1
|
Cash C, Witherspoon K, Athrey G. How concerned should we be about broiler breeder fertility declines? Poult Sci 2025; 104:104992. [PMID: 40073637 PMCID: PMC11951003 DOI: 10.1016/j.psj.2025.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Broiler breeder fertility is the bedrock on which modern broiler production rests. Over the last decade, fertility and hatchability issues have emerged as key topics of interest for both breeders and producers. In this study, we took an analytical approach to interrogate declining fertility trends among U.S. broiler breeders from 2013 to 2022, leveraging data from the USDA National Agricultural Statistics Service (NASS). Despite an increase in the number of eggs set and broilers raised to meet the rising demand for poultry, projections indicate that hatchability rates could decrease to approximately 60 % by 2050 without corrective action. Our Markov Chain Monte Carlo (MCMC) analysis reveals significant declines in essential production metrics, including hatchability, chick livability, and production efficiency. The analysis also includes 95 % credible intervals that confirm a persistent downward trend across these parameters. We developed the Broiler Breeder Performance Index (BBPI) to deepen our understanding of these trends, utilizing both Gaussian and Cauchy models to evaluate predictive performance. The BBPI projections suggest a decline below baseline values over time, underscoring the urgent need for interventions to counteract the fertility crisis in the broiler industry. Several factors contribute to this decline, including management practices and genetic selection strategies. Effective flock management techniques, such as sex-separate feeding and careful weight monitoring, are vital for improving reproductive viability among broiler breeders. Our findings highlight the necessity of addressing these fertility issues to ensure the long-term sustainability of U.S. poultry production. As the global demand for poultry meat grows, the poultry industry faces significant challenges in maintaining productivity. By pinpointing the causes of fertility decline and implementing effective management strategies, stakeholders can better navigate the complexities of poultry production and contribute to food security. This study aims to draw attention to the urgency of addressing broiler breeder fertility issues. It encourages further research into solutions that can enhance reproductive performance across various genetic stocks in the industry.
Collapse
Affiliation(s)
- Cara Cash
- Department of Poultry Science, 2472 TAMU, 101 Kleberg Center, Texas A&M University, College Station, Texas, 77843
| | - Kolton Witherspoon
- Department of Poultry Science, 2472 TAMU, 101 Kleberg Center, Texas A&M University, College Station, Texas, 77843
| | - Giridhar Athrey
- Department of Poultry Science, 2472 TAMU, 101 Kleberg Center, Texas A&M University, College Station, Texas, 77843.
| |
Collapse
|
2
|
Ji H, Xu Y, Teng G. Predicting egg production rate and egg weight of broiler breeders based on machine learning and Shapley additive explanations. Poult Sci 2025; 104:104458. [PMID: 39546918 PMCID: PMC11647772 DOI: 10.1016/j.psj.2024.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Egg production rate and egg weight are core indicators for evaluating the production performance of broiler breeders. The accurate prediction of these indicators can significantly enhance farm economic efficiency and can provide a basis for future production strategies. Currently, there is a lack of research on the application of machine learning (ML) models to predict egg production rate and egg weight in broiler breeders. In this study, we collected data on age, feed intake, water consumption, and environmental factors (temperature, humidity and wind speed) from three poultry houses to train the predictive models. Based on this data, we developed three different datasets. In each dataset, data from a single poultry house were divided into a training set and a validation set in an 8:2 ratio, and data from the remaining two poultry houses were combined to form the test set. We systematically compared the performances of the following seven ML models in predicting egg production rate and egg weight: random forest (RF), multilayer perceptron (MLP), support vector regression (SVR), least squares support vector machine (LSSVM), k-nearest neighbors (kNN), XGBoost, and LightGBM. The results indicated that the XGBoost model demonstrated the best performance across all three datasets. In predicting egg production rate, the XGBoost model achieved a mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) of less than 2.86%, 4.17% and 7.03%, respectively. For egg weight predictions, the XGBoost model's MAE, RMSE and MAPE were less than 0.63g, 0.86g and 1.1%, respectively. Given the inherent black-box nature of ML models, we used the Shapley additive explanations (SHAP) method to interpret the key features influencing the XGBoost model's predictions and the interactions between these features. The key features for predicting egg production rate are age, feed intake and effective temperature (ET). For egg weight prediction, the most important features are age, wind speed, temperature-humidity index (THI) and ET. This approach enhanced the model's transparency and credibility. This study provides scientific evidence for predicting the production performance of broiler breeders. Accurately predicting egg production rate and egg weight provides a scientific basis for farm operations, aiding in optimizing resource allocation, improving production efficiency, enhancing animal welfare, and ultimately boosting the farm's profitability.
Collapse
Affiliation(s)
- Hengyi Ji
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center for Animal Healthy Environment, Beijing 100083, China
| | - Yidan Xu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center for Animal Healthy Environment, Beijing 100083, China
| | - Ganghui Teng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Engineering Research Center for Animal Healthy Environment, Beijing 100083, China.
| |
Collapse
|
3
|
Santos MJB, Rabello CBV, Wanderley JSS, Ludke MCMM, Barros MR, Costa FS, Santos CS, Fireman AK. Levels of substitution of inorganic mineral to amino acids complexed minerals on old laying hens. Sci Rep 2024; 14:24803. [PMID: 39438582 PMCID: PMC11496821 DOI: 10.1038/s41598-024-75897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
This study was conducted with the objective of evaluating the impact of replacing inorganic mineral sources (IM) with amino acid complexed minerals (AACM) in laying hens' diets on performance, egg quality, bone, and intestinal health. The effects of 4 different diets with varying levels of AACM substitution were evaluated on 400 Lohmann White hens aged 78-98 weeks. The control diet contained only IM sources at levels of 60, 60, 7, 40, 0.2, and 2 mg/kg of Zn, Mn, Cu, Fe, Se, and I, respectively. The other treatments were made by a total substitution of IM with AACM, as follows: AACM70-70% of IM levels; AACM50-50% of IM levels; and AACM40-40% of IM levels. Orthogonal polynomial contrasts and Dunnett's test were used to determine their impact (P < 0.05). The treatment AACM40 improved egg production, egg weight, egg mass, and feed conversion ratio (P < 0.05). Hens that received AACM40 also produced the thickest eggshells and better tibial bone density (P < 0.01). Histomorphometry analyses demonstrated significant effects of AACM treatments. The optimal supplementation levels of 24, 24, 2.8, 16, 0.08, and 0.8 mg/kg of Zn, Mn, Cu, Fe, Se, and I, respectively.
Collapse
Affiliation(s)
- Marcos J B Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil.
| | - Carlos B V Rabello
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Jamille S S Wanderley
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Maria C M M Ludke
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Mércia R Barros
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabiano S Costa
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Clariana S Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
4
|
Aydin SS, Hatipoglu D. Probiotic strategies for mitigating heat stress effects on broiler chicken performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2153-2171. [PMID: 39320540 DOI: 10.1007/s00484-024-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The primary objective of this study was to evaluate the effects of liquid (Fructose-added lactic acid bacteria, F-LAB) and commercial (Commercial LAB, C-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria (LAB) on broiler chickens experiencing heat stress (HS). The research involved 240 broiler chicks, divided into six groups: control, F-LAB, C-LAB (raised at 24 °C), HS, F-LAB/HS, and C-LAB/HS (exposed to 5-7 h of 34-36 °C daily). The study followed a randomized complete block design, with each group consisting of 40 chicks. F-LAB and HS/F-LAB groups received a natural probiotic added to their drinking water at a rate of 0.5 ml/L, while C-LAB and HS/C-LAB groups were supplemented with a commercial probiotic at the same dosage. Control and HS groups received no probiotic supplementation. The duration of the study was 42 days, with data collected on growth performance, feed intake, feed conversion ratio, and health parameters. Statistical analyses were performed using ANOVA, and significant differences between groups were determined using post hoc tests. The results revealed that without probiotic supplementation, heat stress led to a decrease in body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increase in the feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels (p < 0.05 for all). Heat stress also adversely affected cecal microbiota, reducing lactic acid bacteria count (LABC) while increasing Escherichia coli and coliform bacteria (CBC) counts. However, in the groups receiving probiotic supplementation under heat stress (F-LAB/HS and C-LAB/HS), these effects were alleviated (p < 0.05 for all). Particularly noteworthy was the observation that broiler chickens supplemented with natural lactic acid bacteria (F-LAB) exhibited greater resilience to heat stress compared to those receiving the commercial probiotic, as evidenced by improvements in growth, liver function, hormonal balance, intestinal health, and cecal microbiome ecology (p < 0.05). These findings suggest that the supplementation of naturally sourced probiotics (F-LAB) may positively impact the intestinal health of broiler chickens exposed to heat stress, potentially supporting growth and health parameters.
Collapse
Affiliation(s)
- Sadik Serkan Aydin
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| | - Durmus Hatipoglu
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| |
Collapse
|
5
|
Nayak N, Bhanja SK, Chakurkar EB, Sahu AR. Adaptive capability of slow-growing backyard poultry as indicated by physiological and molecular responses in a hot and humid coastal climate. J Therm Biol 2024; 125:103985. [PMID: 39368168 DOI: 10.1016/j.jtherbio.2024.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Assessing the adaptability of slow-growing rural chickens for improving thermotolerance to suit the global climate change is a major research need. This work was aimed to evaluate the adaptability of CARI-Debendra chickens and to identify the polymorphism as well as expression profiling of thermotolerant genes (HSP70 and GRP78) under prevailing temperature-humidity indices and thermal stress in a coastal environment. One hundred sixty straight run chicks were reared at THI≥75 (control) and THI>80 under coastal climate till 12 weeks. Polymorphism of HSP70 and GRP78 candidate genes were explored using restriction enzymes TaqI and HaeIII to identify possible thermotolerance markers. Expression profiling of both the genes in liver, intestine and pectoralis muscle was determined through quantitative real-time PCR. Rectal and body surface temperature recorded in the neck and back showed significant differences (P < 0.01) with higher temperature in THI>80 group. Comparatively lower live weights (P < 0.05) and poor FCR were recorded in THI>80 group. The villi height in all intestinal segments was significantly lower (P < 0.01), but deeper crypt depth was observed in THI>80 than control group. A lowest thymus weight (P < 0.05) was noted with no significant differences in immune response in treatment group. Serum levels of cholesterol, activities of lactate dehydrogenase, creatinine kinase and concentration of potassium, sodium and thyroxine hormone were not different between the 2 groups. The concentration of triiodothyronine and chloride ion was lower in THI>80 group indicating adaptive changes for thermoregulation. HSP70 gene expressions in the three tissues were differentially increased (P < 0.01) by temperature-humidity indices, but the expression of GRP78 was not different between the 2 groups. The results concluded that the environmental factors interact with genetics on adaptability towards thermotolerance in slow-growing chickens.
