; OR; 95 % CI - 0.92; 0.73-1.16). No significant differences in the distribution of genotypes were found when considering co-dominant and recessive genetic models or various between-group comparisons. The CD14 polymorphism is unlikely to be an important predictor of COVID-19 in the Caucasian population in Central Europe.
Collapse
Affiliation(s)
- Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Third Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Tom Philipp
- Clinic of Rheumatology and Physiotherapy, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Ondřej Májek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Dana Dlouhá
- Third Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Věra Adámková
- Preventive Cardiology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
11
|
A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population. Clin Chim Acta 2023; 538:211-215. [PMID: 36572138 PMCID: PMC9788844 DOI: 10.1016/j.cca.2022.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coronavirus disease (COVID-19), which is caused by the SARS-CoV-2 virus, has become a global pandemic. While susceptibility to COVID-19 is subject to several external factors, including hypertension, BMI, and the presence of diabetes, it is also genetically determined to a significant extent. Infectious agents require iron (Fe) for proper functioning. Carriers of mutations resulting in increased iron concentrations are understood to be at increased risk of COVID-19. METHODS We examined HFE genotypes associated with hereditary haemochromatosis (rs1800562 and rs1799945 SNPs) in 617 COVID-19 patients (166 asymptomatic, 246 symptomatic and 205 hospitalised survivors) and 2 559 population-based controls. RESULTS We found a higher frequency of the minor allele (Tyr282) of the rs1800562 polymorphism (P < 0.002) in patients compared to controls (8.5 % vs 5.5 %). Non-carriers of the minor allele were protected against SARS-Cov-2 infection (OR, 95 %CI; 0.59, 0.42-0.82). The frequency of minor allele carriers was almost identical across asymptomatic, symptomatic, and hospitalised survivors. The rs1799945 variant did not affect disease severity and its occurrence was almost identical in patients and controls (P between 0.58 and 0.84). CONCLUSIONS In conclusion, our results indicate that presence of the rs1800562 minor allele, which is associated with hereditary haemochromatosis (thus increased levels of plasma Fe), increases susceptibility to SARS-CoV-2.
Collapse
|
12
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
13
|
Fischer JC, Balz V, Jazmati D, Bölke E, Freise NF, Keitel V, Feldt T, Jensen BEO, Bode J, Lüdde T, Häussinger D, Adams O, Schneider EM, Enczmann J, Rox JM, Hermsen D, Schulze-Bosse K, Kindgen-Milles D, Knoefel WT, van Griensven M, Haussmann J, Tamaskovics B, Plettenberg C, Scheckenbach K, Corradini S, Pedoto A, Maas K, Schmidt L, Grebe O, Esposito I, Ehrhardt A, Peiper M, Buhren BA, Calles C, Stöhr A, Gerber PA, Lichtenberg A, Schelzig H, Flaig Y, Rezazadeh A, Budach W, Matuschek C. Prognostic markers for the clinical course in the blood of patients with SARS-CoV-2 infection. Eur J Med Res 2022; 27:255. [PMID: 36411478 PMCID: PMC9676819 DOI: 10.1186/s40001-022-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION The existence of certain HLA haplotypes is associated with more severe disease.
