1
|
Elliott KEC, Lindsey LL, Fatemi SA, Gerard PD, Peebles ED. Use of in ovo transponder telemetry to determine the effects of a reduction in temperature initiated on day twelve of incubation on the subsequent body temperature and somatic characteristics of Ross 708 broiler chicks. Poult Sci 2025; 104:104991. [PMID: 40068575 PMCID: PMC11932675 DOI: 10.1016/j.psj.2025.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The effects of a reduction in incubation temperature, made to accommodate higher levels of embryonic heat production, on the post hatch body temperature and somatic characteristics of Ross 708 broilers were determined. Incubation temperature treatments (TRT) were a standard (STRT, 37.5 °C) and a lower (LTRT, 35.6°C) TRT provided between 12 and 21 d of incubation (DOI). All eggs were incubated at 37.5 °C between 0 and 12 DOI. Temperature transponders implanted in the air cell of each egg at 12 DOI were extracted and inserted subcutaneously into the neck of the corresponding hatchling to record chick body temperature (CBT) through 21 d of grow out (DOG). After placement, multiple CBT and litter temperature (LT) readings were recorded daily between 1 and 21 DOG, and BW was determined at placement (0 DOG), and BW, body length (BL), and BW to length ratio (BWTLR) were determined on 7, 14, and 21 DOG. Thirteen daily mean CBT readings in the STRT were significantly higher than those in the LTRT between 1 and 21 DOG. Nevertheless, there was no significant correlation between LT and CBT, and when hatch time (HT) and BW were accounted for, embryo temperature (ET) and CBT were not significantly correlated. At 0 and 7 DOG, no significant differences in BW were observed between the STRT and LTRT within either sex; however, BW was greatest in males belonging to the STRT at 14 (x̄ = 483.1 g) and 21 (x̄ = 1,033.8 g) DOG. Across DOG and sex, BL was significantly longer in the STRT than in the LTRT, and at 14 and 21 DOG, BWTLR was greater in the STRT than in the LTRT. The LTRT subsequently lowered CBT and negatively affected chick BW, BL, and BWTLR. In conclusion, CBT is not directly associated with ET, but the reductions in CBT and various performance variables in Ross 708 broilers in response to the LTRT is a result of its adverse effects on chick HT and BW.
Collapse
Affiliation(s)
- K E C Elliott
- USDA-ARS, Poultry Research Unit, Mississippi State, MS 39762, USA
| | - L L Lindsey
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - S A Fatemi
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - P D Gerard
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - E D Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
2
|
Park G, Park S, Oh S, Choi N, Choi J. Effects of culture temperature (37°C, 39°C) and oxygen concentration (20%, 2%) on proliferation and differentiation of C2C12 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:224-235. [PMID: 39974777 PMCID: PMC11833204 DOI: 10.5187/jast.2023.e130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2025]
Abstract
Cells, culture media, and so on are important elements of cultured meat production technology. Also, the environment (humidity, temperature, air composition, dissolved oxygen tension, etc.) for in vivo muscle production are important. Among cell culture conditions, culture temperature and oxygen concentration are important physical factors that can affect cells. The objective of this study was to determine effects of culture temperature and oxygen concentration on proliferation and differentiation of muscle cells. This study was conducted using C2C12 cells of rat myoblasts widely used in muscle physiology. The temperature was chosen to induce some thermal stress at 39°C, and the oxygen concentration was selected at 2% to mimic the oxygen levels present in muscle cells in vivo. Culture conditions consisted of CON (37°C/20% O2), T1 (37°C/2% O2), T2 (39°C/20% O2) and T3 (39°C/2% O2). In terms of cell proliferation, temperature conditions had a significant impact (p < 0.05), and a temperature of 39°C was found to reduce the cell count. Oxygen conditions had a significant impact on 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) absorbance, and temperature conditions were found to have a greater influence on cell proliferation compared to oxygen condition and interaction condition. The temperature conditions were found to have a significant impact (p < 0.05) on the expression of proteins related to myogenesis compared to oxygen conditions. The significant increase (p < 0.05) in the protein expression levels of Myh, Myod1, Myog, and Mb in T2 compared to CON, and in T3 compared to T1, suggests that a temperature of 39°C enhances the expression of myogenic differentiation proteins. These results indicate that temperature conditions have a significant impact (p < 0.05) on cell proliferation and differentiation, more so than oxygen conditions and interaction conditions. And a temperature of 39°C was found to inhibit cell proliferation, but in the case of differentiation, it was observed to be promoted due to the upregulation of myogenic differentiation proteins.
Collapse
Affiliation(s)
- Gyutae Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Nayoung Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
3
|
Fatemi SA, Levy AW, Peebles ED. The Expressions of the Immunity- and Muscle Development-Related Genes of 40-Day-Old Broilers Are Promoted in Response to the In Ovo and Dietary Supplemental Administration of Calcidiol in Conjunction with the In Ovo Administration of Marek's Disease Vaccine. Animals (Basel) 2024; 15:10. [PMID: 39794953 PMCID: PMC11718904 DOI: 10.3390/ani15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Effects of in ovo and dietary sources of calcidiol (25(OH)D3), combined with Marek's disease vaccine (MDV), on the expression of genes involved with the antioxidant activity, muscle deposition, and immunity in the pectoralis major (P. major) muscle and spleen of 40 d of age (doa) broilers were investigated. The in ovo treatments were as follows: (1) non-injected; (2) the injection of 50 μL of commercial MDV, (3) MDV + 1.2, or (4) 2.4 μg of 25(OH)D3. All birds received either a commercial diet containing no supplemental 25(OH)D3 (control) or the same diet supplemented with an additional 69 µg of 25(OH)D3 per kg of feed (Hy-D diet). At 40 doa, the pectoralis major (P. major) muscle and spleen of 48 birds (six replicates per diet x in ovo treatment combination) were collected. When compared to un-supplemented commercial diet-fed birds, in birds that were fed the Hy-D diet, the expression of the TGF-β4 gene in the spleen and P. major muscle, and the GSH-P1, GSH-P7, SOD2, MyoG, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, whereas the expression of the IL-1β, IL-8, and CYP24A1 genes in the spleen and P. major muscle were down-regulated. Nevertheless, birds that received any of the in ovo injection doses of 25(OH)D3 exhibited a higher expression of the IL-10, TGF-β4, and CYP27B1 genes in the spleen and P. major muscle. Furthermore, in comparison to the MDV-injected control group, the CAT, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, and the expression of the INF-γ, IL-1β and CYP24A1 genes in the spleen and the IL-8, and IL-1β genes in the P. major muscle were down-regulated. In conclusion, a significant improvement in the expression of genes responsible for enzymatic antioxidant activity, protein synthesis, and inflammatory reactions in 40-day-old broilers occurred in response to in ovo and dietary supplemental 25(OH)D3, and supplemental 25OHD3 provided via either route was used to enhance the expression of genes linked to vitamin D activity (CYP27B1, CYP24A1).