Collapse
Affiliation(s)
- Nibedita Nayak
- ICAR-Central Coastal Agricultural Research Institute, Goa, India
| | | | | | | |
Collapse
|
6
|
Farzin M, Hassanpour S, Zendehdel M, vazir B, Asghari A. The effect of spexin injection and its interaction with nitric oxide, serotonin, and corticotropin receptors on the central regulation of food intake in broilers. IBRO Neurosci Rep 2024; 16:542-549. [PMID: 38746491 PMCID: PMC11090879 DOI: 10.1016/j.ibneur.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Complex homeostatic control mechanisms are tools to adjust the food birds eat and their appetite. Birds and mammals differ in several ways considering food intake regulation. Therefore, this study aimed to investigate the special effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin and corticotropin receptors on central food intake regulation in broilers. In the test 1, Broilers received ICV injection of saline, PCPA (p-chlorophenylalanine,1.25 µg), spexin (10 nmol) and PCPA+spexin. In test 2-7, 8-OH-DPAT, SB-242084 (5-HT2C, 1.5 µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetize inhibitor, 100 nmol), Astressin-B (30 µg) and Astressin2-B (30 µg) were injected to Broilers instead of the PCPA. Then, the amount of food received was measured up to 2 h after the injection. The food consumption was significantly decreased by Spexin (10 nmol) (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Founded on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broilers.
Collapse
Affiliation(s)
- Mohaya Farzin
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 14155-6453, Iran
| | - Bita vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Sutton J, Habibi M, Shili CN, Beker A, Salak-Johnson JL, Foote A, Pezeshki A. Low-Protein Diets Differentially Regulate Energy Balance during Thermoneutral and Heat Stress in Cobb Broiler Chicken ( Gallus domesticus). Int J Mol Sci 2024; 25:4369. [PMID: 38673954 PMCID: PMC11050574 DOI: 10.3390/ijms25084369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle β1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.S.); (M.H.); (C.N.S.); (A.B.); (J.L.S.-J.); (A.F.)
| |
Collapse
|
8
|
Ghashghayi E, Zendehdel M, Khodadadi M, Rahmani B. Central dopaminergic, serotoninergic, as well as GABAergic systems mediate NMU-induced hypophagia in newborn chicken. Int J Neurosci 2024; 134:353-363. [PMID: 35901030 DOI: 10.1080/00207454.2022.2102980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/29/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
AIM Dopaminergic, serotoninergic, and GABAergic systems influence feeding; however, it is unknown how these chemicals interact with neuromedin U (NMU)-induced feeding in birds. In the current study, ten trials were conducted to determine the links between the above-mentioned systems and NMU. MATERIALS AND METHODS In the foremost experimentation, chickens were given intracerebroventricularly injections of NMU (0.1, 1, and 10 µg). NMU (10 µg), SCH23390 (5 nmol), a D1 receptor antagonist, and NMU + SCH23390 were administered in the second experiment. In subsequent experiments, instead of SCH23390, were applied AMI-193 (5 nmol D2 receptor antagonist), NGB2904 (6.4 nmol D3 receptor antagonist), L-741,742 (6 nmol D4 receptor antagonist), 6-OHDA (2.5 nmol dopamine inhibitor), SB242084 (5-HT2c receptor antagonist, 1.5 μg), 8-OH-DPAT (5-HT1A receptor agonist, 15.25 nmol), picrotoxin (GABAA receptor antagonist, 0.5 μg), and CGP54626 (GABAB receptor antagonist, 20 ng). Then, cumulative intake of food was recorded for 2 h. RESULTS According to the results, NMU reduced feeding when compared to the control group (p < 0.05). The NMU-induced hypophagia was reduced with co-injection of NMU and SCH23390 (p < 0.05). Hypophagia was diminished with NMU and AMI-193 (p < 0.05). NMU + NGB2904 and NMU + L-741,742 co-injections had no influence (p > 0.05). 6-OHDA reduced the hypophagia (p < 0.05). NMU and SB242084 decreased the hypophagia (p < 0.05), whereas NMU and 8-OH-DPAT had no effect (p > 0.05). The effects were amplified with picrotoxin (p < 0.05). NMU with CGP54626 had no influence on the hypophagia (p > 0.05). CONCLUSION Thus, NMU-induced hypophagia is probably mediated by D1/D2, 5-HT2c, and GABAA receptors in neonatal chicks.
Collapse
Affiliation(s)
- Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mina Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Behrouz Rahmani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Hatipoglu D, Senturk G, Aydin SS, Kirar N, Top S, Demircioglu İ. Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J Therm Biol 2024; 119:103771. [PMID: 38134538 DOI: 10.1016/j.jtherbio.2023.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The primary aim of this study was to assess the impact of liquid (S-LAB) and lyophilized (L-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria on broilers experiencing heat stress. The study involved 240 broiler chicks divided into six groups. These groups included a negative control (Control) with broilers raised at a normal temperature (24 °C) on a basal diet, and positive control groups (S-LAB and L-LAB) with broilers under normal temperature receiving a lactic acid bacteria supplement (0.5 mL/L) from rye-grass in their drinking water. The heat stress group (HS) comprised broilers exposed to cyclic heat stress (5-7 h per day at 34-36 °C) on a basal diet, while the heat stress and probiotic groups (S-LAB/HS and L-LAB/HS) consisted of broilers under heat stress supplemented with the rye-grass-derived lactic acid bacteria. Results indicated that heat stress without supplementation (HS) led to reduced body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increased feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels. Heat stress also negatively impacted cecal microbiota, decreasing lactic acid bacteria (LABC) while increasing E. coli and coliform bacteria (CBC) counts. Probiotic supplements (S-LAB/HS and L-LAB/HS) mitigated these effects by enhancing broilers' resilience to heat stress. In conclusion, rye grass-derived S-LAB and L-LAB probiotics can effectively support broiler chickens under heat stress, promoting growth, liver function, hormonal balance, gut health, and cecal microbiome ecology. These benefits are likely mediated through improved gut health.
Collapse
Affiliation(s)
- Durmus Hatipoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Physiology, 42130, Konya, Turkey.
| | - Goktug Senturk
- Aksaray University, Faculty of Veterinary Medicine, Department of Physiology, 68100, Aksaray, Turkey
| | - Sadik Serkan Aydin
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Nurcan Kirar
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Sermin Top
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - İsmail Demircioglu
- Harran University, Faculty of Veterinary Medicine, Department of Anatomy, 63200, Sanliurfa, Turkey
| |
Collapse
|
10
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
11
|
Fang X, Nong K, Qin X, Liu Z, Gao F, Jing Y, Fan H, Wang Z, Wang X, Zhang H. Effect of purple sweet potato-derived anthocyanins on heat stress response in Wenchang chickens and preliminary mechanism study. Poult Sci 2023; 102:102861. [PMID: 37390559 PMCID: PMC10466256 DOI: 10.1016/j.psj.2023.102861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
This study was conducted to investigate the beneficial effect of purple sweet potato anthocyanins (PSPA) on growth performance, oxidative status, immune response, intestinal morphology, and intestinal flora homeostasis in heat-stressed Wenchang chickens. A total of 100 Wenchang chickens (50-day-old) were randomly assigned to 5 groups, including the thermoneutral environment (TN) group (26°C); high-temperature stressed (HS) group (33°C ± 1°C); low-dose PSPA treatment (L_HS) group (8 mg/kg body weight, 33°C ± 1°C); medium-dose PSPA treatment (M_HS) group and high-dose PSPA treatment (H_HS) group (16 mg/kg and 32 mg/kg body weight, respectively, 33°C ± 1°C). The results showed that PSPA reversed the adverse effects of heat stress on growth performance, meat quality, and carcass characteristics. And the effect was associated with the concentration of PSPA partially. Heat stress increased the serum lipids of Wenchang chickens. LDL-C, TG, TC, and FFA in the serum were significantly decreased, and HDL-C and LPS in the serum were increased by PSPA treatment. The digestive enzymes in duodenal chyme were significantly (P < 0.05) increased by PSPA treatment. And PSPA treatment significantly (P < 0.05) enhanced the redox status by improving antioxidant parameters (GSH-Px and SOD) and decreasing the MDA level in the serum and liver. Moreover, the level of inflammatory cytokines was significantly (P < 0.05) regulated by PSPA treatment compared to the HS group. The villus length and goblet cell numbers after PSPA treatment were significantly higher than HS group. Furthermore, PSPA also played protection on the intestine structure by decreasing the level of D-LA and DAO. 16S rRNA sequencing revealed the microbial composition was altered by PSPA, and Acetanaerobacterium and Oscillibacter were dominant in the H_HS group. Microbial functional prediction indicated that function pathways based on KEGG and metacyc database were regulated by PSPA, and intestinal flora correlated with metabolic function significantly. The spearman correlation analysis showed that Saccharibacteria and Clostridium_IV correlated with the serum lipids, antioxidant, and inflammatory cytokines. Collectively, these findings suggest that PSPA has a positive effect against heat stress in poultry.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xinyun Qin
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zhineng Liu
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Yuanli Jing
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haokai Fan
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Ogbuewu IP, Mbajiorgu CA. Utilisation of cassava as energy and protein feed resource in broiler chicken and laying hen diets. Trop Anim Health Prod 2023; 55:161. [PMID: 37060476 DOI: 10.1007/s11250-023-03579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
A detailed understanding of the nutrient contents of cassava products is crucial to fully maximise their utilisation in animal feed. This study aimed to review published data on the nutritional quality of cassava products and their use as a source of energy and protein in broiler chicken and laying hen diets. Cassava is a tuber crop that grows abundantly in tropical countries, and its products are classified as energy or protein feed resources based on their protein and energy levels. Cassava starch residue (CSR), cassava root meal (CRM), cassava peel meal (CPM), ensiled cassava peel meal (ECPM), fermented cassava peel meal (FCPM), cassava pulp, and cassava root sievate meal (CRSM) were classified as an energy source in chicken feed, whereas cassava leaf meal (CLM) is classified as a protein source. Nutritional analysis indicates that cassava leaves are high in protein, fibre, minerals, vitamins (B1, B2, and C), and carotenoids, while CRM is rich in energy but low in crude protein (CP). Additionally, cassava contains cyanogenic glycosides, especially linamarin, and lotaustralin, which release toxic hydrogen cyanide (HCN) upon tissue disruption. The utilisation of cassava as an energy or protein feed resource in the chicken diet is limited by its high fibre, presence of HCN, nutrient imbalance, and dusty nature of its dried meals. Efforts have been made to enhance the nutrient quality of cassava and increase their utilisation in chicken feed using different processing techniques with some success. Available information on the nutrient contents of differently processed cassava and its effect on chicken performance is vast and dispersed, making it hard to use such information in the decision-making process. Therefore, this review aimed to aggregate published articles on the nutrient contents of cassava products and their impacts on the health and productive indices of broiler chickens and laying hens into a single document for ease of comparison and decision-making.