Collapse
Affiliation(s)
- Johannes C. Fischer
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Vera Balz
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Danny Jazmati
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Edwin Bölke
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Noemi F. Freise
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Verena Keitel
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Torsten Feldt
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Björn-Erik Ole Jensen
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Johannes Bode
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Tom Lüdde
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Dieter Häussinger
- grid.14778.3d0000 0000 8922 7789Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- grid.14778.3d0000 0000 8922 7789Institute for Virology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - E. Marion Schneider
- grid.410712.10000 0004 0473 882XDivision of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Jürgen Enczmann
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Jutta M. Rox
- grid.14778.3d0000 0000 8922 7789Institute for Transplant Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Derik Hermsen
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Karin Schulze-Bosse
- grid.14778.3d0000 0000 8922 7789Central Institute for Laboratory Diagnostics and Clinical Chemistry, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Detlef Kindgen-Milles
- grid.14778.3d0000 0000 8922 7789Department of Anesthesiology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- grid.14778.3d0000 0000 8922 7789Department of Surgery and Interdisciplinary Surgical Intensive Care Unit, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Martijn van Griensven
- grid.5012.60000 0001 0481 6099Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan Haussmann
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Balint Tamaskovics
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Plettenberg
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Kathrin Scheckenbach
- grid.14778.3d0000 0000 8922 7789Department of Ear, Nose and Throat Disease, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Stefanie Corradini
- grid.5252.00000 0004 1936 973XDepartment of Radiation Oncology, LMU University of Munich, Munich, Germany
| | - Alessia Pedoto
- grid.51462.340000 0001 2171 9952Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kitti Maas
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Livia Schmidt
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Olaf Grebe
- Department of Cardiology and Rhythmology, Petrus Hospital, Wuppertal, Germany
| | - Irene Esposito
- grid.14778.3d0000 0000 8922 7789Institute of Pathology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Anja Ehrhardt
- grid.412581.b0000 0000 9024 6397Institute of Virology, University of Witten/Herdecke, Witten, Germany
| | - Matthias Peiper
- grid.14778.3d0000 0000 8922 7789Medical Faculty, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Alexandra Buhren
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christian Calles
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Andreas Stöhr
- grid.14778.3d0000 0000 8922 7789Coordination Center for Clinical Studies, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Peter Arne Gerber
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Artur Lichtenberg
- grid.14778.3d0000 0000 8922 7789Department of Cardiac Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Hubert Schelzig
- grid.14778.3d0000 0000 8922 7789Department of Vascular Surgery, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Yechan Flaig
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Amir Rezazadeh
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Wilfried Budach
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Christiane Matuschek
- grid.14778.3d0000 0000 8922 7789Department of Radiation Oncology, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
14
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
16
|
Vitello GA, Federico C, Bruno F, Vinci M, Musumeci A, Ragalmuto A, Sturiale V, Brancato D, Calì F, Saccone S. Allelic Variations in the Human Genes TMPRSS2 and CCR5, and the Resistance to Viral Infection by SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23169171. [PMID: 36012436 PMCID: PMC9409186 DOI: 10.3390/ijms23169171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/28/2022] Open
Abstract
During the first wave of COVID-19 infection in Italy, the number of cases and the mortality rates were among the highest compared to the rest of Europe and the world. Several studies demonstrated a severe clinical course of COVID-19 associated with old age, comorbidities, and male gender. However, there are cases of virus infection resistance in subjects living in close contact with infected subjects. Thus, to explain the predisposition to virus infection and to COVID-19 disease progression, we must consider, in addition to the genetic variability of the virus and other environmental or comorbidity conditions, the allelic variants of specific human genes, directly or indirectly related to the life cycle of the virus. Here, we analyzed three human genetic polymorphisms belonging to the TMPRSS2 and CCR5 genes in a sample population from Sicily (Italy) to investigate possible correlations with the resistance to viral infection and/or to COVID-19 disease progression as recently described in other human populations. Our results did not show any correlations of the rs35074065, rs12329760, and rs333 polymorphisms with SARS-CoV-2 infection or with COVID-19 disease severity. Further studies on other human genetic polymorphisms should be performed to identify the major human determinants of SARS-CoV-2 viral resistance.
Collapse
Affiliation(s)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Francesca Bruno
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Alda Ragalmuto
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Valentina Sturiale
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Desiree Brancato
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Francesco Calì
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
17
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
19
|
Dogan S, Mart Komurcu SZ, Korkmaz MD, Kaya E, Yavas S, Dogan S, Senturk Ciftci H, Dasdemir S. Effect of Chemokine Gene Variants on Covid-19 Disease Severity. Immunol Invest 2022; 51:1965-1974. [PMID: 35763308 DOI: 10.1080/08820139.2022.2088383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Patients immune phenotype/genotype data may be useful to understand the molecular mechanisms involved in SARS-CoV-2 infection and can contribute to the identify the different levels of disease severity. The roles of chemokines have been reported in the coronavirus-related diseases SARS and MERS and they may likewise play a critical role in the development of the symptoms of COVID-19 disease. We analyzed the association of the MCP-1-A2518 G, SDF-1-3'A, CCR5-delta32, CCR5-A55029 G, CXCR4-C138T and CCR2-V64I gene polymorphisms with COVID-19 severity to further unveil the immunological pathways leading to disease severity and death. Polymerase chain reaction(PCR)/Sanger sequencing analysis was performed for detection of the variations in 60 asymptomatic and 119 severe COVID-19 patients. In our study, we found that the frequencies of MCP-1 of GA genotype and G allele carriers were significantly higher in severe COVID-19 patients than the asymptomatic COVID-19 patients (p < .0001 and p: .005, respectively). However, no significant association was found for any of the other polymorphisms with the severity of COVID-19. Our findings suggest that there is a positive association between MCP-1-A2518 G gene variants with the severity of COVID-19. However, larger studies in different population which will focus on gene expression levels will help us to understand the capability of the mechanism role.