Collapse
|
4
|
Fatemi SA, Levy AW, Peebles ED. Enhancements in the expressions of genes associated with the immunity, muscle growth, and antioxidant activity of 14 d broilers in response to the in ovo injection of the Marek's disease vaccine alone or in conjunction with the in ovo and dietary supplemental administration of 25-hydroxycholecalciferol. Poult Sci 2024; 103:104372. [PMID: 39413703 PMCID: PMC11530893 DOI: 10.1016/j.psj.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Influences the Marek's disease vaccine (MDV) alone or combined with the in ovo and dietary administration of 25-hydroxycholecalciferol (25OHD3) on the expression of genes associated with the breast muscle deposition, adaptive and innate immunity, and antioxidant and vitamin D activities of 14 d-old broilers were investigated. Four in ovo treatments were: noninjected; commercial MDV-alone-injected (50 μl); or 50 μl of MDV containing 1.2 (MDV+25OHD3-1.2) or 2.4 (MDV+25OHD3-2.4) μg of 25OHD3. Two dietary treatments were a commercial diet containing 25OHD3 (250 IU)/kg of feed (control) or the same diet supplemented with additional 25OHD3 (2,760 IU)/kg of feed (Hy-D diet). One bird per pen (48 total) was sampled at 14 d for determination of the expression of genes involved with the muscle deposition (MyoD1, MyoG, Pax3, and Mrf4), immunity (INF-γ, IL-10, IL-8, IL-1β, and TGF-β4), antioxidant capacity (SOD1, SOD2, GSH-P1, GSH-P7, and CAT), and vitamin D activity (VDR, 1α-hydroxylase, and 24-hydroxylase) in the spleen and pectoralis major (P.major) muscle. The treatment differences were considered significant at P ≤ 0.05. In the P. major, Mrf4 and MyoG were up-regulated in Hy-D-fed birds. Also, the in ovo and dietary 25OHD3 sources individually increased SOD2 gene expression in the P. major. In the spleen, the expressions of IL-1β and IL-8 were down-regulated and IL-10 and TGF-β4 gene expressions were up-regulated in Hy-D-fed birds than those commercial-fed broiler. In ovo and dietary 25OHD3 sources enhanced vitamin D gene (1α-hydroxylase and 24-hydroxylase) activities in the breast and spleen. In ovo x dietary treatment interactions were significant for the MyoD1, IL-8, Pax3, TGF-β4 genes of the P. major, in which the combined MDV with 1.2 μg of 25OHD3 enhanced their expressions in birds fed the Hy-D diet. In conclusion, both 25OHD3 sources promoted the expression of genes associated with immunity and P. major growth. It is recommended that both 25OHD3 sources can be used to promote the gene expression of 14-day-old broilers in the spleen and breast muscle when MDV administered in ovo.
Collapse
Affiliation(s)
- S A Fatemi
- Department of Poultry Science, Mississippi State University, MS 39762, USA.
| | - A W Levy
- DSM Nutritional Products, Parsippany, NJ, 07054, USA
| | - E D Peebles
- Department of Poultry Science, Mississippi State University, MS 39762, USA
| |
Collapse
|
5
|
Che S, Hall P. Spaghetti meat and woody breast myopathies in broiler chickens: similarities and differences. Front Physiol 2024; 15:1453322. [PMID: 39253020 PMCID: PMC11381254 DOI: 10.3389/fphys.2024.1453322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Sunoh Che
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Parker Hall
- Perdue Foods LLC, Salisbury, MD, United States
| |
Collapse
|
6
|
Kang KM, Lee DB, Kim HY. Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review. Food Sci Anim Resour 2024; 44:499-514. [PMID: 38765282 PMCID: PMC11097020 DOI: 10.5851/kosfa.2024.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Dong Bae Lee
- School of Languages and Cultures, The University of Queensland, Brisbane 4072, Australia
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
7
|
Gregg CR, Hutson BL, Flees JJ, Starkey CW, Starkey JD. Effect of standard and physiological cell culture temperatures on in vitro proliferation and differentiation of primary broiler chicken pectoralis major muscle satellite cells. Front Physiol 2023; 14:1288809. [PMID: 38033332 PMCID: PMC10687209 DOI: 10.3389/fphys.2023.1288809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Culture temperatures for broiler chicken cells are largely based on those optimized for mammalian species, although normal broiler body temperature is typically more than 3°C higher. The objective was to evaluate the effects of simulating broiler peripheral muscle temperature, 41°C, compared with standard temperature, 38°C, on the in vitro proliferation and differentiation of primary muscle-specific stem cells (satellite cells; SC) from the pectoralis major (PM) of broiler chickens. Primary SC cultures were isolated from the PM of 18-day-old Ross 708 × Yield Plus male broilers. SC were plated in triplicate, 1.8-cm2, gelatin-coated wells at 40,000 cells per well. Parallel plates were cultured at either 38°C or 41°C in separate incubators. At 48, 72, and 96 h post-plating, the culture wells were fixed and immunofluorescence-stained to determine the expression of the myogenic regulatory factors Pax7 and MyoD as well as evaluated for apoptosis using a TUNEL assay. After 168 h in culture, plates were immunofluorescence-stained to visualize myosin heavy chain and Pax7 expression and determine myotube characteristics and SC fusion. Population doubling times were not impacted by temperature (p ≥ 0.1148), but culturing broiler SC at 41°C for 96 h promoted a more rapid progression through myogenesis, while 38°C maintained primitive populations (p ≤ 0.0029). The proportion of apoptotic cells increased in primary SC cultured at 41°C (p ≤ 0.0273). Culturing at 41°C appeared to negatively impact fusion percentage (p < 0.0001) and tended to result in the formation of thinner myotubes (p = 0.061) without impacting the density of differentiated cells (p = 0.7551). These results indicate that culture temperature alters primary broiler PM SC myogenic kinetics and has important implications for future in vitro work as well as improving our understanding of how thermal manipulation can alter myogenesis patterns during broiler embryonic and post-hatch muscle growth.
