1
|
Kianfar R, Kanani R, Janmohammadi H, Olyaee M, Besharati M, Lackner M. Implications of high-dose vitamin D 3 with and without vitamin C on bone mineralization and blood biochemical factors in broiler breeder hens and their offspring. PeerJ 2025; 13:e18983. [PMID: 40196295 PMCID: PMC11974546 DOI: 10.7717/peerj.18983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/22/2025] [Indexed: 04/09/2025] Open
Abstract
As broiler breeder hens age, they often experience a decline in bone mineralization and calcium absorption, especially during the later stages of egg production. This issue not only affects the hens' health, making them more prone to conditions like osteoporosis, but it also impacts the quality of their offspring. To tackle this problem, our study explores whether supplementing these hens with a combination of vitamins D3 and C could help improve their bone health and overall biochemical balance, both for them and their progeny. The goal of this research was to evaluate the effects of high doses of vitamin D3, with and without added vitamin C, on bone mineralization and key blood parameters in aging broiler breeder hens and their offspring. In this experiment, 240 hens and 24 roosters from the Ross 308 strain, aged between 49 and 61 weeks, were used, and a two-way ANOVA (2 × 2) design was applied. This involved two levels of vitamin D3 (3,500 IU and 5,500 IU) and two levels of vitamin C (0 and 150 mg/kg), with six replications of 10 hens and one rooster per group. At the end of the study, blood samples were collected from hens and their offspring for biochemical analysis, and tibia bones were taken for ash content and mineralization assessment. The findings showed that vitamin D3 supplementation significantly lowered blood cholesterol, alkaline phosphatase (ALP), and parathyroid hormone (PTH) levels (P < 0.05), while boosting calcium, 25-hydroxycholecalciferol (25(OH)D3), and 1,25-dihydroxycholecalciferol (1,25(OH)2D3) (P < 0.05). Higher doses of vitamin D3 also improved the strength, resistance, and ash content of the hens' tibia bones, and increased calcium in the carcasses of their offspring. Adding 150 mg/kg of vitamin C to the diet also had a positive effect, reducing cholesterol, ALP, and PTH, while enhancing plasma calcium, total antioxidant capacity, and the active form of vitamin D3 (P < 0.05). Vitamin C supplementation significantly strengthened the tibial bones of the hens and improved plasma calcium and PTH levels in their offspring (P < 0.05). Interestingly, combining elevated doses of both vitamins D3 and C resulted in even greater improvements in tibial bone strength (P < 0.05). In conclusion, giving hens 150 mg of vitamin C along with 5,500 IU of vitamin D3 leads to substantial improvements in the calcium content and structural integrity of their bones, and also boosts calcium and ash content in the carcasses of their offspring.
Collapse
Affiliation(s)
- Ruhollah Kianfar
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Kanani
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Janmohammadi
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Majid Olyaee
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Maghsoud Besharati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
2
|
Greene ES, Ramser A, Wideman R, Bedford M, Dridi S. Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers. Avian Pathol 2024; 53:474-491. [PMID: 38776101 DOI: 10.1080/03079457.2024.2359592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Alison Ramser
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Robert Wideman
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| |
Collapse
|
3
|
Khan RU, Naz S, Ullah H, Khan NA, Laudadio V, Ragni M, Piemontese L, Tufarelli V. Dietary vitamin D: growth, physiological and health consequences in broiler production. Anim Biotechnol 2023; 34:1635-1641. [PMID: 34923931 DOI: 10.1080/10495398.2021.2013861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamins are needed in trace amounts in dietary formulations for poultry; however, they are critical for the health, maintenance, and performance of important body organs. Broilers have a lot of leg issues because of their rapid development and lack of exercise. Because of commercial broilers have limited access to direct sunlight, vitamin D supplementation in the feed is critical to reducing the risk of bone deformation and maximizing development. Vitamin D deficiency causes skeletal abnormalities, which may lead also to financial problems. The latest scientific findings on the source, metabolism, mechanisms of action, and functions of vitamin D in broilers are the subject of this review paper.