Collapse
Affiliation(s)
- Seydanur Dogan
- Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | | | - Merve Damla Korkmaz
- Department of Physical Medicine and Rehabilitation, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Ebru Kaya
- Department of Anesthesiology and Reanimation, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Sevim Yavas
- Department of Infectious Diseases, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Serkan Dogan
- Department of Emergency Medicine, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Hayriye Senturk Ciftci
- Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | - Selcuk Dasdemir
- Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Files DC, Tacke F, O’Sullivan A, Dorr P, Ferguson WG, Powderly WG. Rationale of using the dual chemokine receptor CCR2/CCR5 inhibitor cenicriviroc for the treatment of COVID-19. PLoS Pathog 2022; 18:e1010547. [PMID: 35749425 PMCID: PMC9231801 DOI: 10.1371/journal.ppat.1010547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million people and costing millions of lives. Therapies to attenuate severe disease are desperately needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other investigational agents in patients with COVID-19 are currently ongoing. These trials intend to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of COVID-19 and prevent complications. This article reviews the literature surrounding the CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC to improve outcomes.
Collapse
Affiliation(s)
- Daniel Clark Files
- Department of Internal Medicine, Pulmonary, Critical Care, Allergy and Immunology Section, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Frank Tacke
- Medical Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | | | - Patrick Dorr
- AbbVie Inc., North Chicago, Illinois, United States of America
| | | | - William G. Powderly
- John T. Milliken Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine in St Louis, St Louis, Missouri, United States of America
| |
Collapse
|
21
|
Chen T, Polak P, Uryasev S. Classification and severity progression measure of COVID-19 patients using pairs of multi-omic factors. J Appl Stat 2022; 50:2473-2503. [PMID: 37529561 PMCID: PMC10388828 DOI: 10.1080/02664763.2022.2064975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Early detection and effective treatment of severe COVID-19 patients remain two major challenges during the current pandemic. Analysis of molecular changes in blood samples of severe patients is one of the promising approaches to this problem. From thousands of proteomic, metabolomic, lipidomic, and transcriptomic biomarkers selected in other research, we identify several pairs of biomarkers that after additional nonlinear spline transformation are highly effective in classifying and predicting severe COVID-19 cases. The performance of these pairs is evaluated in-sample, in a cross-validation exercise, and in an out-of-sample analysis on two independent datasets. We further improve our classifier by identifying complementary pairs using hierarchical clustering. In a result, we achieve 96-98% AUC on the validation data. Our findings can help medical experts to identify small groups of biomarkers that after nonlinear transformation can be used to construct a cost-effective test for patient screening and prediction of severity progression.