Collapse
Affiliation(s)
- I P Ogbuewu
- Department of Animal Science and Technology, Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria.
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| | - C A Mbajiorgu
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
13
|
Interactive effects of high temperature and crude protein levels on growth performance, nitrogen excretion, and fecal characteristics of broilers. Trop Anim Health Prod 2022; 54:392. [DOI: 10.1007/s11250-022-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
|
14
|
Sweeney KM, Aranibar CD, Kim WK, Williams SM, Avila LP, Starkey JD, Starkey CW, Wilson JL. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poult Sci 2022; 101:101959. [PMID: 35760003 PMCID: PMC9241026 DOI: 10.1016/j.psj.2022.101959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic selection for increased growth rate in broilers makes feed restriction programs such as skip-a-day (SAD) feeding, for broiler breeders essential to managing body weight, flock uniformity, and reproductive performance. The objective of this experiment was to compare intestinal development, weight gain of breeder pullets, and reproductive performance (22-45 wk) when fed a high fiber diet (3.8% crude fiber) on either an every-day (ED) or SAD basis during rearing. The same developer ration and feed amounts were fed to both treatments. Day-old Ross 708 pullet chicks (n = 912) were randomly distributed into 4 floor pens (n = 228/pen, 2 pens/treatment). At 20 wk of age all birds were weighed, and the coefficient of variation (CV) and average body weight was calculated for each treatment. Birds were then distributed into 10 lay pens (n = 35 birds/pen, 5 pens/treatment) at 21.5 wk of age. Light was increased from 8 h to 15.25 h at move to the lay facility, and all birds were daily fed for the remainder of the study. Data were analyzed by SAS SLICE using a significance level of P ≤ 0.05. During lay, 25% of the birds from each treatment were weighed weekly to adjust feed and monitor body weight. At 21 wk the ED fed pullets were more uniform (P = 0.0007) than the SAD fed pullets. Eggs were collected daily and set for hatch every 4 wk from 28 to 42 wk of age. No significant difference in the hatch data were observed. The ED fed birds achieved first egg at 166 d of age while the SAD fed birds achieved first egg at 173 d of age. Specific gravity was measured every 2 wk from 30 to 40 wk, with ED reared birds having better overall eggshell quality (P = 0.02) and greater egg weight (P < 0.0001) than those fed SAD. Feeding a high fiber diet on an ED basis during rearing, improved body weight uniformity in rearing, encouraged early lay, improved eggshell quality and increased egg weight.
Collapse
Affiliation(s)
- K M Sweeney
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - C D Aranibar
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA
| | - S M Williams
- Department of Population Health, University of Georgia, Athens GA, 30602, USA
| | - L P Avila
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - J D Starkey
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - C W Starkey
- Department of Poultry Science, Auburn University, Auburn AL 36849, USA
| | - J L Wilson
- Department of Poultry Science, University of Georgia, Athens GA, 30602, USA.
| |
Collapse
|
15
|
Ncho CM, Goel A, Gupta V, Jeong CM, Choi YH. Embryonic manipulations modulate differential expressions of heat shock protein, fatty acid metabolism, and antioxidant-related genes in the liver of heat-stressed broilers. PLoS One 2022; 17:e0269748. [PMID: 35839219 PMCID: PMC9286270 DOI: 10.1371/journal.pone.0269748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (TM) on plasma biochemical parameters, organ weights, and hepatic gene expression in broilers exposed to cyclic heat stress (32 ± 1°C for 8 days) (HS) were investigated. A total of 175 chicks were assigned to five treatments: chicks hatched from control eggs (CON); chicks hatched from control eggs but exposed to HS (CON+HS); chicks hatched from eggs injected at 17.5 days of incubation with 0.6mL of 10% GABA and exposed to HS (G10+HS); chicks hatched from thermally manipulated eggs (39.6°C, 6h/d from embryonic days 10 to 18) and exposed to HS (TM+HS); chicks hatched from eggs that received both previous treatments during incubation and exposed to HS (G10+TM+HS). Results revealed that on day 36 post-hatch, hepatic NADPH oxidase 1 (P = 0.034) and 4 (P = 0.021) genes were downregulated in the TM+HS and G10+TM+HS compared to the CON+HS group. In addition, while acetyl-CoA carboxylase gene expression was reduced (P = 0.002) in the G10+TM group, gene expression of extracellular fatty acid-binding protein and peroxisome proliferator-activated receptor-γ was lower (P = 0.045) in the TM+HS group than in the CON+HS group. HS led to higher gene expression of heat shock protein 70 (HSP70) and 90 (HSP90) (P = 0.005, and P = 0.022). On the other hand, the TM+HS group exhibited lower expression of both HSP70 (P = 0.031) and HSP90 (P = 0.043) whereas the G10+TM+HS group had a reduced (P = 0.016) HSP90 expression compared to the CON+HS. MANOVA on different gene sets highlighted an overall lower (P = 0.034) oxidative stress and lower (P = 0.035) heat shock protein expression in the G10+TM+HS group compared to the CON+HS group. Taken together, the current results suggest that the combination of in ovo feeding of GABA with TM can modulate HSPs and antioxidant-related gene expression in heat-stressed broilers.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Carney VL, Anthony NB, Robinson FE, Reimer BL, Korver DR, Zuidhof MJ, Afrouziyeh M. Evolution of maternal feed restriction practices over 60 years of selection for broiler productivity. Poult Sci 2022; 101:101957. [PMID: 35973347 PMCID: PMC9395665 DOI: 10.1016/j.psj.2022.101957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- V L Carney
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - N B Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - F E Robinson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - B L Reimer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - D R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M Afrouziyeh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
17
|
Odile Raphaëlle ND, Kwassi T, Benjamin AM, Oke O, Okanlawo O, Kokou T. Use of
Manihot esculenta
leaves on physiological and production parameters of Sasso breeder hens. Vet Med Sci 2022; 8:1547-1552. [PMID: 35429366 PMCID: PMC9297775 DOI: 10.1002/vms3.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The world population is increasing, leading to competition between humans and animals for the use of farm produce. The use of non‐conventional resources in poultry feed is increasingly being explored. Cassava (Manihot esculenta) have been studied in layers and broilers feed. However, there is very little information on the impact of the leaves on breeder hens. Objectives This study was conducted to determine the effect of M. esculenta leaf meal (MELM) on breeder hen performance, hatching egg quality and blood parameters. Methods A total of 180 hens and 24 cocks Sasso breeders at 32 weeks of age were used and equally assigned into two dietary treatments having six replicates of 15 hens and two cocks each. The dietary treatments were basal diet supplemented with 0% MELM and basal diet supplemented with the MELM group (5% MELM). Data were collected on feed intake, egg production, feed conversion ratio as well as egg quality indices during the experiment. The blood samples were collected from 18 birds per treatment (three3 per replication) for the determination of total protein, uric acid, triglycerides and total cholesterol at 45th week of age. Results The results showed that there was no significant difference on the feed intake of the birds across the treatments. Average egg weight and egg production were higher with a lower (p < 0.05) feed conversion rate in the MELM group hens. Total protein, uric acids, total cholesterol and triglyceride level increased significantly (p < 0.05) in hens fed 5 % of MELM. The proportions of yolk, egg shell and Haugh unit showed no significant difference between the treatments, while the proportion of albumen and yolk colour increased significantly (p < 0.05) in the MELM group hens. Conclusions It was concluded that 5% MELM can be used as feed ingredients in formulating breeder hen diets to improve productive performance.
Collapse
Affiliation(s)
| | - Tona Kwassi
- Centre d`Excellence Régionale sur les Science Aviares (CERSA) Université de Lomé Lomé Togo
| | - Adjei Mensah Benjamin
- Centre d`Excellence Régionale sur les Science Aviares (CERSA) Université de Lomé Lomé Togo
| | - Oyegunle Oke
- Department of Animal Physiology, Federal University of Agriculture Abeokuta Nigeria
| | - Onagbessan Okanlawo
- Department of Animal Physiology, Federal University of Agriculture Abeokuta Nigeria
| | - Tona Kokou
- Centre d`Excellence Régionale sur les Science Aviares (CERSA) Université de Lomé Lomé Togo
| |
Collapse
|
18
|
Luo JJ, Chen W, Qu H, Liu YQ, Luo CL, Ji J, Shu DM, Wang J. Dietary Supplementation With Yucca Alleviates Heat Stress in Growing Broilers Exposed to High Ambient Temperature. Front Vet Sci 2022; 9:850715. [PMID: 35464392 PMCID: PMC9022454 DOI: 10.3389/fvets.2022.850715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Yucca contains high a content of saponin that has a glucocorticord-like effect in animals, e.g., anti-inflammation and anti-microbiota. The objective of the present study was to test the hypothesis that dietary supplementation of yucca powder may alleviate heat stress and improve growth performance of growing broilers subjected to cycling high ambient temperature. A total of 240 male broiler chicks (yellow feathered chicken) aged 28 days, with body weight (BW) of 792 ± 43.7 g, were randomly allocated to one of four treatments (6 replicates per treatment): control (normal temperature, 24 ± 2°C, 24 h), fed diets supplemented with 100 mg/kg yucca under normal temperature (Y), high ambient temperature exposure (HT, 34 ± 2°C, 11 h), fed diets supplemented with 100 mg/kg yucca (HT+Y) under high ambient temperature. After 7 days of adaption, the experiment was conducted for 4 weeks (aged 28–56 days). HT significantly reduced feed intake, BW, and average daily gain (ADG) of broiler, but yucca improved the feed intake under HT condition. Yucca supplementation reduced (P < 0.05) the HT-induced increase in temperature of rectum and leg skin. Supplementation of yucca increased the hypothalamic mRNA expression of TRPV2, TRPV4, and TRPM8 (P < 0.05). Yucca reduced (P < 0.05) the plasma lipid oxidation product malondialdehyde (MDA), but did not affect the activities of antioxidant enzyme superoxide oxidase (SOD) and glutathione peroxidase (Gpx). Yucca did not affect the plasma neuro peptide Y (NPY), which was reduced by HT, yucca reduced circulation cholecystokinin (CCK) and hypothalamic mRNA expression of CCK. Supplementation of yucca increased the mRNA expression of both heat and cool sensing receptors. The results of the present study indicate that yucca could improve antioxidant status and attenuate the heat stress response by regulating hypothalamic temperature-sensing genes in growing chickens. Besides, yucca supplementation improved feed intake probably through modulating CCK in growing broilers under high ambient temperature.