Collapse
Affiliation(s)
| | | | | | | | - Jessica D. Starkey
- Department of Poultry Science, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Imashiro C, Jin Y, Hayama M, Yamada TG, Funahashi A, Sakaguchi K, Umezu S, Komotori J. Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells. CYBORG AND BIONIC SYSTEMS 2023; 4:0049. [PMID: 37554432 PMCID: PMC10405790 DOI: 10.34133/cbsystems.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Hyperthermia can be induced to exploit the thermal intolerance of cancer cells, which is worse than that of normal cells, as a potential noninvasive cancer treatment. To develop an effective hyperthermia treatment, thermal cytotoxicity of cells should be comprehensively investigated. However, to conduct such investigations, the culture temperature must be accurately regulated. We previously reported a culture system in which the culture temperature could be accurately regulated by employing metallic culture vessels. However, appropriate temperature conditions for hyperthermia depend on the cell species. Consequently, several experiments need to be conducted, which is a bottleneck of inducing hyperthermia. Hence, we developed a cell culture system with temperature gradation on a metallic culture surface. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used as cancer and normal cell models, respectively. Normal cells showed stronger thermal tolerance; this was because the novel system immediately exhibited a temperature gradation. Thus, the developed culture system can be used to investigate the optimum thermal conditions for effective hyperthermia treatment. Furthermore, as the reactions of cultured cells can be effectively assessed with the present results, further research involving the thermal stimulation of cells is possible.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Graduate School of Engineering,
The University of Tokyo, Tokyo 113-0033, Japan
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Yangyan Jin
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Motoaki Hayama
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
| | - Shinjiro Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
- Department of Modern Mechanical Engineering,
Waseda University, Tokyo 169-8555, Japan
| | - Jun Komotori
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| |
Collapse
|
9
|
Xu J, Velleman SG. Effects of thermal stress and mechanistic target of rapamycin and wingless-type mouse mammary tumor virus integration site family pathways on the proliferation and differentiation of satellite cells derived from the breast muscle of different chicken lines. Poult Sci 2023; 102:102608. [PMID: 36948037 PMCID: PMC10033751 DOI: 10.1016/j.psj.2023.102608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells responsible for muscle hypertrophic growth and the regeneration of damaged muscle. Proliferation and differentiation of the pectoralis major (p. major) muscle SCs are responsive to thermal stress in turkeys, which are, in part, regulated by mechanistic target of rapamycin (mTOR) and Frizzled7 (Fzd7)-mediated wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) pathways in a growth dependent-manner. It is not known if chicken p. major SCs respond to thermal stress in a manner similar to that of turkey p. major SCs. The objective of the current study was to investigate the effects of thermal stress and mTOR and Wnt/PCP pathways on the proliferation, differentiation, and expression of myogenic transcriptional regulatory factors in SCs isolated from the p. major muscle of a current modern commercial (MC) broiler line as compared to that of a Cornish Rock (BPM8) and Randombred (RBch) chicken line in the 1990s. The MC line SCs had lower proliferation and differentiation rates and decreased expression of myoblast determination factor 1 (MyoD) and myogenin (MyoG) compared to the BPM8 and RBch lines. Heat stress (43°C) increased proliferation and MyoD expression in all the cell lines, while cold stress (33°C) showed a suppressive effect compared to the control temperature (38°C). Satellite cell differentiation was altered with heat and cold stress in a cell line-specific manner. In general, the differentiation of the MC SCs was less responsive to both heat and cold stress compared to the BPM8 and RBch lines. Knockdown of the expression of either mTOR or Fzd7 decreased the proliferation, differentiation, and the expression of MyoD and MyoG in all the cell lines. The MC line during proliferation was more dependent on the expression of mTOR and Fzd7 than during differentiation. Thus, modern commercial meat-type chickens have decreased myogenic activity and temperature sensitivity of SCs in an mTOR- and Fzd7-dependent manner. The decrease in muscle regeneration will make modern commercial broilers more susceptible to the negative effects of myopathies with muscle fiber necrosis requiring satellite cell-mediated repair.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
10
|
Velleman SG. Satellite cell-mediated breast muscle growth and repair: The impact of thermal stress. Front Physiol 2023; 14:1173988. [PMID: 37064890 PMCID: PMC10102635 DOI: 10.3389/fphys.2023.1173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
|
11
|
Differential effects of temperature and mTOR and Wnt-planar cell polarity pathways on syndecan-4 and CD44 expression in growth-selected turkey satellite cell populations. PLoS One 2023; 18:e0281350. [PMID: 36735684 PMCID: PMC9897570 DOI: 10.1371/journal.pone.0281350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Satellite cells (SCs) comprise a heterogeneous population of muscle stem cells. Thermal stress during the first week after hatch alters proliferation, myogenesis, and adipogenesis of SCs of turkey pectoralis major (p. major) muscle via mechanistic target of rapamycin (mTOR) and wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) pathways. Pivotal genes in mTOR and Wnt/PCP pathways are mTOR and frizzled-7 (Fzd7), respectively. The objective of this study was to determine the differential effects of thermal stress on SDC4 and CD44 expression in turkey p. major muscle SCs and how the expression of SDC4 and CD44 is modulated by the mTOR and Wnt/PCP pathways. Satellite cells were isolated from the p. major muscle of 1-week-old faster-growing modern-commercial (NC) turkeys and slower-growing historic Randombred Control Line 2 (RBC2) turkeys, and were challenged with hot (43°C) and cold (33°C) thermal stress for 72 h of proliferation followed by 48 h of differentiation. The NC line SCs were found to contain a lower proportion of SDC4 positive and CD44 negative (SDC4+CD44-) cells and a greater proportion of SDC4 negative and CD44 positive (SDC4-CD44+) cells compared to the RBC2 line at the control temperature (38°C) at both 72 h of proliferation and 48 h of differentiation. In general, at 72 h of proliferation, the proportion of SDC4+CD44- cells decreased with heat stress (43°C) and increased with cold stress (33°C) relative to the control temperature (38°C) in both lines, whereas the proportion of SDC4-CD44+ cells increased with heat stress and decreased with cold stress. In general, the expression of SDC4 and CD44 in the NC SCs showed greater response to both hot and cold thermal stress compared to the RBC2 cells. Knockdown of mTOR or Fzd7 expression increased the proportion of SDC4+CD44- cells while the proportion of SDC4-CD44+ cells decreased during differentiation with line differences being specific to treatment temperatures. Thus, differential composition of p. major muscle SCs in growth-selected commercial turkey may be resulted, in part, from the alteration in SDC4 and CD44 expression. Results indicate differential temperature sensitivity and mTOR and Wnt/PCP pathway responses of growth-selected SC populations and this may have long-lasting effect on muscle development and growth.