Collapse
Affiliation(s)
- Teng Chen
- Department of Applied Math & Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Paweł Polak
- Department of Applied Math & Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Stanislav Uryasev
- Department of Applied Math & Statistics, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
22
|
Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022; 13:835994. [PMID: 35154162 PMCID: PMC8829453 DOI: 10.3389/fimmu.2022.835994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Eye on Primates, Los Angeles, CA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Ferrero MR, Tavares LP, Garcia CC. The Dual Role of CCR5 in the Course of Influenza Infection: Exploring Treatment Opportunities. Front Immunol 2022; 12:826621. [PMID: 35126379 PMCID: PMC8810482 DOI: 10.3389/fimmu.2021.826621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza is one of the most relevant respiratory viruses to human health causing annual epidemics, and recurrent pandemics. Influenza disease is principally associated with inappropriate activation of the immune response. Chemokine receptor 5 (CCR5) and its cognate chemokines CCL3, CCL4 and CCL5 are rapidly induced upon influenza infection, contributing to leukocyte recruitment into the airways and a consequent effective antiviral response. Here we discuss the existing evidence for CCR5 role in the host immune responses to influenza virus. Complete absence of CCR5 in mice revealed the receptor’s role in coping with influenza via the recruitment of early memory CD8+ T cells, B cell activation and later recruitment of activated CD4+ T cells. Moreover, CCR5 contributes to inflammatory resolution by enhancing alveolar macrophages survival and reprogramming macrophages to pro-resolving phenotypes. In contrast, CCR5 activation is associated with excessive recruitment of neutrophils, inflammatory monocytes, and NK cells in models of severe influenza pneumonia. The available data suggests that, while CCL5 can play a protective role in influenza infection, CCL3 may contribute to an overwhelming inflammatory process that can harm the lung tissue. In humans, the gene encoding CCR5 might contain a 32-base pair deletion, resulting in a truncated protein. While discordant data in literature regarding this CCR5 mutation and influenza severity, the association of CCR5delta32 and HIV resistance fostered the development of different CCR5 inhibitors, now being tested in lung inflammation therapy. The potential use of CCR5 inhibitors to modulate the inflammatory response in severe human influenza infections is to be addressed.
Collapse
Affiliation(s)
- Maximiliano Ruben Ferrero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Maximiliano Ruben Ferrero,
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Hubacek JA. Effects of selected inherited factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. Physiol Res 2021; 70:S125-S134. [PMID: 34913347 DOI: 10.33549/physiolres.934730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic predispositions may influence geographical and interethnic differences in COVID-19 prevalence and mortality in affected populations. Of the many genes implicated in COVID-19 progression, a substantial number have no direct functional link on virus transfer/viability or on the host immune system. To address this knowledge deficit, a large number of in silico studies have recently been published. However, the results of these studies often contradict the findings of studies involving real patients. For example, the ACE2 has been shown to play an important role in regulating coronavirus entry into cells, but none of its variations have been directly associated with COVID-19 susceptibility or severity. Consistently was reported that increased risk of COVID-19 is associated with blood group A and with the APOE4 allele. Among other genes with potential impacts are the genes for CCR5, IL-10, CD14, TMPRSS2 and angiotensin-converting enzyme. Variants within the protein-coding genes OAS1 and LZTFL1 (transferred to the human genome from Neanderthals) are understood to be among the strongest predictors of disease severity. The intensive research efforts have helped to identify the genes and polymorphisms that contribute to SARS-CoV-2 infection and COVID-19 severity.
Collapse
Affiliation(s)
- J A Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic.
| |
Collapse
|
25
|
Novysedlak R, Vachtenheim J, Stříž I, Viklický O, Lischke R, Strizova Z. SARS-CoV-2 viral load assessment in lung transplantation. Physiol Res 2021; 70:S253-S258. [PMID: 34913356 DOI: 10.33549/physiolres.934760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the era of COVID-19 pandemic, organ transplantation programs were facing serious challenges. The lung transplantation donor pool was extremely limited and SARS-CoV-2 viral load assessment has become a crucial part of selecting an optimal organ donor. Since COVID-19 is a respiratory disease, the viral load is thought to be more important in lung transplantations as compared to other solid organ transplantations. We present two challenging cases of potential lung donors with a questionable COVID-19 status. Based on these cases, we suggest that the cycle threshold (Ct) value should always be requested from the laboratory and the decision whether to proceed with transplantation should be made upon complex evaluation of diverse criteria, including the nasopharyngeal swab and bronchoalveolar lavage PCR results, the Ct value, imaging findings and the medical history. However, as the presence of viral RNA does not ensure infectivity, it is still to be clarified which Ct values are associated with the viral viability. Anti-SARS-CoV-2 IgA antibodies may support the diagnosis and moreover, novel methods, such as quantifying SARS-CoV-2 nucleocapsid antigen in serum may provide important answers in organ transplantations and donor selections.