Collapse
Affiliation(s)
- Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Hammad Ullah
- College of Animal Husbandry and Veterinary Science, Abdulwali Khan University, Mardan, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, Pakistan
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Ragni
- Department of Agro-Environmental and Territorial Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Kalia S, Magnuson AD, Sun T, Liu G, Kim WK, Johnson Z, Lei XG. Supranutrition of microalgal docosahexaenoic acid and calcidiol improved growth performance, tissue lipid profiles, and tibia characteristics of broiler chickens. J Anim Sci Biotechnol 2023; 14:27. [PMID: 36922887 PMCID: PMC10018906 DOI: 10.1186/s40104-023-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and calcidiol could be enriched in chicken for improving public nutrition and health. It remains unclear if supranutritional levels of DHA and calcidiol impair growth performance or metabolism of broiler chickens. This study was to determine singular and combined effects of high levels of supplemental DHA-rich microalgal biomass or oil and calcidiol on growth performance, concentrations of triglycerides, cholesterol, and nonesterfied fatty acids in plasma, liver, breast, and thigh, and biophysical properties of tibia. METHODS In Exp. 1, 144 day-old Cornish chicks were divided into 4 groups (6 cages/treatment, 6 birds/cage), and were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU calcidiol/kg (BD + Cal), BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), and BD + Cal + DHA for 6 weeks. In Exp. 2, 180 day-old chicks were divided into 5 groups, and were fed: BD, BD + DHA (0.33% to 0.66% oil, 1.5 to 3.0 g DHA/kg), BD + DHA + EPA (1.9% to 3.8% eicosapentaenoic acid-rich Nannochloropsis sp. CO18, 0.3 to 0.6 g EPA/kg), BD + DHA + calcidiol (6000 to 12,000 IU/kg diet), and BD + DHA + EPA + Cal for 6 weeks. RESULTS Birds fed BD + Cal diet in Exp. 1 and BD + DHA + EPA diet in Exp. 2 had higher (P < 0.05) body weight gain (10%-11%) and gain:feed ratio (7%), and lower (P < 0.05) total cholesterol and triglyceride concentrations in plasma (18%-54%), liver (8%-26%), breast (19%-26%), and thigh (10%-19%), respectively, over the controls. The two diets also improved (P < 0.05) tibial breaking strength (8%-24%), total bone volume (2%-13%), and (or) bone mineral density (3%-19%) of chickens. CONCLUSION Supranutrition of dietary calcidiol and DHA alone or together did not produce adverse effects, but led to moderate improvements of growth performance, lipid profiles of plasma and muscle, and bone properties of broiler chickens.
Collapse
Affiliation(s)
- Sahil Kalia
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Andrew D Magnuson
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Tao Sun
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Zackary Johnson
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA.