Collapse
|
12
|
Kim WS, Daddam JR, Keng BH, Kim J, Kim J. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J Anim Sci 2023; 101:skad303. [PMID: 37688555 PMCID: PMC10629447 DOI: 10.1093/jas/skad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jayasimha R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jaehwan Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Smith ZK, Eckhardt E, Kim WS, Menezes ACB, Rusche WC, Kim J. Temperature Fluctuations Modulate Molecular Mechanisms in Skeletal Muscle and Influence Growth Potential in Beef Steers. J Anim Sci 2023; 101:skad343. [PMID: 37791975 PMCID: PMC10583992 DOI: 10.1093/jas/skad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Our investigation elucidated the effects of severe temperature fluctuations on cellular and physiological responses in beef cattle. Eighteen Red Angus beef steers with an average body weight of 351 ± 24.5 kg were divided into three treatment groups: 1) Control (CON), exposed to a temperature-humidity index (THI) of 42 for 6 h without any temperature changes; 2) Transport (TP), subjected to a one-mile trailer trip with a THI of 42 for 6 h; and 3) Temperature swing (TS), exposed to a one-mile trailer trip with a THI shift from 42 to 72-75 for 3 h. Our findings indicate that TS can induce thermal stress in cattle, regardless of whether the overall temperature level is excessively high or not. Behavioral indications of extreme heat stress in the cattle were observed, including extended tongue protrusion, reduced appetite, excessive salivation, and increased respiratory rate. Furthermore, we observed a pronounced overexpression (P < 0.05) of heat shock proteins (HSPs) 20, 27, and 90 in response to the TS treatment in the longissimus muscle (LM). Alterations in signaling pathways associated with skeletal muscle growth were noted, including the upregulation (P < 0.01) of Pax7, Myf5, and myosin heavy chain (MHC) isoforms. In addition, an increase (P < 0.05) in transcription factors associated with adipogenesis was detected (P < 0.05), such as PPARγ, C/EBPα, FAS, and SCD in the TS group, suggesting the potential for adipose tissue accumulation due to temperature fluctuations. Our data illustrated the potential impacts of these temperature fluctuations on the growth of skeletal muscle and adipose tissue in beef cattle.
Collapse
Affiliation(s)
- Zachary K Smith
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Erika Eckhardt
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | | | - Warren C Rusche
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Jongkyoo Kim
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Siddiqui SH, Khan M, Park J, Lee J, Choe H, Shim K, Kang D. COPA3 peptide supplementation alleviates the heat stress of chicken fibroblasts. Front Vet Sci 2023; 10:985040. [PMID: 36908511 PMCID: PMC9998527 DOI: 10.3389/fvets.2023.985040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Heat stress inhibits cellular proliferation and differentiation through the production of reactive oxygen species. Under stress conditions, antioxidant drugs promote stable cellular function by reducing the stress level. We sought to demonstrate 9-mer disulfide dimer peptide (COPA3) supplementation stabilizes fibroblast proliferation and differentiation even under heat stress conditions. In our study, fibroblasts were assigned to two different groups based on the temperature, like 38°C group presented as Control - and 43°C group presented as Heat Stress-. Each group was subdivided into two groups depending upon COPA3 treatment, like 38°C + COPA3 group symbolized Control+ and the 43°C + COPA3 group symbolized as Heat Stress+. Heat stress was observed to decrease the fibroblast viability and function and resulted in alterations in the fibroblast shape and cytoskeleton structure. In contrast, COPA3 stabilized the fibroblast viability, shape, and function. Moreover, heat stress and COPA3 were found to have opposite actions with respect to energy production, which facilitates the stabilization of cellular functions by increasing the heat tolerance capacity. The gene expression levels of antioxidant and heat shock proteins were higher after heat stress. Additionally, heat stress promotes the mitogen-activated protein kinase/ extracellular signal-regulated kinase-nuclear factor erythroid 2-related factor 2 (MAPK/ERK-Nrf2). COPA3 maintained the MAPK/ERK-Nrf2 gene expressions that promote stable fibroblast proliferation, and differentiation as well as suppress apoptosis. These findings suggest that COPA3 supplementation increases the heat tolerance capacity, viability, and functional activity of fibroblasts.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States.,Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea.,3D Tissue Culture Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hosung Choe
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
15
|
Reed KM, Mendoza KM, Xu J, Strasburg GM, Velleman SG. Transcriptome Response of Differentiating Muscle Satellite Cells to Thermal Challenge in Commercial Turkey. Genes (Basel) 2022; 13:1857. [PMID: 36292741 PMCID: PMC9601516 DOI: 10.3390/genes13101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the pectoralis major (p. major) muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the p. major muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jiahui Xu
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
16
|
Metzger K, Kalbe C, Siengdee P, Ponsuksili S. The effects of temperature and donor piglet age on the transcriptomic profile and energy metabolism of myoblasts. Front Physiol 2022; 13:979283. [PMID: 36213238 PMCID: PMC9532859 DOI: 10.3389/fphys.2022.979283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid climate change is associated with frequent extreme heat events and the resulting thermal stress has consequences for the health, welfare, and growth of farm animals. The aim of this study was to characterize the transcriptional changes and the effects on energy metabolism in proliferating porcine myoblasts derived from piglets of different ages, representing differences in thermoregulatory abilities, and cultivated below (35°C) and above (39°C, 41°C) the standard cultivation temperature (37°C). Satellite cells originating from Musculus rhomboideus of piglets isolated on days 5 (P5, thermolabile) and 20 (P20, thermostable) of age were used. Our expression analyses highlighted differentially expressed genes in porcine myoblasts cultures under heat or cold induced stress. These gene sets showed enrichment for biological processes and pathways related to organelle fission, cell cycle, chromosome organization, and DNA replication. Culture at 35°C resulted in increased metabolic flux as well as a greater abundance of transcripts of the cold shock protein-encoding gene RBM3 and those of genes related to biological processes and signaling pathways, especially those involving the immune system (cytokine–cytokine receptor interaction, TNF and IL-17 signaling pathways). For cultivation at 39°C, differences in the expression of genes related to DNA replication and cell growth were identified. The highest glutathione index ratio was also found under 39°C. Meanwhile, cultivation at 41°C induced a heat stress response, including the upregulation of HSP70 expression and the downregulation of many biological processes and signaling pathways related to proliferative ability. Our analysis also identified differentially expressed genes between cells of donors with a not yet (P5) and already fully developed (P20) capacity for thermoregulation at different cultivation temperatures. When comparing P5 and P20, most of the changes in gene expression were detected at 37°C. At this optimal temperature, muscle cells can develop to their full capacity. Therefore, the most diverse molecular signaling pathways, including PI3K-Akt signaling, Wnt signaling, and EGFR tyrosine kinase inhibitor, were found and are more pronounced in muscle cells from 20-day-old piglets. These results contribute to a better understanding of the mechanisms underlying the adaptation of skeletal muscle cells to temperature stress in terms of their thermoregulatory ability.