Collapse
Affiliation(s)
- R Novysedlak
- Third Department of Surgery, Prague Lung Transplant Program, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic; Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Praha 5, Czech Republic.
| | | | | | | | | | | |
Collapse
|
26
|
Starcevic Cizmarevic N, Kapovic M, Roncevic D, Ristic S. Could the CCR5-Delta32 mutation be protective in SARS-CoV-2 infection? Physiol Res 2021; 70:S249-S252. [PMID: 34913355 DOI: 10.33549/physiolres.934725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence points to host genetics as a factor in COVID-19 prevalence and outcome. CCR5 is a receptor for proinflammatory chemokines that are involved in host responses, especially to viruses. The CCR5-delta32 minor allele is an interesting variant, given the role of CCR5 in some viral infections, particularly HIV-1. Recent studies of the impact of CCR5-delta32 on COVID-19 risk and severity have yielded contradictory results. This ecologic study shows that the CCR5-delta32 allelic frequency in a European population was significantly negatively correlated with the number of COVID-19 cases (p=0.035) and deaths (p=0.006) during the second pandemic wave. These results suggest that CCR5-delta32 may be protective against SARS-CoV-2 infection, as it is against HIV infection, and could be predictive of COVID-19 risk and severity. Further studies based on samples from populations of different genetic backgrounds are needed to validate these statistically obtained findings.
Collapse
Affiliation(s)
- N Starcevic Cizmarevic
- Department of Medical Biology and Genetics, Faculty of Medicine University of Rijeka, Rijeka, Croatia.
| | | | | | | |
Collapse
|
27
|
Kulmann-Leal B, Ellwanger JH, Chies JAB. CCR5Δ32 in Brazil: Impacts of a European Genetic Variant on a Highly Admixed Population. Front Immunol 2021; 12:758358. [PMID: 34956188 PMCID: PMC8703165 DOI: 10.3389/fimmu.2021.758358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
The genetic background of Brazilians encompasses Amerindian, African, and European components as a result of the colonization of an already Amerindian inhabited region by Europeans, associated to a massive influx of Africans. Other migratory flows introduced into the Brazilian population genetic components from Asia and the Middle East. Currently, Brazil has a highly admixed population and, therefore, the study of genetic factors in the context of health or disease in Brazil is a challenging and remarkably interesting subject. This phenomenon is exemplified by the genetic variant CCR5Δ32, a 32 base-pair deletion in the CCR5 gene. CCR5Δ32 originated in Europe, but the time of origin as well as the selective pressures that allowed the maintenance of this variant and the establishment of its current frequencies in the different human populations is still a field of debates. Due to its origin, the CCR5Δ32 allele frequency is high in European-derived populations (~10%) and low in Asian and African native human populations. In Brazil, the CCR5Δ32 allele frequency is intermediate (4-6%) and varies on the Brazilian States, depending on the migratory history of each region. CCR5 is a protein that regulates the activity of several immune cells, also acting as the main HIV-1 co-receptor. The CCR5 expression is influenced by CCR5Δ32 genotypes. No CCR5 expression is observed in CCR5Δ32 homozygous individuals. Thus, the CCR5Δ32 has particular effects on different diseases. At the population level, the effect that CCR5Δ32 has on European populations may be different than that observed in highly admixed populations. Besides less evident due to its low frequency in admixed groups, the effect of the CCR5Δ32 variant may be affected by other genetic traits. Understanding the effects of CCR5Δ32 on Brazilians is essential to predict the potential use of pharmacological CCR5 modulators in Brazil. Therefore, this study reviews the impacts of the CCR5Δ32 on the Brazilian population, considering infectious diseases, inflammatory conditions, and cancer. Finally, this article provides a general discussion concerning the impacts of a European-derived variant, the CCR5Δ32, on a highly admixed population.