Collapse
Affiliation(s)
- Jing Jing Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Hao Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Yuan Qing Liu
- Dekang Group Co., Ltd., Chengdu, China
- Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture, Guangzhou, China
| | - Cheng Long Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Jian Ji
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Ding Ming Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Jie Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- *Correspondence: Jie Wang
| |
Collapse
|
19
|
Jin YY, Guo Y, Zheng CT, Liu WC. Effect of heat stress on ileal microbial community of indigenous yellow-feather broilers based on 16S rRNA gene sequencing. Vet Med Sci 2022; 8:642-653. [PMID: 35040272 PMCID: PMC8959285 DOI: 10.1002/vms3.734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives The broiler chickens are susceptible to heat stress (HS), including the indigenous broilers raised in tropical and subtropical regions. HS caused intestinal dysfunction and disrupted the gut microbiota. However, the researches about the effects of HS on ileal microbiome of indigenous broilers are limited. Therefore, this experiment used 16S rRNA sequencing to analyse the ileal microbial community in indigenous yellow‐feather broilers under HS. Material and methods The single factor completely random design was used in the present study, and forty 8‐week‐old Chinese indigenous yellow‐feather broilers (Huaixiang chickens) were randomly divided into two treatments: normal temperature (NT) group and HS group. There are five replications with four broilers per replicate in each group. The broilers in NT group were raised at 21.3 ± 1.2°C during the whole experimental period, the broilers in HS group were exposed to 32.5 ± 1.4°C for 8 h/day from 9:00 am to 17:00 pm and the temperature of rest time is consistent with NT group. The experiment lasted for 4 weeks. Results The results showed that HS exposure had no significant effects on the alpha diversity index of ileal microflora of broilers, including the Shannon, Simpson, Chao1 and ACE indexes (p > 0.05). At the genus level, HS significantly reduced the relative abundance of Campylobacter (p < 0.05), and increased the abundance of Delftia (p < 0.05). In addition, prediction of microbial community function indicated that HS significantly enhanced the abundance of the microflora related to lipid metabolism, carbohydrate metabolism and xenobiotics biodegradation and metabolism and reduced the abundance of the microflora related to nucleotide metabolism and amino acid metabolism. Conclusions Taken together, the present study revealed that chronic HS (4 weeks) exposure changes the abundance of the ileal microflora of broilers. These findings provided new insights into the role of HS in influencing ileal microbial community in indigenous broilers.
Collapse
Affiliation(s)
- Yong-Yan Jin
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China.,Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, P. R. China
| | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China
| | - Chun-Tian Zheng
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, P. R. China
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China
| |
Collapse
|
20
|
Thanabalan A, Kiarie EG. Body weight, organ development and jejunal histomorphology in broiler breeder pullets fed n-3 fatty acids enriched diets from hatch through to 22 weeks of age. Poult Sci 2021; 101:101514. [PMID: 34784511 PMCID: PMC8591498 DOI: 10.1016/j.psj.2021.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Dietary long chain polyunsaturated n-3 fatty acids (n-3 FA) may be beneficial to broiler breeder (BB) development. Therefore, the effects of feeding sources of docosahexaenoic acid (DHA) and α-linolenic acid (ALA) from hatch through to 22 weeks of age (woa) on growth, organ weight, and jejunal histomorphology were investigated. A total of 588-day-old Ross × Ross 708 BB were reared on one of 3 diets: 1) control, corn-soybean meal diet, 2) Control + 1% microalgae (DMA, Aurantichytrium limacinum), as a source of DHA and 3) Control + 2.50% co-extruded full fat flaxseed and pulse mixture (FFF, 1:1 wt/wt), as a source of ALA. Diets DMA and FFF had similar total n-3 and n-6: n-3 ratio. Diets were allocated to floor pens (28 birds/pen) to give 9 or 6 replicates per diet for control or DMA and FFF, respectively and fed according to breeder curve in 3 phases: starter (0-4 woa), grower (5-19 woa), and pre-breeder (20-22 woa). Individual body weight (BW) was taken weekly and 6 birds/pen necropsied at 5 and 12 woa for gastrointestinal, spleen, bursa, and liver weight and samples for jejunal histomorphology. There was no (P > 0.05) diet effect on growth by 20 woa. With exception of 5 woa, pullets fed DMA showed (P < 0.001) lower BW coefficient of variation (C.V.) than pullets fed control between 2 and 7 woa. However, pullets fed DMA had higher BW CV at 20 woa than birds fed either control or FFF. At 5 woa, birds fed DMA had taller (P ≤ 0.01) villi and deeper crypt than birds fed either control or FFF but VH or CD were similar (P > 0.05) between CON and FFF pullets. At 12 woa, birds fed FFF had taller VH than birds fed control diet but similar (P > 0.05) to that of birds fed DMA. Therefore, different responses to sources of omega-3 FA may implicate other components, however, the BW uniformity and intestinal histomorphology responses suggested benefits of feeding omega-3 FA during rearing.
Collapse
Affiliation(s)
- Aizwarya Thanabalan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
21
|
Thanabalan A, Kiarie EG. Influence of Feeding Omega-3 Polyunsaturated Fatty Acids to Broiler Breeders on Indices of Immunocompetence, Gastrointestinal, and Skeletal Development in Broiler Chickens. Front Vet Sci 2021; 8:653152. [PMID: 34262961 PMCID: PMC8273488 DOI: 10.3389/fvets.2021.653152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
Modern broiler chickens are associated with rapid growth rates and superior feed efficiency. However, they are also susceptible to physiological and metabolic disorders (e.g., skin lesions, lameness, sudden death, enteric diseases, myopathies) that exert substantial economic losses to producers. This is further exacerbated by consumer pressure and mandated cessation of production practices such as indiscriminate use of antimicrobial growth promoters. Manipulation of broiler breeder (BB) nutrition and management can influence chick quality, robustness, and resilience to stressors in the production environment. The present review examines the role of feeding BB functional polyunsaturated omega-3 fatty acids (n-3 PUFA) and subsequent impact on the indices of immunocompetence, skeletal, and gastrointestinal (GIT) development in broiler chickens. Research in mammalian and avian models led evidence that perinatal feeding of long chain n-3 PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) engender transgenerational effects through regulation of a variety of biological processes including development of vital organs such as skeleton, brain and GIT. It is shown that feeding poultry breeders n-3 PUFA decreases inflammatory states and enriches hatching eggs with n-3 PUFA and immunoglobulins. Further evidence also shows that after 15 days of incubation, chicken embryos preferentially utilize long chain n-3 PUFA-critical for optimal cell, tissues, and organ development. Enrichment of n-3 PUFA in newly hatchling tissues reduce proinflammatory eicosanoids with consequences of enhanced bone mineralization. Dietary n-3 PUFA also modulates breeder GIT microbiota with consequences of microbial colonization and succession in chicks. As well, research shows that feeding poultry breeders n-3 PUFA bolsters progeny immunocompetence through enhanced passive immunity and antibody titres against routine vaccination. In conclusion, it appears that chicks may benefit from the incorporation of n-3 PUFA in the breeder diets; however, little attention is paid to fatty acids composition in breeder nutrition. We also highlight gaps in knowledge and future research perspectives.
Collapse
Affiliation(s)
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Ncho CM, Goel A, Jeong CM, Youssouf M, Choi YH. In Ovo Injection of GABA Can Help Body Weight Gain at Hatch, Increase Chick Weight to Egg Weight Ratio, and Improve Broiler Heat Resistance. Animals (Basel) 2021; 11:ani11051364. [PMID: 34064864 PMCID: PMC8151094 DOI: 10.3390/ani11051364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Heat stress is a vital issue that causes severe losses to the poultry industry. A partly developed thermoregulatory mechanism during the embryonic phase is emphasized to manipulate embryos for achieving thermotolerance during rearing. The present study was conducted firstly to standardize the dosage for an in ovo manipulation, and the selective dose was used to evaluate its effects on early-age heat-stressed (HS) broilers. HS induces cholesterol while an antioxidant acts as a first line of defense under stress. However, 5% GABA supplementation had a higher hatchling weight and chick weight to egg weight ratio (CWEWR). We selected a 10% GABA dosage for HS studies due to its higher antioxidants and lower cholesterol values in hatchlings. In ovo, 10% GABA supplementation significantly increased total antioxidant capacity and reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP in broilers when subjected to HS (38 ± 1 °C; 3 h) at ten days of age. This indicates that an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and creates thermotolerance by increasing antioxidant production and downregulating the expression of HSP70 and fatty acid metabolism genes in HS chicks. Abstract The aim of this study was to explore the outcomes of an in ovo GABA injection in broilers challenged with HS. In Experiment 1, 210 Arbor Acres eggs were allocated to five treatments: no-injection, and in ovo injection of 0.6 mL of 0%, 5%, 10%, or 20% of GABA. Hatchling weight and CWEWR were significantly increased in the 5% GABA group. In ovo, injection of 10% GABA solution caused a significant decrease in plasma cholesterol and increased plasma total antioxidant capacity of hatchlings. Experiment 2 was conducted with 126 fertile Arbor Acres eggs distributed into one of two groups. At 17.5 days of incubation, one received no injection, and the other was fed 0.6 mL of 10% GABA. On day 10, one subgroup (4 replicates * 3 birds) from each treatment was submitted to HS (38 ± 1 °C for 3 h) while the other was kept at a thermoneutral temperature (29 ± 1 °C). An in ovo injection of GABA significantly increased total antioxidant capacity, but reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP with HS. In conclusion, an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and enhances antioxidant status while downregulating the expression of HSP70 and fatty acid metabolism-related genes in young chicks under HS.