Collapse
Affiliation(s)
- Katharina Metzger
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Claudia Kalbe
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
| | - Puntita Siengdee
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- *Correspondence: Siriluck Ponsuksili,
| |
Collapse
|
17
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
18
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Transcriptome response of proliferating muscle satellite cells to thermal challenge in commercial turkey. Front Physiol 2022; 13:970243. [PMID: 36091406 PMCID: PMC9452691 DOI: 10.3389/fphys.2022.970243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal stress poses a threat to agricultural systems through increased risk to animal growth, health, and production. Exposure of poultry, especially hatchlings, to extreme temperatures can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells (SCs) cultured from commercial birds under thermal challenge to determine the applicability of previous results obtained for select research lines. Satellite cells isolated from the pectoralis major muscle of 1-week old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (RBC2) were proliferated in culture at 38°C or 43°C for 72 h. RNAseq analysis found statistically significant differences in gene expression among treatments and between turkey lines with a greater number of genes altered in the NCT SCs suggesting early myogenesis. Pathway analysis identified cell signaling and regulation of Ca2+ as important responses. Expression of the intercellular signaling Wnt genes, particularly Wnt5a and 7a was significantly altered by temperature with differential response between lines. The peripheral calcium channel RYR3 gene was among the genes most highly upregulated by heat stress. Increased expression of RYR3 would likely result in higher resting cytosolic calcium levels and increased overall gene transcription. Although responses in the calcium signaling pathway were similar among the RBC2 and NCT lines, the magnitude of expression changes was greater in the commercially selected birds. These results provide evidence into how SC activity, cellular fate, and ultimately muscle development are altered by heat stress and commercial selection.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, United States
| |
Collapse
|
19
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Thermal stress and selection for growth affect myogenic satellite cell lipid accumulation and adipogenic gene expression through mechanistic target of rapamycin pathway. J Anim Sci 2022; 100:6652327. [PMID: 35908789 PMCID: PMC9339274 DOI: 10.1093/jas/skac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Satellite cells (SCs) are multipotential stem cells having the plasticity to convert to an adipogenic lineage in response to thermal stress during the period of peak mitotic activity (the first week after hatch in poultry). The mechanistic target of rapamycin (mTOR) pathway, which regulates cellular function and fate of SCs, is greatly altered by thermal stress in turkey pectoralis major muscle SCs. The objective of the present study was to determine the effects of thermal stress, selection for growth, and the role of the mTOR pathway on SC intracellular lipid accumulation and expression of adipogenic regulatory genes. These effects were analyzed using SCs isolated from the pectoralis major muscle of 1-wk-old modern faster-growing commercial turkey line (NC) selected for increased growth and breast muscle yield as compared with SCs of a historic slower-growing Randombred Control Line 2 (RBC2) turkey. Heat stress (43 °C) of SCs during proliferation increased intracellular lipid accumulation (P < 0.001), whereas cold stress (33 °C) showed an inhibitory effect (P < 0.001) in both lines. Knockdown of mTOR reduced the intracellular lipid accumulation (P < 0.001) and suppressed the expression of several adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ (PPARγ; P < 0.001), CCAAT/enhancer-binding protein-β (C/EBPβ; P < 0.001), and neuropeptide-Y (NPY; P < 0.001) during both proliferation and differentiation. The NC line SCs showed fewer reductions in lipid accumulation compared with the RBC2 line independent of temperature. Both intracellular lipid accumulation (P < 0.001) and PPARγ expression (P < 0.001) were greater at 72 h of proliferation than at 48 h of differentiation in both the RBC2 and NC lines independent of temperature. Thus, hot and cold thermal stress affected intracellular lipid accumulation in the pectoralis major muscle SCs, in part, through the mTOR pathway in wea growth-dependent manner. Altered intracellular lipid accumulation could eventually affect intramuscular fat deposition, resulting in a long-lasting effect on the structure and protein to fat ratio of the poultry pectoralis major muscle.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
20
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
21
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Temperature and Growth Selection Effects on Proliferation, Differentiation, and Adipogenic Potential of Turkey Myogenic Satellite Cells Through Frizzled-7-Mediated Wnt Planar Cell Polarity Pathway. Front Physiol 2022; 13:892887. [PMID: 35677087 PMCID: PMC9167958 DOI: 10.3389/fphys.2022.892887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
Satellite cells (SCs) are a heterogeneous population of multipotential stem cells. During the first week after hatch, satellite cell function and fate are sensitive to temperature. Wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) signaling pathway is significantly affected by thermal stress in turkey pectoralis major (p. major) muscle SCs. This pathway regulates the activity of SCs through a frizzled-7 (Fzd7) cell surface receptor and two intracellular effectors, rho-associated protein kinase (ROCK) and c-Jun. The objective of the present study was to determine the effects of thermal stress, growth selection, and the Fzd7-mediated Wnt/PCP pathway on proliferation, myogenic differentiation, lipid accumulation, and expression of myogenic and adipogenic regulatory genes. These effects were evaluated in SCs isolated from the p. major muscle of 1-week faster-growing modern commercial (NC) line of turkeys as compared to SCs of a slower-growing historic Randombred Control Line 2 (RBC2) turkey line. Heat stress (43°C) increased phosphorylation of both ROCK and c-Jun with greater increases observed in the RBC2 line. Cold stress (33°C) had an inhibitory effect on both ROCK and c-Jun phosphorylation with the NC line showing greater reductions. Knockdown of the expression of Fzd7 decreased proliferation, differentiation, and expression of myogenic regulatory genes: myoblast determination factor-1 and myogenin in both lines. Both lipid accumulation and expression of adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-β, and neuropeptide-Y were suppressed with the Fzd7 knockdown. The RBC2 line was more dependent on the Fzd7-mediated Wnt/PCP pathway for proliferation, differentiation, and lipid accumulation compared to the NC line. Thus, thermal stress may affect poultry breast muscle growth potential and protein to fat ratio by altering function and fate of SCs through the Fzd7-mediated Wnt/PCP pathway in a growth-dependent manner.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
22
|
Thermal stress affects proliferation and differentiation of turkey satellite cells through the mTOR/S6K pathway in a growth-dependent manner. PLoS One 2022; 17:e0262576. [PMID: 35025965 PMCID: PMC8758067 DOI: 10.1371/journal.pone.0262576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.