Collapse
Affiliation(s)
| | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
28
|
Chang XL, Wu HL, Webb GM, Tiwary M, Hughes C, Reed JS, Hwang J, Waytashek C, Boyle C, Pessoa C, Sylwester AW, Morrow D, Belica K, Fischer M, Kelly S, Pourhassan N, Bochart RM, Smedley J, Recknor CP, Hansen SG, Sacha JB. CCR5 Receptor Occupancy Analysis Reveals Increased Peripheral Blood CCR5+CD4+ T Cells Following Treatment With the Anti-CCR5 Antibody Leronlimab. Front Immunol 2021; 12:794638. [PMID: 34868084 PMCID: PMC8640501 DOI: 10.3389/fimmu.2021.794638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
CCR5 plays a central role in infectious disease, host defense, and cancer progression, thereby making it an ideal target for therapeutic development. Notably, CCR5 is the major HIV entry co-receptor, where its surface density correlates with HIV plasma viremia. The level of CCR5 receptor occupancy (RO) achieved by a CCR5-targeting therapeutic is therefore a critical predictor of its efficacy. However, current methods to measure CCR5 RO lack sensitivity, resulting in high background and overcalculation. Here, we report on two independent, flow cytometric methods of calculating CCR5 RO using the anti-CCR5 antibody, Leronlimab. We show that both methods led to comparable CCR5 RO values, with low background on untreated CCR5+CD4+ T cells and sensitive measurements of occupancy on both blood and tissue-resident CD4+ T cells that correlated longitudinally with plasma concentrations in Leronlimab-treated macaques. Using these assays, we found that Leronlimab stabilized cell surface CCR5, leading to an increase in the levels of circulating and tissue-resident CCR5+CD4+ T cells in vivo in Leronlimab-treated macaques. Weekly Leronlimab treatment in a chronically SIV-infected macaque led to increased CCR5+CD4+ T cells levels and fully suppressed plasma viremia, both concomitant with full CCR5 RO on peripheral blood CD4+ T cells, demonstrating that CCR5+CD4+ T cells were protected from viral replication by Leronlimab binding. Finally, we extended these results to Leronlimab-treated humans and found that weekly 700 mg Leronlimab led to complete CCR5 RO on peripheral blood CD4+ T cells and a statistically significant increase in CCR5+CD4+ T cells in peripheral blood. Collectively, these results establish two RO calculation methods for longitudinal monitoring of anti-CCR5 therapeutic antibody blockade efficacy in both macaques and humans, demonstrate that CCR5+CD4+ T cell levels temporarily increase with Leronlimab treatment, and facilitate future detailed investigations into the immunological impacts of CCR5 inhibition in multiple pathophysiological processes.
Collapse
Affiliation(s)
- Xiao L. Chang
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Helen L. Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Gabriela M. Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Meenakshi Tiwary
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Colette Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Joseph Hwang
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Courtney Waytashek
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Carla Boyle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Cleiton Pessoa
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Andrew W. Sylwester
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - David Morrow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Karina Belica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | | | | | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | | | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
29
|
Varela AA, Cheng S, Werren JH. Novel ACE2 protein interactions relevant to COVID-19 predicted by evolutionary rate correlations. PeerJ 2021; 9:e12159. [PMID: 34616619 PMCID: PMC8449537 DOI: 10.7717/peerj.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the cell receptor that the coronavirus SARS-CoV-2 binds to and uses to enter and infect human cells. COVID-19, the pandemic disease caused by the coronavirus, involves diverse pathologies beyond those of a respiratory disease, including micro-thrombosis (micro-clotting), cytokine storms, and inflammatory responses affecting many organ systems. Longer-term chronic illness can persist for many months, often well after the pathogen is no longer detected. A better understanding of the proteins that ACE2 interacts with can reveal information relevant to these disease manifestations and possible avenues for treatment. We have undertaken an approach to predict candidate ACE2 interacting proteins which uses evolutionary inference to identify a set of mammalian proteins that “coevolve” with ACE2. The approach, called evolutionary rate correlation (ERC), detects proteins that show highly correlated evolutionary rates during mammalian evolution. Such proteins are candidates for biological interactions with the ACE2 receptor. The approach has uncovered a number of key ACE2 protein interactions of potential relevance to COVID-19 pathologies. Some proteins have previously been reported to be associated with severe COVID-19, but are not currently known to interact with ACE2, while additional predicted novel ACE2 interactors are of potential relevance to the disease. Using reciprocal rankings of protein ERCs, we have identified strongly interconnected ACE2 associated protein networks relevant to COVID-19 pathologies. ACE2 has clear connections to coagulation pathway proteins, such as Coagulation Factor V and fibrinogen components FGA, FGB, and FGG, the latter possibly mediated through ACE2 connections to Clusterin (which clears misfolded extracellular proteins) and GPR141 (whose functions are relatively unknown). ACE2 also connects to proteins involved in cytokine signaling and immune response (e.g. XCR1, IFNAR2 and TLR8), and to Androgen Receptor (AR). The ERC prescreening approach has elucidated possible functions for relatively uncharacterized proteins and possible new functions for well-characterized ones. Suggestions are made for the validation of ERC-predicted ACE2 protein interactions. We propose that ACE2 has novel protein interactions that are disrupted during SARS-CoV-2 infection, contributing to the spectrum of COVID-19 pathologies.