Collapse
Affiliation(s)
- Chris-Major Ncho
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
| | - Mohamed Youssouf
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (C.-M.N.); (A.G.); (C.-M.J.); (M.Y.)
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
23
|
Tilbrook AJ, Fisher AD. Stress, health and the welfare of laying hens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is essential to understand responses to stress and the impact of stress on physiological and behavioural functioning of hens, so as to assess their welfare. The current understanding of stress in laying hens is comprehensively reviewed here. Most research on stress in hens has focussed on the activity of the adrenal glands, with the most common approach being to measure corticosterone, which is the predominant glucocorticoid produced by birds in response to stress. While these measures are useful, there is a need to understand how the brain regulates stress responses in hens. A greater understanding of the sympathoadrenal system and its interaction with the hypothalamo–pituitary–adrenal axis is required. There is also a lack of knowledge about the many other peptides and regulatory systems involved in stress responses in hens. The usefulness of understanding stress in hens in terms of assessing welfare depends on appreciating that different stressors elicit different responses and that there are often differences in responses to, and impacts of, acute and chronic stress. It is also important to establish the actions and fate of stress hormones within target tissues. It is the consequences of these actions that are important to welfare. A range of other measures has been used to assess stress in hens, including a ratio of heterophils to lymphocytes and haematocrit:packed cell-volume ratio and measures of corticosterone or its metabolites in eggs, excreta, feathers and the secretions of the uropygial gland. Measures in eggs have proffered varying results while measures in feathers may be useful to assess chronic stress. There are various studies in laying hens to indicate impacts of stress on the immune system, health, metabolism, appetite, and the quality of egg production, but, generally, these are limited, variable and are influenced by the management system, environment, genetic selection, type of stressor and whether or not the birds are subjected to acute or chronic stress. Further research to understand the regulation of stress responses and the impact of stress on normal functioning of hens will provide important advances in the assessment of stress and, in turn, the assessment of welfare of laying hens.
Collapse
|
24
|
Hu X, Cai Y, Kong L, Lin H, Song Z, Buyse J. Effects of dietary corticosterone on the central adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in broiler chickens. J Anim Sci 2020; 98:5864893. [PMID: 32599620 DOI: 10.1093/jas/skaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
Glucocorticoids (GCs) induce the activation of the central adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway in birds. In this study, we aimed to investigate the effects of corticosterone (CORT) supplemented in diet on the central AMPK signaling pathway in broilers. The average daily gain was reduced by CORT treatment, and the average daily feed intake remained unchanged. Plasma glucose, triglyceride, total cholesterol, and CORT contents were increased by CORT administration. In addition, CORT treatment decreased the relative weights of heart, spleen, and bursa and increased the relative weights of liver and abdominal fat. The glycogen contents in the liver and breast muscle were higher in the chicks treated with CORT. CORT treatment upregulated the gene expression of mammalian target of rapamycin, glucocorticoid receptor, AMPKα2, neuropeptide Y(NPY), liver kinase B1 (LKB1), AMPKα1, and fatty acid synthase in the hypothalamus. Moreover, CORT treatment increased the protein levels of acetyl-coenzyme A carboxylase (ACC) phosphorylation and total AMPK and phosphorylated AMPK in the hypothalamus. Hence, CORT administration in the diet activated the LKB1-AMPK-NPY/ACC signaling pathway in the hypothalamus of broiler.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong, China
| | - Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Johan Buyse
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Rostagno MH. Effects of heat stress on the gut health of poultry. J Anim Sci 2020; 98:5811133. [PMID: 32206781 DOI: 10.1093/jas/skaa090] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Stress is a biological adaptive response to restore homeostasis, and occurs in every animal production system, due to the multitude of stressors present in every farm. Heat stress is one of the most common environmental challenges to poultry worldwide. It has been extensively demonstrated that heat stress negatively impacts the health, welfare, and productivity of broilers and laying hens. However, basic mechanisms associated with the reported effects of heat stress are still not fully understood. The adaptive response of poultry to a heat stress situation is complex and intricate in nature, and it includes effects on the intestinal tract. This review offers an objective overview of the scientific evidence available on the effects of the heat stress response on different facets of the intestinal tract of poultry, including its physiology, integrity, immunology, and microbiota. Although a lot of knowledge has been generated, many gaps persist. The development of standardized models is crucial to be able to better compare and extrapolate results. By better understanding how the intestinal tract is affected in birds subjected to heat stress conditions, more targeted interventions can be developed and applied.
Collapse
|
26
|
Khatlab ADS, Del Vesco AP, Rodrigues Oliveira Neto A, Almeida FLA, Gasparino E. Dietary supplementation with free methionine or methionine dipeptide improves environment intestinal of broilers challenged with Eimeria spp. J Anim Sci 2020; 97:4746-4760. [PMID: 31679027 DOI: 10.1093/jas/skz339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
This study examined the influence of a diet enriched with free methionine (dl-Met) or methionine dipeptide (dl-MMet) on the intestinal health of Eimeria-challenged (EC) and unchallenged (UC) broilers. A non-supplemented, methionine-deficient diet (NS) was used as control. Treatments were arranged in a 2 × 3 factorial completely randomized design with eight replications. Broilers in the EC group were infected with sporulated oocysts of Eimeria spp. (E. acervulina, E. maxima, E. praecox, and E. mitis) at 14 d of age. Performance analysis, light and electron microscopy of the jejunum, analysis of genes related to apoptosis and cell proliferation in the jejunum, and blood tests were performed at 6 days post-inoculation (dpi). EC broilers had poorer performance than UC broilers, regardless of diet (P < 0.001). Broilers fed the dl-Met diet had greater weight gain (P = 0.004) and lower feed conversion ratio (P = 0.019) than broilers fed other diets. Jejunal sections from EC broilers fed the NS diet showed short (P = 0.001) and wide villi (P < 0.001) with increased crypt depth (P < 0.001) and reduced villus / crypt ratio (P = 0.001), jejunal absorptive surface area (P < 0.001), number of neutral goblet cells (Eimeria challenge: P = 0.048; diet P = 0.016), and mucin 2 (MUC2) gene expression (P = 0.018). EC birds fed the dl-MMet diet had higher enterocyte height (P < 0.001). Birds fed the dl-MMet diet had low lamina propria width (P = 0.009). UC broilers fed the dl-Met diet had the highest number of acidic goblet cells (P = 0.005), whereas EC broilers assigned the dl-MMet diet showed the highest number of intraepithelial lymphocytes (P = 0.033). Reduced expression of caspase-3 (CASP3) (P = 0.005), B-cell lymphoma 2 (BCL2) (P < 0.001), mechanistic target of rapamycin (MTOR) (P < 0.001), and ribosomal protein S6 kinase B1 (RPS6KB1) (P < 0.001) genes was observed in EC animals. MTOR expression levels were highest in birds fed the dl-MMet diet (P = 0.004). Plasma activities of aspartate aminotransferase (AST) was influenced by both diet (P = 0.002) and Eimeria challenge (P = 0.005), with EC broilers assigned the NS diet showing the highest levels. EC broilers fed the NS diet had higher creatine kinase (CK) activity (P = 0.049). EC broilers had lower plasma uric acid (P = 0.004) and higher serum mucoproteins level (P < 0.001). These results indicate that methionine dipeptide supplementation is able to mitigate the harmful intestinal effects of Eimeria spp. in broilers.
Collapse
Affiliation(s)
| | - Ana Paula Del Vesco
- Animal Science Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Eliane Gasparino
- Animal Science Department, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
27
|
Hadinia SH, Carneiro PRO, Fitzsimmons CJ, Bédécarrats GY, Zuidhof MJ. Post-photostimulation energy intake accelerated pubertal development in broiler breeder pullets. Poult Sci 2020; 99:2215-2229. [PMID: 32241507 PMCID: PMC7587636 DOI: 10.1016/j.psj.2019.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/24/2023] Open
Abstract
The effect of ME intake (MEI) on the reproductive system was evaluated. Ross 308 broiler breeder pullets (n = 140) were assigned to 2 treatments from 22 to 26 wk of age: (1) Low-energy diet fed restricted (2,807 kcal/kg, low MEI) and (2) high-energy diet fed unrestricted (3,109 kcal/kg, high MEI). Daylength was increased from 8 to 14 h at 22 wk of age with a light intensity of 30 lux. Daily palpation was used to detect sexual maturity via the presence of a hard-shelled egg in the shell gland. Expression of gonadotropin releasing hormone-I (GnRH) and gonadotropin inhibitory hormone (GnIH) genes in the hypothalamus and GnRH receptor (GnRH-RI) and GnIH receptor (GnIH-R) genes in the anterior pituitary gland of each pullet was evaluated from 22 to 26 wk of age using quantitative real time-PCR. Blood samples were taken weekly and luteinizing hormone (LH), follicle stimulating-hormone (FSH), and 17-beta-estradiol (E2) determined using commercial ELISA kits. Carcass samples were used for determination of CP and fat content. Data were analyzed using the MIXED procedure in SAS, and differences were reported where P ≤ 0.05. High MEI treatment pullets had 2.3-fold higher GnRH and 1.8-fold higher GnRH-RI mRNA levels than low MEI pullets. MEI affected neither expression of GnIH and GnIH-R nor carcass protein content. For high MEI (489 kcal/D) and low MEI treatments (258 kcal/D), respectively, from 22 to 26 wk of age (P ≤ 0.05), LH concentration was 3.05 and 1.60 ng/mL; FSH concentration was 145 and 89.3 pg/mL; E2 concentration was 429 and 266 pg/mL, and carcass lipid was 13.9 and 10.3%. The onset of lay for pullets in the high MEI treatment advanced such that 100% had laid by 26 wk of age compared with 30% in the low MEI treatment. We concluded that higher MEI advanced the activation of the hypothalamic–pituitary–gonadal axis and also increased body lipid deposition, and moreover, stimulated reproductive hormone levels which overall accelerated puberty in broiler breeder pullets.