Collapse
|
23
|
Reed KM, Mendoza KM, Abrahante JE, Velleman SG, Strasburg GM. Data Mining Identifies Differentially Expressed Circular RNAs in Skeletal Muscle of Thermally Challenged Turkey Poults. Front Physiol 2021; 12:732208. [PMID: 34512399 PMCID: PMC8424120 DOI: 10.3389/fphys.2021.732208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is critical for normal muscle growth and development. Changes in gene expression patterns caused by external stressors such as temperature can have dramatic effects including altered cellular structure and function. Understanding the cellular mechanisms that underlie muscle growth and development and how these are altered by external stressors are crucial in maintaining and improving meat quality. This study investigated circular RNAs (circRNAs) as an emerging aspect of gene regulation. We used data mining to identify circRNAs and characterize their expression profiles within RNAseq data collected from thermally challenged turkey poults of the RBC2 and F-lines. From sequences of 28 paired-end libraries, 8924 unique circRNAs were predicted of which 1629 were common to all treatment groups. Expression analysis identified significant differentially expressed circRNAs (DECs) in comparisons between thermal treatments (41 DECs) and between genetic lines (117 DECs). No intersection was observed between the DECs and differentially expressed gene transcripts indicating that the DECs are not simply the result of expression changes in the parental genes. Comparative analyses based on the chicken microRNA (miRNA) database suggest potential interactions between turkey circRNAs and miRNAs. Additional studies are needed to reveal the functional significance of the predicted circRNAs and their role in muscle development in response to thermal challenge. The DECs identified in this study provide an important framework for future investigation.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, United States
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
De Jesus AD, Jimenez AG. Effects of acute temperature increases on House sparrow (Passer domesticus) pectoralis muscle myonuclear domain. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:150-158. [PMID: 34516707 DOI: 10.1002/jez.2544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
With rapid climate change, heat wave episodes have become more intense and more frequent. This poses a significant threat to animals, and forces them to manage these physiologically challenging conditions by adapting and/or moving. As an invasive species with a large niche breadth, House sparrows (Passer domesticus) exhibit high phenotypic flexibility that caters to seasonal changes in function and metabolism. For example, their pectoral muscle complex exhibits size and mass plasticity with winter and summer acclimation. Here, we investigated the effects of acute whole-organism heat stress to 43°C on cellular-level changes in House sparrow pectoralis muscle myonuclear domain (MND), the volumetric portion each nucleus is responsible for, that have gone overlooked in the current literature. House sparrows were separated into a control group, a heat-shocked group subjected to thermal stress at 43°C for 24 h, and a recovery group that was returned to room temperature for 24 h after experiencing the same temperature treatment. Here, we found that heat-shocked and recovery groups demonstrated a decrease in number of nuclei per millimeter of fiber and increase in MND, when compared with the control. We also found a significant positive correlation between fiber diameter and MND in the recovery group, suggesting the possibility that nuclei number constrains the extent of muscle fiber size. Together, these results show that acute heat shock alters House sparrow pectoralis muscle cellular physiology in a rigid way that could prove detrimental to long-term muscle integrity and performance.
Collapse
|
25
|
Jimenez AG, De Jesus AD. Do thermal acclimation and an acute heat challenge alter myonuclear domain of control- and fast-growing quail? J Therm Biol 2021; 100:103050. [PMID: 34503797 DOI: 10.1016/j.jtherbio.2021.103050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/23/2023]
Abstract
Efforts to determine physiological traits that may render species resilient or susceptible to changing global temperatures have accelerated in recent years. Temperature is of critical importance to biological function; thus, climate change has the potential to severely affect all levels of biological organization in many species. For example, increases in environmental temperatures may alter muscle structure and function in birds. Myonuclear domain (MND), an under-studied aspect of avian muscle physiology that changes in response to thermal stress, is defined as the amount of cytoplasm within a muscle fiber that each nucleus is responsible for servicing. Here, we used two random bred lines of Japanese quail (Coturnix japonica) representing examples of control and fast growth rates. We used a factorial design to administer four treatment combinations to each line - an initial period of either heat-stress acclimation (Acclimation) or no acclimation (Not acclimated) followed by either a heat-stress challenge (HS) or no challenge (NC) after week 8 of age - to determine the effects of thermal acclimation and acute thermal stress on quail MND. We found a significant interaction between line * final treatment with fast-growing, HS birds demonstrating the lowest numbers of nuclei per mm of fiber, and Acclimated control-growing birds showing the highest numbers of nuclei per mm of fiber. There was a significant effect of line on MND with the fast-growing line having larger MNDs. Initial treatment with Not Acclimated birds showed larger MNDs. Additionally, control growing quail demonstrated positive correlations with fiber size, whereas fast growing quail did not. This may mean that nuclei in larger fibers of fast-growing quail may be functioning maximally, and that increases in temperature may also demonstrate similar effects.