| |
Collapse
|
6
|
Xiao C, Zhu Q, Comer L, Pan X, Everaert N, Schroyen M, Song B, Song Z. Dietary 25-hydroxy-cholecalciferol and additional vitamin E improve bone development and antioxidant capacity in high-density stocking broilers. J Anim Sci 2023; 101:skad369. [PMID: 37933958 PMCID: PMC10642724 DOI: 10.1093/jas/skad369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to investigate the effects of diets supplemented with 25-hydroxycholecalciferol [25-(OH)D3] and additional vitamin E on growth performance, antioxidant capacity, bone development, and carcass characteristics at different stocking densities on commercial broiler farms. A total of 118,800 one-day-old Arbor Acres broilers were assigned to a 2 × 2 factorial treatment consisting of two dietary vitamin levels (5,500 IU vitamin D3 and 60 IU vitamin E: normal diet, using half 25-(OH)D3 as a source of vitamin D3 and an additional 60 IU of vitamin E: 25-(OH)D3+VE diet) and two stocking densities (high density of 20 chickens/m2: HD and 16 chickens/m2: LD). The experiment lasted for 42 d. The results showed that high-density stocking negatively affected the growth performance of broilers during the first four weeks, whereas the vitamin diet treatment significantly improved the feed conversion ratios (FCR) during the last 2 wk. Vitamin diets increased catalase at 14 and 42 d, and the glutathione peroxidase (GSH-px) levels at 42 d in high-density-stocked broilers. The interaction showed that serum vitamin E levels were significantly improved at 28 d of age in high-density-stocked broilers as a result of the vitamin diets. Stocking density and dietary treatments were found to significantly affect bone development, with the vitamin diet significantly increasing metatarsal length and femoral bone strength in broilers from high-density stocking density at 28 d of age. High stocking density increased the proportion of leg muscles and meat yield per square meter. In general, 25-(OH)D3 and additional vitamin E suppressed oxidative stress and ameliorated the negative effects of high-density stocking on bone development in a commercial chicken farm setting. Vitamin diets improved the FCR of broilers, while high-density stocking resulted in better economic outcomes.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Qijiang Zhu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven 3000, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Nadia Everaert
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271000. China
| |
Collapse
|
7
|
White D, Chen C, Kim WK. Effect of the combination of 25-hydroxyvitamin D3 and higher level of calcium and phosphorus in the diets on bone 3D structural development in pullets. Front Physiol 2023; 14:1056481. [PMID: 37168220 PMCID: PMC10164944 DOI: 10.3389/fphys.2023.1056481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Bone issues such as osteoporosis are major concerns for the laying hen industry. A study was conducted to improve bone-health in pullets. A total of 448 one-day-old Hyline W36 pullets were randomly assigned to four treatments (8 rep; 14 birds/rep) until 17 weeks (wks). Dietary treatments were: 1) vitamin D3 at (2,760 IU/kg) (D), 2) vitamin D3 (2,760 IU/kg)+62.5 mg 25-(OH)D3/ton (H25D), 3) vitamin D3 (2,760 IU/kg) + 62.5 mg 25-(OH)D3/ton + high Ca&P (H25D + Ca/P), and 4) vitamin D3 (2,760 IU/kg) + high Ca&P (D + Ca/P). The high calcium (Ca) and phosphorus (P) diet was modified by increasing both high calcium and phosphorus by 30% (2:1) for the first 12 wks and then only increasing P for 12-17 wks to reduce the Ca to P ratio. At 17 wk, growth performance was measured, whole body composition was measured by dual energy x-ray absorptiometry (DEXA), and femur bones were scanned using Micro-computed tomography (Micro-CT) for bone 3D structure analyses. The data were subjected to a one-way ANOVA using the GLM procedure, with means deemed significant at p < 0.05. There was no significant outcome for growth performance or dual energy x-ray absorptiometry parameters. Micro-computed tomography results indicated that the H25D + Ca/P treatment had lower open pore volume space, open porosity, total volume of pore space, and total porosity in the cortical bone compared to the D + Ca/P. It also showed that a higher cortical bone volume/tissue volume (BV/TV) in the H25D + Ca/P than in the D + Ca/P. Furthermore, the H25D + Ca/P treatment had the lowest trabecular pattern factor and structure model index compared to the other treatments, which indicates its beneficial effects on trabecular structural development. Moreover, the H25D + Ca/P had a higher trabecular percentage compared to the D and 25D, which suggests the additional high calcium and phosphorus supplementation on top of 25D increased trabecular content in the cavity. In conclusion, the combination of 25D with higher levels of high calcium and phosphorus could improve cortical bone quality in pullets and showed a beneficial effect on trabecular bone 3D structural development. Thus, combination of a higher bio-active form of vitamin D3 and higher levels of high calcium and phosphorus could become a potential feeding strategy to improve bone structural integrity and health in pullets.