Collapse
Affiliation(s)
- S H Hadinia
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - P R O Carneiro
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - C J Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5; Agriculture and Agri-Food Canada, Edmonton, AB, Canada
| | - G Y Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
28
|
van der Klein SA, Zuidhof MJ, Bédécarrats GY. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Anim Reprod Sci 2020; 213:106257. [DOI: 10.1016/j.anireprosci.2019.106257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023]
|
29
|
Carneiro PRO, Lunedo R, Fernandez-Alarcon MF, Baldissera G, Freitas GG, Macari M. Effect of different feed restriction programs on the performance and reproductive traits of broiler breeders. Poult Sci 2019; 98:4705-4715. [PMID: 31065701 DOI: 10.3382/ps/pez181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
The current experiment evaluated the effect of different feed restriction programs applied during rearing on the performance and reproductive traits of broiler breeder pullets reared on floor pens, isolating the birds' weight effect from the analysis. At 4 wk of age, 1,400 breeder pullets were distributed in a completely randomized design with 4 treatments: daily restriction (DAILY-every day feeding), skip-a-day restriction (SKIP-every other day feeding), 4/3 restriction (4/3-4 days feeding and 3 nonconsecutive fasting days) and 5/2 restriction (5/2-5 days feeding and 2 nonconsecutive fasting days), and 8 replicates. At 11, 18, 25, 32, and 39 wk of age, body weight, feed intake, feed conversion ratio, carcass composition, organs relative weight (liver, fat, oviduct, and ovary stroma), egg production, and egg weight were accessed. At 32 and 39 wk, 12 eggs by experimental unit were collected and incubated to determine hatchability and fertility parameters. Body weight, carcass EE, and FCR were higher for SKIP birds when compared to other feed restriction programs. SKIP birds also showed the lowest number of eggs per bird (NEB) and % of egg production when compared to 4/3 feeding schedule, which provided higher values. Feed conversion ratio per egg mass (FCEM) was also higher in 4/3 schedule in relation to SKIP birds. In regard to incubation parameters, 5/2 treatment showed higher values for hatchability (HAT) and fertility (FERT), similar to results of 4/3 and DAILY treatments, while SKIP birds showed the lowest. In conclusion, 4/3 and 5/2 feeding programs showed best results and should be used by broiler breeder producers to control pullets' body weight. Therefore, the higher number of eggs produced with less feed and statistically not different fertility and hatchability between programs obtained in this study suggest the 4/3 program could be more efficient than 5/2 program. Body weight'|'s effect isolation was important to analyze the effect of feed restriction program per se, and should be applied in future approaches.
Collapse
Affiliation(s)
- P R O Carneiro
- Trouw Nutrition, Sherwood Park, Alberta, AB T8H 2J6 Canada
| | - R Lunedo
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, 14884-900, Brazil
| | - M F Fernandez-Alarcon
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, 14884-900, Brazil
| | - G Baldissera
- Seara Alimentos LTDA, Itapetininga, São Paulo, 18.203-340, Brazil
| | - G G Freitas
- Hy-Line do Brasil LTDA, Nova Granada, São Paulo, 15440-000, Brazil
| | - M Macari
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, 14884-900, Brazil
| |
Collapse
|
30
|
|
31
|
El-Naggar K, El-Kassas S, Abdo SE, Kirrella AAK, Al Wakeel RA. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. J Therm Biol 2019; 84:164-175. [PMID: 31466750 DOI: 10.1016/j.jtherbio.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
This study was conducted to investigate the effects of dietary GABA supplementation on blood biochemical parameters, the overall growth performance, and the relative mRNA expression of some FI- regulating genes in broiler chickens. A total of 192, three-day old chicks of mixed sex from two commercial broiler strains (Ross 308 and Cobb 500) were distributed into 2 groups; a control group and GABA-supplemented group (100 mg/kg diet). When the chicks reached 21 days of age, each group of each strain was randomly subdivided into two subgroups: one was exposed to HS (33 ± 2 °C for 5 h/day for 2 weeks), while the other remained at thermoneutral temperature (24 °C). GABA significantly improved bird growth performance under normal and HS conditions, by increasing body weight (BW), weight gain (WG), and FI and significantly reduced the elevated body temperature of birds under HS. GABA supplementation increased FI by reducing the mRNA expression levels of FI-inhibiting neuropeptides, such as POMC, leptin, Ghrelin, and CCK, during HS and by increasing the expression of FI-stimulating neuropeptides such as AgRP and NPY. Moreover, GABA significantly altered FAS and ACC gene expression, resulting in significant increases in abdominal fat content in birds reared normally. In contrast, GABA lowered fat content in Cobb birds and increased it in Ross birds under HS. Therefore, GABA (100 mg/kg diet) is a strong FI-stimulating neurotransmitter and its regulatory effects depend on broiler strain and housing temperature.
Collapse
Affiliation(s)
- Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, 22758, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Abeer A K Kirrella
- Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
32
|
Hadinia SH, Carneiro PRO, Ouellette CA, Zuidhof MJ. Energy partitioning by broiler breeder pullets in skip-a-day and precision feeding systems. Poult Sci 2019; 97:4279-4289. [PMID: 29982745 PMCID: PMC6305833 DOI: 10.3382/ps/pey283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
An empirical nonlinear mixed model was derived to describe metabolizable energy (ME) partitioning in Ross 308 broiler breeder pullets. Its coefficients described ME used for total heat production (HP) and growth. A total of 630 pullets were randomly and equally assigned to 2 treatments: precision feeding (PF) and conventional skip-a-day feeding (CON) from 10 to 23 wk of age. The PF system allowed birds to enter voluntarily at any time, weighed them, and provided access to feed for 60 s if their BW was less than the target BW. Birds in the CON treatment were fed as a group on alternate days. Energetic efficiency of pullets was evaluated using residual total heat production (RHP), defined as the difference between observed and predicted total HP. Additionally, ME intake (MEI), ADG, HP, and cumulative feed conversion ratio (FCR) were calculated for the entire experimental period. The energy partitioning model (P < 0.05) predicted MEI = (120+u)BW0.68 + 1.52(ADG) + ε. Total HP was (120 kcal/kg0.68 + u); the energy requirement for each g of BW gain was 1.52 kcal/d. The random variable u ∼ N (0, σu2) indicated a pen level HP standard deviation σu = 12.1 kcal/kg0.68. Over the experimental period, for CON and PF treatments, respectively, MEI was 194 and 174 kcal/d (P < 0.001); ADG was 15.3 and 15.4 g/d (P = 0.94); HP was 129 and 111 kcal/kg0.68 (P < 0.001); FCR was 4.888 and 4.057 (P < 0.001); and RHP was 0.12 and -0.12 kcal/kg0.68 (P = 0.73). The CON pullets had similar ADG, but higher MEI relative to PF, consistent with levels of heat production predicted by RHP. The PF pullets had lower cumulative FCR compared to CON pullets. The PF pullets lost less energy as heat, likely because they were fed continuously, reducing the need to store and mobilize nutrients compared to CON pullets. Thus, increased feeding frequency likely increased PF pullet efficiency.
Collapse
Affiliation(s)
- S H Hadinia
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - P R O Carneiro
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - C A Ouellette
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
33
|
Wilson KM, Bourassa DV, McLendon BL, Wilson JL, Buhr RJ. Impact of Skip-a-Day and Every-Day Feeding Programs for Broiler Breeder Pullets on the Recovery of Salmonella and Campylobacter following challenge. Poult Sci 2018; 97:2775-2784. [PMID: 29889277 DOI: 10.3382/ps/pey150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
The impact of restrictive feeding programs on Salmonella and Campylobacter colonization and persistence after challenge was investigated for broiler breeder pullets housed in an experimental rearing facility. Pullet-chicks were placed on litter in 3 feeding program rooms and each room contained 2 replicate pens. The feeding programs were: (1) Skip-a-day in trough feeders (SAD); (2) Every-day in trough feeders (EDT); (3) Every-day on the pen litter (EDL). On d 1, an additional group of hatchmate chicks were housed in a separate room and gavaged with Salmonella Typhimurium, to later serve as seeder chicks. After seeders were confirmed Salmonella-positive at wk 4, at wk 5 seeders were placed into each feeding program pen to commingle with 135 penmates. At 7, 9, 11, 17, 18, and 20 wk the litter surface in each pen was sampled using intermittently stepped-on drag-swabs. At 8, 12, 16, and 20 wk of age the ceca were sampled from 10 penmates/pen and 2 pooled spleen samples/pen were collected. SAD litter remained Salmonella-positive through 20 wk of age while EDL and EDT pens had no detectible litter Salmonella recovery by 18 and 20 wk. EDL fed pens had no direct (<102 cfu/mL) litter Salmonella recovery during the entirety of the experiment. Salmonella prevalence for ceca from SAD pullets was significantly (P < 0.05) higher at 8 wk (70%) compared to EDT (40%) and EDL (30%). At wk 12, SAD pullets for both on and off-feed sampling days had significantly higher Salmonella recovery (40%), compared to EDT and EDL (both at 5% recovery). By 16 and 20 wk, only the SAD pullets on the on-feed day (48 h without feed) had recovery of Salmonella at 20%. Salmonella recovery in pooled spleen samples did not appear associated with feeding treatments (22% positive). The remaining pullets challenged with Campylobacter at 21 wk produced similar trends as was seen for Salmonella. SAD program pullets had significantly higher Campylobacter from ceca (80 to 100%) compared to pullets on EDL (30 to 60%) or EDT (40 to 95%). These results suggest that using a Skip-a-Day feeding program for broiler breeder pullets contributes to persistently higher Salmonella and Campylobacter ceca colonization and litter prevalence.