Collapse
|
26
|
Metzger K, Dannenberger D, Tuchscherer A, Ponsuksili S, Kalbe C. Effects of temperature on proliferation of myoblasts from donor piglets with different thermoregulatory maturities. BMC Mol Cell Biol 2021; 22:36. [PMID: 34174812 PMCID: PMC8236195 DOI: 10.1186/s12860-021-00376-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Climate change and the associated risk for the occurrence of extreme temperature events or permanent changes in ambient temperature are important in the husbandry of farm animals. The aim of our study was to investigate the effects of permanent cultivation temperatures below (35 °C) and above (39 °C, 41 °C) the standard cultivation temperature (37 °C) on porcine muscle development. Therefore, we used our porcine primary muscle cell culture derived from satellite cells as an in vitro model. Neonatal piglets have limited thermoregulatory stability, and several days after birth are required to maintain their body temperature. To consider this developmental step, we used myoblasts originating from thermolabile (five days of age) and thermostable piglets (twenty days of age). Results The efficiency of myoblast proliferation using real-time monitoring via electrical impedance was comparable at all temperatures with no difference in the cell index, slope or doubling time. Both temperatures of 37 °C and 39 °C led to similar biochemical growth properties and cell viability. Only differences in the mRNA expression of myogenesis-associated genes were found at 39 °C compared to 37 °C with less MYF5, MYOD and MSTN and more MYH3 mRNA. Myoblasts grown at 35 °C are smaller, exhibit higher DNA synthesis and express higher amounts of the satellite cell marker PAX7, muscle growth inhibitor MSTN and metabolic coactivator PPARGC1A. Only permanent cultivation at 41 °C resulted in higher HSP expression at the mRNA and protein levels. Interactions between the temperature and donor age showed that MYOD, MYOG, MYH3 and SMPX mRNAs were temperature-dependently expressed in myoblasts of thermolabile but not thermostable piglets. Conclusions We conclude that 37 °C to 39 °C is the best physiological temperature range for adequate porcine myoblast development. Corresponding to the body temperatures of piglets, it is therefore possible to culture primary muscle cells at 39 °C. Only the highest temperature of 41 °C acts as a thermal stressor for myoblasts with increased HSP expression, but it also accelerates myogenic development. Cultivation at 35 °C, however, leads to less differentiated myoblasts with distinct thermogenetic activity. The adaptive behavior of derived primary muscle cells to different cultivation temperatures seems to be determined by the thermoregulatory stability of the donor piglets. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00376-4.
Collapse
Affiliation(s)
- Katharina Metzger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
27
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Effect of Temperature and Selection for Growth on Intracellular Lipid Accumulation and Adipogenic Gene Expression in Turkey Pectoralis Major Muscle Satellite Cells. Front Physiol 2021; 12:667814. [PMID: 34140894 PMCID: PMC8204085 DOI: 10.3389/fphys.2021.667814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
As multipotential stem cells, satellite cells (SCs) have the potential to express adipogenic genes resulting in lipid synthesis with thermal stress. The present study determined the effect of temperature on intracellular lipid synthesis and adipogenic gene expression in SCs isolated from the pectoralis major (p. major) muscle of 7-day-old fast-growing modern commercial (NC) turkeys compared to SCs from unselected slower-growing turkeys [Randombred Control Line 2 (RBC2)]. Since proliferating and differentiating SCs have different responses to thermal stress, three incubation strategies were used: (1) SCs proliferated at the control temperature of 38°C and differentiated at 43° or 33°C; (2) SCs proliferated at 43° or 33°C and differentiated at 38°C; or (3) SCs both proliferated and differentiated at 43°, 38°, or 33°C. During proliferation, lipid accumulation increased at 43°C and decreased at 33°C with the NC line showing greater variation than the RBC2 line. During proliferation at 43°C, peroxisome proliferator-activated receptor-γ (PPARγ) and neuropeptide-Y (NPY) expression was reduced to a greater extent in the NC line than the RBC2 line. At 33°C, expression of PPARγ, NPY, and CCAAT/enhancer-binding protein-β (C/EBPβ) was upregulated, but only in the RBC2 line. During differentiation, both lines showed greater changes in lipid accumulation and in C/EBPβ and NPY expression if the thermal challenge was initiated during proliferation. These data suggest that adipogenic gene expression is more responsive to thermal challenge in proliferating SCs than in differentiating SCs, and that growth-selection has increased temperature sensitivity of SCs, which may significantly affect breast muscle structure and composition.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
28
|
Response of turkey pectoralis major muscle satellite cells to hot and cold thermal stress: Effect of growth selection on satellite cell proliferation and differentiation. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110823. [PMID: 33148517 DOI: 10.1016/j.cbpa.2020.110823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Satellite cell (SCs), the main progenitors for post-hatch poultry muscle growth, has maximal mitotic activity and sensitivity to temperature during the first week after hatch. The objective of the present study was to determine the effect of hot and cold temperatures on the proliferation and differentiation of SCs from pectoralis major (P. major) muscle of fast-growing 1-week-old Nicholas commercial (NC) turkeys compared to Randombred Control Line 2 (RBC2) turkeys representing commercial turkeys from 1966. Three temperature regimens were used: SCs proliferation at 38 °C (control) with differentiation at 43° or 33 °C; proliferation at 43° or 33 °C with differentiation at 38 °C; or both proliferation and differentiation at 43°, 38°, or 33°C. Satellite cell proliferation and differentiation increased at 43 °C and decreased at 33 °C in both lines. When a thermal challenge was administered during proliferation, greater stimulatory or suppressive effects on differentiation were observed compared to if the thermal challenge was applied only during differentiation in both lines. Expression of myoblast determination protein 1 during proliferation showed a higher increase in the NC line compared to the RBC2 line at 43 °C. Increased myogenin expression was observed in all hot treatment groups in the NC line but was only observed in the RBC2 line if the hot treatment was administered throughout proliferation and differentiation. Cold treatment suppressed myogenin expression independent of line. These results suggest turkey P. major muscle SCs are more sensitive to environmental temperatures during proliferation, and SCs from growth-selected NC turkeys are more sensitive to thermal stress compared to the RBC2 turkeys.
Collapse
|
29
|
Halevy O. Timing Is Everything-The High Sensitivity of Avian Satellite Cells to Thermal Conditions During Embryonic and Posthatch Periods. Front Physiol 2020; 11:235. [PMID: 32300304 PMCID: PMC7145400 DOI: 10.3389/fphys.2020.00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myofiber formation is essentially complete at hatch, but myofiber hypertrophy increases posthatch through the assimilation of satellite cell nuclei into myofibers. Satellite cell proliferation and differentiation occur during the early growth phase, which in meat-type poultry terminates at around 8 days posthatch. Thus, any factor that affects the accumulation of satellite cells during late-term embryogenesis or early posthatch will dictate long-term muscle growth. This review will focus on the intimate relationship between thermal conditions during chick embryogenesis and the early posthatch period, and satellite cell myogenesis and pectoralis growth and development. Satellite cells are highly sensitive to temperature changes, particularly when those changes occur during crucial periods of their myogenic activity. Therefore, timing, temperature, and duration of thermal treatments have a great impact on satellite cell activity and fate, affecting muscle development and growth in the long run. Short and mild thermal manipulations during embryogenesis or thermal conditioning in the early posthatch period promote myogenic cell proliferation and differentiation, and have long-term promotive effects on muscle growth. However, chronic heat stress during the first 2 weeks of life has adverse effects on these parameters and may lead to muscle myopathies.