Collapse
|
8
|
Zhang H, Majdeddin M, Gaublomme D, Taminiau B, Boone M, Elewaut D, Daube G, Josipovic I, Zhang K, Michiels J. 25-hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation. J Anim Sci Biotechnol 2021; 12:104. [PMID: 34620220 PMCID: PMC8499578 DOI: 10.1186/s40104-021-00627-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alterations in ambient temperature have been associated with multiple detrimental effects on broilers such as intestinal barrier disruption and dysbiosis resulting in systemic inflammation. Inflammation and 25-hydroxycholecalciferol (25-OH-D3) have shown to play a negative and positive role, respectively, in the regulation of bone mass. Hence the potential of 25-OH-D3 in alleviating heat induced bone alterations and its mechanisms was studied. RESULTS Heat stress (HS) directly induced a decrease in tibia material properties and bone mass, as demonstrated by lower mineral content, and HS caused a notable increase in intestinal permeability. Treatment with dietary 25-OH-D3 reversed the HS-induced bone loss and barrier leak. Broilers suffering from HS exhibited dysbiosis and increased expression of inflammatory cytokines in the ileum and bone marrow, as well as increased osteoclast number and activity. The changes were prevented by dietary 25-OH-D3 administration. Specifically, dietary 25-OH-D3 addition decreased abundance of B- and T-cells in blood, and the expression of inflammatory cytokines, especially TNF-α, in both the ileum and bone marrow, but did not alter the diversity and population or composition of major bacterial phyla. With regard to bone remodeling, dietary 25-OH-D3 supplementation was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen reflecting bone resorption and a concomitant decrement in osteoclast-specific marker genes expression (e.g. cathepsin K), whereas it did not apparently change serum bone formation markers during HS. CONCLUSIONS These data underscore the damage of HS to intestinal integrity and bone health, as well as that dietary 25-OH-D3 supplementation was identified as a potential therapy for preventing these adverse effects.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Djoere Gaublomme
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Matthieu Boone
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium.,Department of Physics and Astronomy, Radiation Physics Research Group, Ghent University, 9000, Ghent, Belgium
| | - Dirk Elewaut
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - George Daube
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Iván Josipovic
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | - Keying Zhang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
10
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
11
|
Chen C, White DL, Marshall B, Kim WK. Role of 25-Hydroxyvitamin D 3 and 1,25-Dihydroxyvitamin D 3 in Chicken Embryo Osteogenesis, Adipogenesis, Myogenesis, and Vitamin D 3 Metabolism. Front Physiol 2021; 12:637629. [PMID: 33597896 PMCID: PMC7882680 DOI: 10.3389/fphys.2021.637629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
A study was conducted to understand the effects of 25-hydroxyvitamin D3 (25OHD) and 1,25-dihydroxyvitamin D3 (1,25OHD) administration on the expression of key genes related to osteogenesis, adipogenesis, myogenesis, and vitamin D3 metabolism in the chicken embryo. A total of 120 fertilized Cobb 500 eggs were used in the current study and were reared under standard incubation conditions. On embryonic day 3 (ED 3), PBS (C), PBS with 40ng 1,25OHD (1,25D-L), 200ng 1,25OHD (1,25D-H), 40ng 25OHD (25D-L), or 200ng 25OHD (25D-H) were injected into the dorsal vein of developing embryos. Whole embryos were harvested at 1, 3, and 6h post-injection for gene expression analyses (n=8). Gene expression for key osteogenesis markers (RUNX2: runt-related transcription factor 2; BMP2: bone morphogenetic protein 2; COL1A2: collagen type I alpha 2 chain; BGLAP: bone gamma-carboxyglutamate protein; SPP1: secreted phosphoprotein 1; and ALP: alkaline phosphatese), adipogenesis markers (PPAR-γ: peroxisome proliferator-activated receptor gamma; FASN: fatty acid synthase; and