Collapse
Affiliation(s)
- K M Wilson
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702.,Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - D V Bourassa
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702
| | - B L McLendon
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - J L Wilson
- Department of Poultry Science, The University of Georgia, Athens, GA, 30602
| | - R J Buhr
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, Athens, GA, 30605-2702
| |
Collapse
|
34
|
Li Z, Liu X, Zhang P, Han R, Sun G, Jiang R, Wang Y, Liu X, Li W, Kang X, Tian Y. Comparative transcriptome analysis of hypothalamus-regulated feed intake induced by exogenous visfatin in chicks. BMC Genomics 2018; 19:249. [PMID: 29642854 PMCID: PMC5896085 DOI: 10.1186/s12864-018-4644-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
Background The intracerebroventricular injection of visfatin increases feed intake. However, little is known about the molecular mechanism in chicks. This study was conducted to assess the effect of visfatin on the feeding behavior of chicks and the associated molecular mechanism. Results In response to the intraventricular injection of 40 ng and 400 ng visfatin, feed intake in chicks was significantly increased, and the concentrations of glucose, insulin, TG, HDL and LDL were significantly altered. Using RNA-seq, we identified DEGs in the chick hypothalamus at 60 min after injection with various doses of visfatin. In total, 325, 85 and 519 DEGs were identified in the treated chick hypothalamus in the LT vs C, HT vs C and LT vs HT comparisons, respectively. The changes in the expression profiles of DEGs, GO functional categories, KEGG pathways, and PPI networks by visfatin-mediated regulation of feed intake were analyzed. The DEGs were grouped into 8 clusters based on their expression patterns via K-mean clustering; there were 14 appetite-related DEGs enriched in the hormone activity GO term. The neuroactive ligand-receptor interaction pathway was the key pathway affected by visfatin. The PPI analysis of DEGs showed that POMC was a hub gene that interacted with the maximum number of nodes and ingestion-related pathways, including POMC, CRH, AgRP, NPY, TRH, VIP, NPYL, CGA and TSHB. Conclusion These common DEGs were enriched in the hormone activity GO term and the neuroactive ligand-receptor interaction pathway. Therefore, visfatin causes hyperphagia via the POMC/CRH and NPY/AgRP signaling pathways. These results provide valuable information about the molecular mechanisms of the regulation of food intake by visfatin. Electronic supplementary material The online version of this article (10.1186/s12864-018-4644-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panpan Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
35
|
|
36
|
|
37
|
De Paula Dorigam JC, Sakomura NK, Soares L, Fernandes JBK, Sünder A, Liebert F. Modelling of lysine requirement in broiler breeder hens based on daily nitrogen retention and efficiency of dietary lysine utilization. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Dorigam JCP, Sakomura NK, Sarcinelli MF, Gonçalves CA, de Lima MB, Peruzzi NJ. Optimal in-feed amino acid ratio for broiler breeder hens based on deletion studies. J Anim Physiol Anim Nutr (Berl) 2016; 101:1194-1204. [PMID: 27862400 DOI: 10.1111/jpn.12639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022]
Abstract
An ideal amino acid ratio (IAAR) for breeder hens is needed for maximum nitrogen retention (NR) taking into account nitrogen deposition in body (NDB ), feathers (NDF ) and egg mass (NEM) to improve dietary protein efficiency. Thus, the aim of this study was to apply the deletion method to derive the IAAR for broiler breeder hens. The nitrogen balance trials were performed from 31 to 35 weeks and from 46 to 50 weeks. Twelve treatments with eight replicates and one hen per cage were used. A balanced diet (BD) was formulated to meet the requirement of all nutrients. The other diets were formulated diluting 55% of BD with corn starch and refilled with amino acids (AAs) and other ingredients, except the AA tested. Each trial lasted 25 days. Feather losses, egg production and egg weight were recorded daily, and the samples were stored to further determine NEM and nitrogen in feather losses (NDFL ). At the start and the end of each period, a group of birds were slaughtered to further determine NDB and NDF . The NR was calculated as the sum of NDB , NDF , NDFL , NEM and the nitrogen maintenance requirement (NMR). The deletion of valine greatly depressed the NR in peak production (31 to 35 weeks) while the deletion of the isoleucine greatly depressed the NR of the hens from 46 to 50 weeks of age. The percentual reduction in NR and the per cent of the AA to delete from the BD were used to calculate the AA requirement. The average IAAR was Lys 100, Met+Cys 86, Trp 23, Thr 80, Arg 113, Val 90, Ile 91, Leu 133, Phe+Tyr 108, Gly+Ser 94 and His 35. The IAAR was in line with the recommendation from the literature, validating deletion method with the advantages from a rapid and low-cost procedure.
Collapse
Affiliation(s)
- J C P Dorigam
- Department of Animal Science, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| | - N K Sakomura
- Department of Animal Science, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| | - M F Sarcinelli
- Department of Animal Science, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| | - C A Gonçalves
- Department of Animal Science, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| | - M B de Lima
- Department of Animal Science, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| | - N J Peruzzi
- Department of Exact Sciences, Faculdade de Ciências Agrárias e veterinárias, Universidade estadual paulista 'julio de mesquita filho', Jaboticabal, São Paulo, Brazil
| |
Collapse
|
39
|
Delezie E, Koppenol A, Buyse J, Everaert N. Can breeder reproductive status, performance and egg quality be enhanced by supplementation and transition of n-3 fatty acids? J Anim Physiol Anim Nutr (Berl) 2016; 100:707-14. [PMID: 26854179 DOI: 10.1111/jpn.12433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/07/2015] [Indexed: 11/27/2022]
Abstract
The aim of this experiment was to investigate the effect of n-3 fatty acid (FA) supplemented diets on breeder performance, productivity and egg quality. Breeders (n = 480) were fed the supplemented diet from 18 weeks onwards; the inclusion level of n-3 FA was increased from 1.5% to 3.0% from 34 weeks of age onwards until 48 weeks of age. Ross-308 broiler breeders (n = 480) were fed one of four different diets: a basal diet rich in n-6 FA (control diet) or one of three diets rich in n-3 FA. For the n-3 FA diets, eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) were fed to the broiler breeders at different ratios formulated to obtain EPA/DHA ratios of 1/1, 1/2 or 2/1. Differences in performance, reproduction and egg quality parameters due to n-3 supplementation were noted more for the 1.5% followed by the 3.0% fed broilers than their 1.5% supplemented counterparts. Egg weight (p < 0.001) and egg mass (p = 0.003) were significantly lower and feed conversion (p = 0.008) significantly higher for the n-3 FA (at 3.0% inclusion level) fed broilers compared to the control group. For the EPA- and DHA-fed breeders, a higher proportional abdominal fat percentage (p = 0.025) and proportional albumen weight (%) (p = 0.041) were found respectively. Dietary treatments did not affect reproduction. It can be concluded that the results of the present experiment indicate no significant differences between treatments at 1.5% inclusion levels. However, increasing this level to 3.0% is not recommended due to the rather negative effects on the measured parameters. It should be further investigated whether these adverse effects were obtained due to (i) the higher supplementation level, (ii) combining a supplementation level of 1.5% with 3% or (iii) the duration of supplementation.
Collapse
Affiliation(s)
- E Delezie
- Animal Sciences Unit, Institiute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - A Koppenol
- Animal Sciences Unit, Institiute for Agricultural and Fisheries Research (ILVO), Melle, Belgium.,Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - N Everaert
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
40
|
Gasparino E, Del Vesco AP, Voltolini DM, Nascimento CSD, Batista E, Khatlab AS, Grieser DO, Zancanela V, GuimarÃEs SEF. The effect of heat stress onGHR,IGF-I,ANT,UCPandCOXIIImRNA expression in the liver and muscle of high and low feed efficiency female quail. Br Poult Sci 2014; 55:466-73. [DOI: 10.1080/00071668.2014.925090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Lei L, Lixian Z. Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1300-8. [PMID: 25049694 PMCID: PMC4092945 DOI: 10.5713/ajas.2012.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/13/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022]
Abstract
The 5’-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, Ste20-related adaptor protein β (STRADβ), mouse protein 25α (MO25α) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of AMPKα1, AMPKγ2, LKB1 and neuropeptide Y (NPY). However, the expression of MO25β, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase α (ACCα), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick’s hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.
Collapse
|
42
|
Liu L, Song Z, Jiao H, Lin H. Glucocorticoids increase NPY gene expression via hypothalamic AMPK signaling in broiler chicks. Endocrinology 2014; 155:2190-8. [PMID: 24693963 DOI: 10.1210/en.2013-1632] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glucocorticoids (GCs) induce profound hyperphagia in birds. However, the neuronal regulatory network underlying GC-provoked hyperphagia is unclear. To determine whether any cross talk occurs among hypothalamic GC receptors (GRs), AMP-activated protein kinase (AMPK), and GCs in the regulation of appetite, we performed an intracerebroventricular injection of mifepristone (a GR inhibitor) and compound C (an AMPK inhibitor) on GC-treated male chicks. The results indicate that central GC administration increased the expression of GR and neuropeptide Y mRNA, as well as phosphorylated AMPKα(Thr172) and acetyl-coenzyme A carboxylase(Ser79). Blocking AMPK significantly attenuated GC-induced hyperphagia. Blocking GR significantly attenuated part of the AMPK signaling pathway and GC-induced hyperphagia. Thus, the results suggest that GCs cause hyperphagia via the AMPK-neuropeptide Y signaling pathway.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Key Laboratory for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | | | | | | |
Collapse
|
43
|
Morrissey KLH, Widowski T, Leeson S, Sandilands V, Arnone A, Torrey S. The effect of dietary alterations during rearing on growth, productivity, and behavior in broiler breeder females. Poult Sci 2014; 93:285-95. [PMID: 24570449 DOI: 10.3382/ps.2013-03265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parent stocks of meat birds are severely feed restricted to avoid obesity-related health and fertility problems. This restriction often leads to chronic hunger, accompanied by stereotypic behavior. Research based in the United Kingdom has shown that using diets containing fiber and appetite suppressants may relieve some of the symptoms of hunger. However, few data are available regarding North American-sourced ingredients or nondaily feeding regimens. This study investigated the effects of 2 alternative diets, in combination with 2 feeding frequencies on growth, productivity, and behavior in broiler breeders. Six dietary treatments were tested, each with 5 replicate pens of 12 or 13 birds. Control diets consisted of a commercial crumble, fed on a daily or skip-a-day (SAD) basis. Alternative diets included soybean hulls as a fiber source, and calcium propionate as an appetite suppressant of either a feed-grade or purified quality, fed on either a daily or SAD basis. Birds were weighed weekly and egg production was recorded daily. Video cameras were used to record behavior during and following the morning feeding bout every 2 wk from 11 to 28 wk. Data were analyzed with a mixed model ANOVA, with repeated measures. Diet, feeding frequency, time, or an interaction of the 3 had significant effects on all observed behavior during rearing. These differences appeared to diminish during lay, with most stereotypic behavior no longer present. Very little object pecking and aggression was observed during and immediately following feeding bouts; however, daily-fed control birds still displayed this behavior more often, especially during rearing (P = 0.015). During feeding bouts, SAD birds feather pecked (P = 0.003) and rested more (P = 0.0002) than daily-fed birds. Control birds feather pecked most often (P = 0.033) after feeding bouts. Overall, the feed-grade diet appeared most effective at reducing hunger-related behavior, and the control diet appeared the least effective. There was little conclusive evidence to show that daily feeding was more effective at reducing hunger.