Collapse
Affiliation(s)
- Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
30
|
Iqbal S, Fakhar-e-Alam M, Atif M, Amin N, Ali A, Shafiq M, Ismail M, Hanif A, Farooq WA. Photodynamic therapy, facile synthesis, and effect of sintering temperature on the structure, morphology, optical properties, and anticancer activity of Co3O4 nanocrystalline materials in the HepG2 cell line. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Belnap SC, Currea JP, Lickliter R. Prenatal incubation temperature affects neonatal precocial birds' locomotor behavior. Physiol Behav 2019; 206:51-58. [DOI: 10.1016/j.physbeh.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
32
|
Velleman SG. Recent Developments in Breast Muscle Myopathies Associated with Growth in Poultry. Annu Rev Anim Biosci 2019; 7:289-308. [DOI: 10.1146/annurev-animal-020518-115311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional unit in skeletal muscle is the multinucleated myofiber, which is composed of parallel arrays of microfibrils. The myofiber and sarco-mere structure of skeletal muscle are established during embryogenesis, when mononuclear myoblast cells fuse to form multinucleated myotubes and develop into muscle fibers. With the myoblasts permanently unable to enter a proliferative state again after they fuse to form the multinucleated myotube, postnatal myofiber growth, muscle homeostasis, and myofiber regeneration are dependent on a myogenic stem cell, the satellite cell. Because the satellite cell is a partially differentiated stem cell controlling the state of skeletal muscle structure throughout the life of the bird, it can impact muscle development and structure, growth, and regeneration and, subsequently, meat quality. When myofibers are damaged, muscle repair is dependent on the satellite cells. Regenerated myofibers after the repair process should be similar to the original muscle fiber. Despite significant improvements in meat-type birds, degenerative myopathies have arisen. In many of these degenerative breast muscle myopathies, like Wooden Breast, satellite cell–mediated regeneration of muscle is suppressed. Thus, the biological function of avian myogenic satellite cells and their influence on cellular mechanisms affecting breast muscle development and growth, function during degenerative myopathies, and meat quality are discussed.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| |
Collapse
|
33
|
Clark DL, McCormick JL, Velleman SG. Effect of incubation temperature on neuropeptide Y and neuropeptide Y receptors in turkey and chicken satellite cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:58-66. [PMID: 29505887 DOI: 10.1016/j.cbpa.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress.
Collapse
Affiliation(s)
- Daniel L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States.
| | - Janet L McCormick
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| |
Collapse
|
34
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells. Front Physiol 2017; 8:948. [PMID: 29249977 PMCID: PMC5714890 DOI: 10.3389/fphys.2017.00948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development. Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo) from two breeding lines: the F-line (16 wk body weight-selected) and RBC2 (randombred control line) were used in this study. Cultured cells were induced to differentiate at 38°C (control) or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101) with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE) genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment. Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the satellite cells were among the genes with the greatest down regulation consistent with slower differentiation and smaller myotubes. Fewer expression differences were observed in the differentiating cells than previously observed for proliferating cells. This suggests the impact of temperature on satellite cells occurs primarily at early points in satellite cell activation.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States
| |
Collapse
|
35
|
Clark DL, Strasburg GM, Reed KM, Velleman SG. Influence of temperature and growth selection on turkey pectoralis major muscle satellite cell adipogenic gene expression and lipid accumulation. Poult Sci 2017; 96:1015-1027. [PMID: 28339556 DOI: 10.3382/ps/pew374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
p. major Immature poults have an inefficient thermoregulatory system, and therefore extreme ambient temperatures can impact their internal body temperature. Satellite cells, the only posthatch myonuclei source, are multipotential stem cells and sensitive to temperature. Selection for faster-growing, high-yielding birds has altered satellite-cell properties. The objective of the current study was to determine how temperature affects adipogenic properties of satellite cells isolated from the pectoralis major ( ) muscle of Randombred Control line ( ) and F line turkeys selected only for increased 16-wk body weight from the RBC2 line. Satellite cells were cultured at 2°C incremental temperatures between 33 and 43°C and compared to cells cultured at the control temperature of 38°C to ascertain temperature effects on lipid accumulation and expression of adipogenic genes: CCAAT/enhancer-binding protein-β ( ), peroxisome proliferator-activated receptor-γ ( ), and stearoyl-CoA desaturase ( ). During proliferation, the amount of quantifiable lipid in both F and RBC2 satellite cells increased at temperatures above 38°C ( P < 0.01) and decreased at temperatures below 38°C ( P < 0.01). Above 38°C, RBC2 satellite cells had more lipid ( P = 0.02) compared to the F line, whereas there were few differences between lines below 38°C. At 72 h of proliferation, expression of C/EBPβ , PPARγ , and SCD decreased ( P ≤ 0.02) as temperatures increased from 33 to 43°C in both cell lines. During differentiation expression of C/EBPβ increased ( P < 0.01) as temperatures increased from 33 to 43°C in both cell lines. In F line satellite cells, PPARγ expression decreased ( P < 0.01) with increasing temperatures during differentiation, whereas there was no linear trend in RBC2 cells. During differentiation expression of SCD increased as temperatures increased ( P < 0.01) in RBC2 cells, and there was no linear trend within the F line. Results from the current study suggest that environmental temperature can affect p. major satellite cellular fate; however, selection for increased body weight had little impact on these cellular responses.
Collapse
Affiliation(s)
- D L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| | - G M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - K M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster OH; 44691
| |
Collapse
|
36
|
Reed KM, Mendoza KM, Abrahante JE, Barnes NE, Velleman SG, Strasburg GM. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics 2017; 18:352. [PMID: 28477619 PMCID: PMC5420122 DOI: 10.1186/s12864-017-3740-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. RESULTS Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. CONCLUSIONS This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN USA
| | - Natalie E. Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH USA
- Ohio Agricultural Research and Development Center, Wooster, OH USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI USA
| |
Collapse
|
37
|
Clark D, Velleman S. Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers. Poult Sci 2016; 95:2930-2945. [DOI: 10.3382/ps/pew243] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/24/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
|
38
|
Harding RL, Halevy O, Yahav S, Velleman SG. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types. Physiol Rep 2016; 4:4/8/e12770. [PMID: 27125667 PMCID: PMC4848725 DOI: 10.14814/phy2.12770] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.
Collapse
Affiliation(s)
- Rachel L Harding
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shlomo Yahav
- Institute of Animal Sciences, Agricultural Research Organization The Volcani Center, Bet Dagan, Israel
| | - Sandra G Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|