FABP4: fatty acid binding protein 4), myogenesis markers (MYOG: myogenin; MYOD1: myogenic differentiation 1; and MYF5: myogenic factor 5), and the enzyme responsible for vitamin D3 inactivation (CYP24A1: cytochrome P450 family 24 subfamily A member 1) were measured using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Data were normalized by the ΔΔCT method and analyzed using a one-way ANOVA. Results indicated that at 1h post-injection, no differences were found among treatments. At 3h, the early osteogenesis differentiation marker, ALP, was increased by 1,25D-H and 25D-H, and 25D-H also stimulated the expression of adipogenesis markers (FAPB4 and FASN). In contrast, the expression of myogenesis markers (MYOD1 and MYF5) was suppressed by 25OHD or 1,25OHD treatments, respectively. At 6h, a late osteogenic differentiation marker, SPP1, was increased by 25D-H. MYOD1 and MYF5 were continuously suppressed by 25OHD treatments or 1,25D-H. The evidence of vitamin D3 metabolite retention was assessed by measuring CYP24A1 expression. At 1h, there were no differences in CYP24A1 expression. At 3h, all treatments upregulated CYP24A1 expression relative to control (PBS) embryos. However, at 6h, only the 25D-H group retained higher CYP24A1 expression compared to the other treatments. In conclusion, the results suggested both 1,25OHD and 25OHD induced chicken embryo osteogenesis and adipogenesis, but inhibited myogenesis during early chicken embryo development. The higher dosage of 25OHD showed a possibility of a longer retention time in the embryos.
Collapse
Affiliation(s)
- Chongxiao Chen
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Dima Lynn White
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Brett Marshall
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Zhang H, Zeng Q, Bai S, Wang J, Ding X, Xuan Y, Su Z, Fraley GS, Yao B, Zhang K. Dietary supplementation of 25-hydroxycholecalciferol increases tibial mass by suppression bone resorption in meat ducks. ANIMAL NUTRITION 2020; 6:467-479. [PMID: 33364463 PMCID: PMC7750870 DOI: 10.1016/j.aninu.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022]
Abstract
Leg problems often result from the rapid weight gain and poor bone quality in modern ducks, leading to a high risk of fractures and continuous pain. We hypothesized that improving bone quality in combination with delaying weight gain via a low nutrient density (LND) diet probably reverses these skeletal abnormalities. Studies indicated that 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolite, is effective in treating bone-related disorders. Therefore, Exp. 1 evaluated the effects of 25-OH-D3 on tibial mass of meat ducks. Male meat ducklings were fed a standard nutrient density diet (containing a regular vitamin regimen) without or with 25-OH-D3 at 0.069 mg/kg for 35 d. The results showed that 25-OH-D3 supplementation improved the mineral content, microarchitecture and mechanical properties of tibias, and this companied by a decreased serum bone resorption marker and a concomitant decrement in osteoclast-specific marker genes expression. Subsequently, Exp. 2 was conducted to examine the impacts of 25-OH-D3 incorporating an LND diet on tibial quality of ducks under 2 different vitamin regimens (regular and high). Ducklings were allocated to a 2 × 2 factorial arrangement with 2 kinds of vitamin premixes and without or with 25-OH-D3 at 0.069 mg/kg in LND diets. The high premix had higher levels of all vitamins except biotin than the regular premix. The results demonstrated that high vitamin diets exhibited more significant effects than regular vitamin diets on inhibiting bone turnover and increasing minerals deposition. Tibial mineral content, microarchitecture, and strength of birds under the regular vitamin regimen were increased by 25-OH-D3 supplementation; However, these positive effects were not observed in ducks under the high vitamin regimen. To conclude, 25-OH-D3 supplementation improves tibial mass by suppressing osteoclast-mediated bone resorption in meat ducks, and this positive impact only was observed in regular but not high vitamin regimen when birds fed an LND diet.