Collapse
Affiliation(s)
- Austin A Varela
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, United States
| |
Collapse
|
30
|
Serpeloni JM, Lima Neto QA, Lucio LC, Ramão A, Carvalho de Oliveira J, Gradia DF, Malheiros D, Ferrasa A, Marchi R, Figueiredo DLA, Silva WA, Ribeiro EMSF, Cólus IMS, Cavalli LR. Genome interaction of the virus and the host genes and non-coding RNAs in SARS-CoV-2 infection. Immunobiology 2021; 226:152130. [PMID: 34425415 PMCID: PMC8378551 DOI: 10.1016/j.imbio.2021.152130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
In this review, we highlight the interaction of SARS-CoV-2 virus and host genomes, reporting the current studies on the sequence analysis of SARS-CoV-2 isolates and host genomes from diverse world populations. The main genetic variants that are present in both the virus and host genomes were particularly focused on the ACE2 and TMPRSS2 genes, and their impact on the patients' susceptibility to the virus infection and severity of the disease. Finally, the interaction of the virus and host non-coding RNAs is described in relation to their regulatory roles in target genes and/or signaling pathways critically associated with SARS-CoV-2 infection. Altogether, these studies provide a significant contribution to the knowledge of SARS-CoV-2 mechanisms of infection and COVID-19 pathogenesis. The described genetic variants and molecular factors involved in host/virus genome interactions have significantly contributed to defining patient risk groups, beyond those based on patients' age and comorbidities, and they are promising candidates to be potentially targeted in treatment strategies for COVID-19 and other viral infectious diseases.
Collapse
Affiliation(s)
- Juliana M Serpeloni
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Quirino Alves Lima Neto
- Departamento de Ciências Básicas da Saúde, CCS, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Léia Carolina Lucio
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, CCS, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
| | - Anelisa Ramão
- Departamento de Ciências Biológicas, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | | | | | - Danielle Malheiros
- Departamento de Genética, SCB, Universidade Federal do Paraná, PR, Brazil
| | - Adriano Ferrasa
- Departamento de Informática, SECATE, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Rafael Marchi
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - David L A Figueiredo
- Departamento de Medicina, Universidade Estadual do Centro-Oeste, UNICENTRO e Instituto de Pesquisa para o Câncer, IPEC, Guarapuava, PR, Brazil
| | - Wilson A Silva
- Departamento de Genética, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, SP, e Instituto de Pesquisa para o Câncer, IPEC, Guarapuava, PR, Brazil
| | | | - Ilce M S Cólus
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Luciane R Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
31
|
Colona VL, Vasiliou V, Watt J, Novelli G, Reichardt JKV. Update on human genetic susceptibility to COVID-19: susceptibility to virus and response. Hum Genomics 2021; 15:57. [PMID: 34429158 PMCID: PMC8384585 DOI: 10.1186/s40246-021-00356-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vito Luigi Colona
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, USA
| | - Jessica Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia.