Collapse
Affiliation(s)
- K L H Morrissey
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Regassa A, Kim WK. Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes. Cell Biol Int 2013; 37:961-71. [PMID: 23620084 DOI: 10.1002/cbin.10122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022]
Abstract
We have examined the effect of oleic acid (OA) concentrations and incubation time, along with chicken serum (CS), on adipogenic differentiation and expression of adipogenic transcripts in hen preadipocytes. Preadipocytes were treated with (i) an adipogenic cocktail (DMI) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine and 20 µg/mL insulin alone and DMI + 75, 150, 300 or 600 µM OA for 48 h; (ii) DMI + 300 µM OA (DMIOA) for 6, 12, 24 or 48 h; and (iii) foetal bovine serum (FBS), CS, DMI + FBS, DMI + CS, DMIOA + FBS and DMIOA + CS. While FABP4 was significantly expressed with increasing concentrations of OA, the expression of C/EBPβ, LEPR and FAS were unchanged compared with the control. PPARγ2 expression was unchanged across all time-points. A significantly higher level of C/EBPα was measured at 48 h, but the levels of C/EBPβ increased after 12 h. Levels of FABP4 significantly increased with the time of incubation after 12 h, but that of LPL was reduced (P < 0.05) at 6, 24 and 48 h. FABP4 was highly expressed in cells treated with CS, DMI + CS and DMIOA + CS compared to cells treated with FBS, DMI + FBS and DMIOA + FBS. In conclusion, increased concentrations of OA and incubation time increases lipid accumulation; FABP4 and C/EBPβ are potential transcription factors regulating OA induced adipogenesis of fat cells obtained from laying hen. CS is a potent inducer of adipogenic differentiation in hen preadipocytes.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
45
|
Khalaji S, Zaghari M, Ganjkhanloo M, Ghaziani F. Arginine, soy isoflavone and hydroxypropylmethylcellulose have protective effects against obesity in broiler breeder hens fed on high-energy diets. Br Poult Sci 2013; 54:766-79. [PMID: 24397513 DOI: 10.1080/00071668.2013.843070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. The present study was undertaken to determine the effects of arginine, soy isoflavone (ISF) and hydroxypropylmethylcellulose (HPMC) on obesity in broiler breeder hens. 2. A total of 320 Cobb 500 hens, 45 weeks of age, were assigned to 64 floor pens. The experiment was conducted as a completely randomised design in a factorial arrangement (2 × 2 × 2 × 2) with 4 replicates of 5 hens in each pen. Factors included two concentrations of HPMC (0 and 1%), two concentrations of arginine (8.4 and 12 g/kg), two concentrations of ISF (zero and three times more than that present in basal diets) and two contents of energy (11.7 and 14.6 MJ/kg). Performance criteria and blood characteristics of hens were measured during the experimental period. Expression of genes involved in lipid metabolism was determined in the liver at 55 weeks of age. 3. Hens given high-energy diets showed increased BW (body weight), ovary weight and abdominal fat pad and enhanced plasma glucose, triglyceride (TG), cholesterol, haemoglobin, haematocrit and low lymphocyte percentages. The expression of malic enzyme, peroxisome proliferator-activated receptor-α (PPARα), peroxisome proliferator-activated receptor-γ (PPARγ) and inducible nitric oxide (iNOS) increased and sterol regulatory element binding protein-1c (SREBP1c) decreased with increasing energy content of diets. Arginine addition decreased TG, cholesterol and A1-c haemoglobin concentration and increased PPARα, PPARγ and iNOS expression. Inclusion of ISF and HPMC decreased BW, egg weight, plasma TG, cholesterol and increased egg production and also enhanced PPARγ and iNOS expression. Significant interactions were observed between energy concentration and ISF and HPMC on BW. 4. The results of the current study revealed that ISF, HPMC and arginine have beneficial effects on controlling the metabolism of obese broiler breeder hens and using a mix of these products minimises the harmful effects of obesity.
Collapse
Affiliation(s)
- S Khalaji
- a Department of Animal Science, College of Agriculture and Natural Resource , University of Tehran , Karaj 31587-11167 , Iran
| | | | | | | |
Collapse
|
46
|
Mejia L, McDaniel C, Lopez K, Parker H, Corzo A. Effects of digestible lysine intake level on Cobb 500 broiler breeder hen reproductive performance. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2012-00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
McDerment NA, Wilson PW, Waddington D, Dunn IC, Hocking PM. Identification of novel candidate genes for follicle selection in the broiler breeder ovary. BMC Genomics 2012; 13:494. [PMID: 22992265 PMCID: PMC3511242 DOI: 10.1186/1471-2164-13-494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/14/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Broiler breeders fed ad libitum are characterised by multiple ovulation, which leads to poor shell quality and egg production. Multiple ovulation is controlled by food restriction in commercial flocks. However, the level of food restriction raises welfare concerns, including that of severe hunger. Reducing the rate of multiple ovulation by genetic selection would facilitate progress towards developing a growth profile for optimum animal welfare. RESULTS The study utilised 3 models of ovarian follicle development; laying hens fed ad libitum (experiment 2) and broiler breeders fed ad libitum or a restricted diet (experiments 1 & 3). This allowed us to investigate gene candidates for follicular development by comparing normal, abnormal and "controlled" follicle hierarchies at different stages of development. Several candidate genes for multiple ovulation were identified by combining microarray analysis of restricted vs. ad libitum feeding, literature searches and QPCR expression profiling throughout follicle development. Three candidate genes were confirmed by QPCR as showing significant differential expression between restricted and ad libitum feeding: FSHR, GDF9 and PDGFRL. PDGFRL, a candidate for steroidogenesis, showed significantly up-regulated expression in 6-8 mm follicles of ad libitum fed broiler breeders (P = 0.016), the period at which follicle recruitment occurs. CONCLUSIONS Gene candidates have been identified and evidence provided to support a possible role in regulation of ovarian function and follicle number. Further characterisation of these genes will be required to assess their potential for inclusion into breeding programmes to improve the regulation of follicle selection and reduce the need for feed restriction.
Collapse
Affiliation(s)
- Neil A McDerment
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | | | | | | | | |
Collapse
|
48
|
Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens. J Biomed Biotechnol 2012; 2012:484869. [PMID: 22619495 PMCID: PMC3352661 DOI: 10.1155/2012/484869] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper was to investigate the effect of heat stress on the regulation of appetite-associated genes in laying hens. Forty eight laying hens were randomly divided into two circumstances: high (31 ± 1.5°C; relative humidity, 82.0 ± 2.2%) or normal (20 ± 2°C, control; relative humidity, 60.1 ± 4.5%) ambient environment. Heat stress decreased body weight gain (P < 0.01), feed intake (P < 0.01), laying rate (P < 0.05), average egg mass (P < 0.01), egg production (P < 0.01), shell thickness (P < 0.01), and feed efficiency (P < 0.05). High ambient temperature decreased plasma uric acid (P < 0.05). Heat stress significantly increased mRNA levels of ghrelin and cocaine- and amphetamine-regulated transcript (P < 0.05) and decreased mRNA levels of cholecystokinin (P < 0.05) in the hypothalamus. Heat stress significantly increased (P < 0.05) mRNA levels of ghrelin in the glandular stomach and jejunum but significantly decreased (P < 0.05) mRNA levels of cholecystokinin in the duodenum and jejunum. In conclusion, heat stress plays a unique role in some special neuropeptides (e.g., ghrelin, cocaine- and amphetamine-regulated transcript, and cholecystokinin), which might participate in the regulation of feed intake in laying hens under high ambient temperature.
Collapse
|
49
|
Liu L, Song Z, Sheikhahmadi A, Jiao H, Lin H. Effect of corticosterone on gene expression of feed intake regulatory peptides in laying hens. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:81-7. [PMID: 22554475 DOI: 10.1016/j.cbpb.2012.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
The present study was conducted to explore the effects of corticosterone (CORT) on the regulation of appetite-associated genes in laying hens. Forty eight laying hens were randomly divided into two groups: one received subcutaneous injection of CORT (2mg/kg body weight, CORT-exposed) and the other received sham-treatment (Control). Treatment of hens with CORT stimulated an increase (P<0.05) in plasma CORT, glucose, uric acid (UA), insulin, cholesterol (Chol) and triiodothyronine (T(3)), but the concentrations of plasma non-esterified fatty acids (NEFA) and triacylglycerol (TG) were decreased (P<0.05). CORT treatment had no significant effect (P>0.05) on the mRNA levels of neuropeptide Y (NPY), corticotropin-releasing hormone (CRH), melanocortin receptor 4 and 5 (MCR-4 and MCR-5) and cholecystokinin (CCK) in the hypothalamus when compared with control hens. However, the expression of pro-opiomelanocortin (POMC), agouti-related protein (AgRP) and melanocortin recepter 1 (MCR-1) were significantly (P<0.05) suppressed while the mRNA levels of ghrelin and cocaine-and amphetamine-regulated transcript (CART) were significantly upregulated (P<0.05) in CORT-treated hens. Treatment of laying hens with CORT had no significant (P>0.05) effect on the mRNA levels of CCK in the glandular stomach and the duodenum, and those of ghrelin in the glandular stomach, the duodenum and the jejunum. However, the mRNA levels of CCK in the jejunum and the ileum, and those of ghrelin in the ileum were significantly (P<0.05) suppressed by CORT treatment. In conclusion, these results suggest that CORT plays a unique role in some special neuropeptides (e.g., ghrelin, CART, POMC, CCK and MCRs) and a dynamic balance between these appetite-associated peptides in the hypothalamus and the gastrointestinal tract defines the feeding status of CORT-exposed laying hens.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | | | |
Collapse
|
50
|
Moyle J, Yoho D, Whipple S, Donoghue A, Bramwell R. Sperm production and testicular development of broiler breeder males reared on shortened growth cycles. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2011-00363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|