Collapse
|
13
|
Role of long-term supplementation of 25-hydroxyvitamin D 3 on laying hen bone 3-dimensional structural development. Poult Sci 2020; 99:5771-5782. [PMID: 33142495 PMCID: PMC7647792 DOI: 10.1016/j.psj.2020.06.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Egg-laying hens have a unique bone development pattern due to the medullary bone formation and high bone turnover rate. The role of long-term supplementation of an intermediate form of vitamin D3, 25-hydroxyvitamin D3 (25OHD), on skeletal development of pullets and laying hens is not well established. Exploring its effects on layer bone development will help develop a strategy for preventing laying hen osteoporosis. The purpose of this study was to investigate the role of long-term supplementation of 25OHD in layer diets on bone 3-dimensional structural development. A total of 390 1-day-old Hy-Line W36 pullets were randomly allocated to 3 treatments with 10 replicate cages and 13 birds/cage. Dietary treatments were 1) vitamin D3 at 2,760 IU/kg, 2) vitamin D3 at 5,520 IU/kg, and 3) vitamin D3 at 2,760 IU/kg plus 25OHD at 2,760 IU (69 μg)/kg. The level of 25OHD in the serum was tested throughout the whole experimental period (0–95 wk). Bone growth rate (BGR) was measured at 10 wk using a calcein injection technique. Femurs were scanned using Micro-CT for 3D structural analysis, and the whole-body composition analysis was performed using a dual-energy x-ray absorptiometry method at 17, 60, and 95 wk. Dietary supplementation of 25OHD significantly increased 25OHD level in the serum from 0 to 95 wk. During the rearing period (0–17 wk), 25OHD increased BGR, cortical tissue volume, and bone marrow area at 17 wk, simultaneously. 25OHD created more pores in cortical bone, which resulted in a lower cortical bone mineral density (BMD) but without alerting bone mineral content (BMC). This effect allowed more space for mineral deposition in bones during the later egg-laying period. At 60 wk, the 25OHD group had significantly greater BMD, which led to the highest total BMC, cortical volume, and trabecular bone connectivity. At 95 wk, the birds fed 25OHD had significantly higher cortical bone volume and lower porosity. The 25OHD group also had higher total BMD and medullary bone volume but a lower BMC and volume of trabecular bone than vitamin D3 or double dosage vitamin D3 treatment. This indicated that the bone resorption rate was lower in cortical bone than that in trabecular bone in the late laying period. In conclusion, supplementation with dietary 25OHD could stimulate bone growth and increase bone volume in pullets to provide more space for mineral deposition during the laying period with positive effects on laying hen bone quality.
Collapse
|
14
|
Effect of dietary 25-hydroxycholecalciferol on the sternal mass of meat ducks under different vitamin regimens. Poult Sci 2020; 99:1241-1253. [PMID: 32111302 PMCID: PMC7587744 DOI: 10.1016/j.psj.2019.10.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023] Open
Abstract
Genetic selection and intensive nutrition for increased growth rate in meat-type ducks has resulted in an imbalance between pectorales increment and sternal mass, which is detrimental to productivity and welfare. Reducing body weight and increasing sternal mass probably reverses these adverse effects. Therefore, 2 experiments (Expt.) were conducted to investigate the effects of 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolites, on sternal mass. In Expt. 1, 512 1-day-old male ducks were randomly assigned to 4 low-nutrient density diets and received following treatments in a 2 × 2 factorial arrangement: (i) NRC or China Agricultural industry standards (NY/T) vitamin premixes and (ii) 0.069 mg/kg 25-HyD in feed or not. At 49 D of age, regardless of 25-OH-D3, NY/T vitamin regimen inhibited bone turnover and consequently increased sternal trabecular bone volume and mineral deposition compared with NRC vitamin premix. Supplementing 25-OH-D3 to NRC but not NY/T vitamin regimen significantly improved sternal microarchitecture and mineral content, which companied by decreased serum bone resorption markers concentration, as well as downregulation of the gene expressions of osteoclast differentiation and activity. In Expt. 2, 256 1-day-old male ducks were fed a standard nutrient density diet contained NRC vitamin premix with 0 or 0.069 mg/kg of 25-OH-D3. Results also showed that 25-OH-D3 treatment significantly improved sternal mineral accumulation and microarchitecture, along with decreasing osteoblast and osteoclast numbers in bone surface, declining serum bone turnover markers levels, and increasing serum Ca concentration. Collectively, these findings indicated that the dietary administration of 25-OH-D3 increased sternal mass in NRC vitamin diet by suppressing bone resorption in 49-day-old meat duck.