| |
Collapse
|
32
|
Hubacek JA, Dusek L, Majek O, Adamek V, Cervinkova T, Dlouha D, Adamkova V. ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clin Chim Acta 2021; 519:206-209. [PMID: 33957095 PMCID: PMC8091801 DOI: 10.1016/j.cca.2021.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread from China in 2019/2020 to all continents. Significant geographical and ethnic differences were described, and host genetic background seems to be important for the resistance to and mortality of COVID-19. Angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4646994) is one of the candidates with the potential to affect infection symptoms and mortality. METHODS In our study, we successfully genotyped 408 SARS-CoV-2-positive COVID-19 survivors (163 asymptomatic and 245 symptomatic) and compared them with a population-based DNA bank of 2,559 subjects. RESULTS The frequency of ACE I/I homozygotes was significantly increased in COVID-19 patients compared with that in controls (26.2% vs. 21.2%; P = 0.02; OR [95% CI] = 1.55 [1.17-2.05]. Importantly, however, the difference was driven just by the symptomatic subjects (29.0% vs. 21.2% of the I/I homozygotes; P = 0.002; OR [95% CI] = 1.78 [1.22-2.60]). The genotype distribution of the ACE genotypes was almost identical in population controls and asymptomatic SARS-CoV-2-positive patients (P = 0.76). CONCLUSIONS We conclude that ACE I/D polymorphism could have the potential to predict the severity of COVID-19, with I/I homozygotes being at increased risk of symptomatic COVID-19.
Collapse
Affiliation(s)
- Jaroslav A Hubacek
- Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic.
| | - Ladislav Dusek
- Institute of Health Information and Statistics of the Czech Republic, Palackeho namesti 4, Prague, Czech Republic; Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice753/5, Brno, Czech Republic
| | - Ondrej Majek
- Institute of Health Information and Statistics of the Czech Republic, Palackeho namesti 4, Prague, Czech Republic; Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice753/5, Brno, Czech Republic
| | - Vaclav Adamek
- Czech Technical University, Faculty of Biomedical Engineering, Sítná 3105, Kladno, Czech Republic
| | - Tereza Cervinkova
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic
| | - Dana Dlouha
- Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic
| | - Vera Adamkova
- Czech Technical University, Faculty of Biomedical Engineering, Sítná 3105, Kladno, Czech Republic; Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic
| |
Collapse
|
33
|
Cuesta-Llavona E, Gómez J, Albaiceta GM, Amado-Rodríguez L, García-Clemente M, Gutiérrez-Rodríguez J, López-Alonso I, Hermida T, Enríquez AI, Hernández-González C, Gil-Peña H, Domínguez-Garrido E, Pérez-Oliveira S, Alvarez V, López-Larrea C, Suarez-Alvarez B, Tranche S, Jimeno-Demuth FJ, Coto E. Variant-genetic and transcript-expression analysis showed a role for the chemokine-receptor CCR5 in COVID-19 severity. Int Immunopharmacol 2021; 98:107825. [PMID: 34116286 PMCID: PMC8169316 DOI: 10.1016/j.intimp.2021.107825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The chemokine receptor CCR5 has been implicated in COVID-19. CCR5 and its ligands are overexpressed in patients. The pharmacological targeting of CCR5 would improve the COVID-19 severity. We sought to investigate the role of the CCR5-Δ32 variant (rs333) in COVID-19. The CCR5-Δ32 was genotyped in 801 patients (353 in the intensive care unit, ICU) and 660 healthy controls, and the deletion was significantly less frequent in hospitalysed COVID-19 than in healthy controls (p = 0.01, OR = 0.66, 95%CI = 0.49–0.88). Of note, we did not find homozygotes among the patients, compared to 1% of the controls. The CCR5 transcript was measured in leukocytes from 85 patients and 40 controls. We found a significantly higher expression of the CCR5 transcript among the patients, with significant difference when comparing the non-deletion carriers (controls = 35; patients = 81; p = 0.01). ICU-patients showed non-significantly higher expression than no-ICU cases. Our study points to CCR5 as a genetic marker for COVID-19. The pharmacological targeting of CCR5 should be a promising treatment for COVID-19.
Collapse
Affiliation(s)
- Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta García-Clemente
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Geriatría, Hospital Monte Naranco, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain
| | - Tamara Hermida
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Ana I Enríquez
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | - Helena Gil-Peña
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | | | - Victoria Alvarez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translation Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Salvador Tranche
- Centro Salud El cristo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
34
|
Hubacek JA, Dlouha L, Dusek L, Majek O, Adamkova V. Apolipoprotein E4 Allele in Subjects with COVID-19. Gerontology 2021; 67:320-322. [PMID: 33965962 PMCID: PMC8247822 DOI: 10.1159/000516200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jaroslav Alois Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Third Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Dlouha
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czechia
| | - Ladislav Dusek
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czechia.,Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ondrej Majek
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czechia.,Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vera Adamkova
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|