Collapse
|
15
|
Efficacy of dietary vitamin D and its metabolites in poultry - review and implications of the recent studies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916001057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Sakkas P, Smith S, Hill TR, Kyriazakis I. A reassessment of the vitamin D requirements of modern broiler genotypes. Poult Sci 2019; 98:330-340. [PMID: 30165464 PMCID: PMC6347127 DOI: 10.3382/ps/pey350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
We hypothesized that performance and bone mineralization of 2 broiler lines will benefit from increasing vitamin D (vitD) supplementation above current commercial levels and by partial substitution of D3 by 25-OH-D3. Male Ross 308 and 708 chicks (n = 576), were offered diets with low (LD; 1,000), medium (MD; 4,000) or high levels of D3 (HD; 7,000 IU/kg), and medium levels of vitD where the majority of D3 was substituted by 25-OH-D3 (25MD; 1,000 D3+3,000 25-OH-D3 IU/kg). Performance was measured at the end of starter (day 10), grower (day 24), and finisher periods (day 38). Three birds per pen were dissected at the end of each period to assess tibia and femur ash percentage (%), ash weight, bone breaking strength (BBS), and serum levels of 25-OH-D3. Remaining birds were gait scored (GS) at day 37 of age. Genotype and diet did not interact for any trait, whilst performance was not affected by diet. Ross 708 had lower body weight (P < 0.005), higher feed conversion ratio over the grower period (P < 0.05), similar levels of 25-OH-D3, but higher GS (P < 0.05) than Ross 308. Serum 25-OH-D3 levels were affected by diet at the end of the starter and grower periods (P < 0.05), being lowest for LD and highest for 25MD. Diet affected GS (P < 0.01), being higher in LD than 25MD. Femur ash % was higher at the end of the starter and grower periods for 25MD than LD and for both HD and 25MD than LD (P < 0.05). Femur and tibia ash weight were higher for 25MD in comparison to LD birds (P < 0.05) at the end of the grower period. Femur and tibia BBS were higher (P < 0.05) for 25MD in comparison to LD at the end of the grower and finisher periods, respectively. Overall, effects of vitD supply were more pronounced for femur than for tibia mineralization. Results do not suggest supplementation of vitD above current maximum levels and support partial substitution by 25-OH-D3.
Collapse
Affiliation(s)
- P Sakkas
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle on Tyne, NE1 7RU, UK
| | - S Smith
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle on Tyne, NE1 7RU, UK
| | - T R Hill
- Institute of Cellular Medicine, Faculty of Medical Science, Newcastle University, Newcastle on Tyne, NE1 7RU, UK
| | - I Kyriazakis
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle on Tyne, NE1 7RU, UK
| |
Collapse
|
17
|
Al-Rubaye AA, Ekesi NS, Zaki S, Emami NK, Wideman RF, Rhoads DD. Chondronecrosis with osteomyelitis in broilers: Further defining a bacterial challenge model using the wire flooring model. Poult Sci 2017; 96:332-340. [DOI: 10.3382/ps/pew299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
|
18
|
Wideman RF. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: a review. Poult Sci 2016; 95:325-44. [DOI: 10.3382/ps/pev320] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
|