1
|
Yano AA, Astuti D, Respati AN, Ningsih N, Triswanto, Purnamayanti L, Gao M, Rahman MA, Abdel-Moneim AME, Elsadek MF, Hassim HA, Faiz Md Azmi A, Irawan A. A meta-analysis to study the effects and relationships of various selenium sources and forms on production performance, antioxidant status and egg quality of laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4459-4471. [PMID: 39996306 DOI: 10.1002/jsfa.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Nowadays, there is increasing interest in optimizing the beneficial effects on egg quality and production by investigating various levels and sources of Se. METHODS Data of various forms, sources and levels of Se were analyzed using a meta-analysis approach in terms of their effects on production, antioxidant activity and egg Se deposition of laying hens by using 81 peer-reviewed publications. RESULTS Overall, laying hens' performance and egg quality attributes were not affected by Se supplementation, except for minor changes in egg weight and eggshell thickness in response to higher Se levels in diets. Noticeable effects were found on antioxidant activities where organic Se outperformed the inorganic form. Strong linear relationships between Se levels in the diet and Se content of whole egg, egg yolk and egg albumen were found where Se in the form of selenomethionine (SM) exhibited a stronger relationship with Se content in whole egg (R2 = 0.954), egg yolk (R2 = 0.972) and egg albumen (R2 = 0.926) than other forms of organic Se and inorganic Se (sodium selenite). Also observed was a Se preferential deposition in egg yolk compared with egg albumen especially for SM, indicating a higher bioavailability and deposition rate of SM than other Se sources. CONCLUSION Various forms of Se could be safely supplemented to diets at high doses of up to 5 mg kg-1 without adversely affecting hens' performance while enhancing antioxidant status. Supplementation with SM could be the most effective strategy to improve egg Se status among other forms of Se which may be beneficial for consumers. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aan Andri Yano
- Vocational School, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember, Indonesia
| | - Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember, Indonesia
| | - Triswanto
- Department of Feed Technology, PT Charoen Pokphand Indonesia, Jakarta, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, Lombok Timur, Indonesia
| | - Min Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | | | | | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hasliza Abu Hassim
- Institute of Tropical Agriculture and Food Security, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amirul Faiz Md Azmi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Sciences, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
2
|
Gao LB, Dai D, Chen P, Zhang HJ, Wu SG, Qi GH, Wang J. Yeast culture promotes albumen quality by improving magnum protein secretion and intestinal microbiota in aged laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40351228 DOI: 10.1002/jsfa.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND The supplementation of yeast culture (YC) has the potential to enhance egg quality in laying hens. However, most studies focus on eggshell quality. This study aimed to investigate the effects of dietary YC supplementation on the production performance, albumen quality, protein synthesis or secretion of the magnum and the cecal microbiota content of laying hens. RESULTS The results showed that dietary YC supplementation increased albumen height and Haugh unit (P ≤ 0.05). Besides, dietary 100 g kg-1 YC addition increased significantly the ridge width of the magnum and the relative expression of SEC23A in the magnum and decreased significantly the relative expression of OVOB in the magnum (P ≤ 0.05). Furthermore, the abundances of Butyricicoccus, Alistipes and Flavonifractor were increased significantly by 100 g kg-1 YC supplementation (P ≤ 0.05). The diet supplemented with 100 g kg-1 YC significantly increased the butyric acid and isobutyric acid of the cecum. CONCLUSION Dietary supplementation with YC improved protein secretion in the magnum and enhanced the beneficial cecal microbiota, thus improving the albumen quality of laying hens. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Bing Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Dai
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Chen
- Beijing Enhalor International Tech Co. Ltd, Beijing, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Sarker MT, Shang X, Chen W, Xu R, Wang S, Xia W, Zhang Y, Jin C, Wang S, Zheng C, Elokil A. Nutritional Impacts of Dietary Selenium, Iodine and their Interaction on Egg Performance, and Antioxidant Profile in Laying Longyuan Duck Breeders. Biol Trace Elem Res 2025; 203:2257-2270. [PMID: 39180631 PMCID: PMC11920373 DOI: 10.1007/s12011-024-04308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024]
Abstract
The present study aimed to optimize the combined effect of dietary selenium (SE) and iodine (ID) on the productive and reproductive performance and antioxidant capacity of Longyuan breeding ducks. A total of 288 Longyan duck breeders aged 20 wk were randomly assigned to four groups with six replicates (n = 72 ducks/group; 12 ducks/replicate). A 2 × 2 factorial arrangement experiment was performed and included 2 supplementation levels of each SE and ID for 200 days of the experimental period. The first group (SE0/ID0) received a basal diet without SE or ID supplementation and was considered to be the control group, whereas the other three groups, SE0/ID4, SE2/ID0 and SE2/ID4, received a basal diet supplemented with 0.4 mg ID/kg, 0.2 mg SE/kg or 0.2 mg SE supplemented with 0.4 mg ID/kg, respectively. The results indicated that the albumin height of the SE2/ID0 group was lower (P < 0.05) than that of the control group, that the egg shape index of the SE2/ID4 and SE0/ID4 groups were lower (P < 0.05) than that of the control group (SE0/ID0), and that the SE concentration significantly increased (P < 0.05) in the SE2/ID0 and SE2/ID4 groups. Hatchability and embryonic mortality improved (P < 0.05) in the SE2/ID0 group. Plasma GSH-Px activity was increased (P < 0.05) by reducing the concentration of malondialdehyde (MDA) in the SE groups. In addition, the tibia length significantly increased (P < 0.05) in the ID (SE0/ID4 and SE2/ID4) groups compared with that in the control group, the plasma content of IGF-1 in the SE2/ID4 and SE0/ID4 groups were greater (P < 0.05) than that in the control group, and the bone mineral content increased (P > 0.05) in the SE2/ID0 and SE0/ID0 groups. Compared with those in the other groups, the mRNA expression of antioxidant-related genes, including Nrf2 and SHMT1 in the SE2/ID4 group was upregulated (P > 0.05), especially in the SE2/ID4 group. Overall, dietary treatment with SE2/ID4 (0.2 mg SE in 0.4 mg ID/kg diet) could be a suitable feed supplement for improving the the egg quality, health status, endogenous antioxidant content, antioxidant-related gene expression and pre-hatching quality of Longyuan duck breeders.
Collapse
Affiliation(s)
- Md Touhiduzzaman Sarker
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiuguo Shang
- College of Animal Science, Foshan University, Foshan, 528225, China
| | - Wei Chen
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Runsheng Xu
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Weiguang Xia
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yanan Zhang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenglong Jin
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chuntian Zheng
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Abdelmotaleb Elokil
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Animal Production, Faculty of Agriculture, Benha University, 13736, Moshtohor, Egypt
| |
Collapse
|
4
|
Li K, Wang X, Ma L, Ren Y, Shi L. The mechanism of Se in regulating the proliferation and apoptosis of sheep Leydig cells through the miR-200a/NRF2 pathway. Theriogenology 2025; 235:103-113. [PMID: 39809100 DOI: 10.1016/j.theriogenology.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the mechanism by which Se in regulates the proliferation and apoptosis of sheep Leydig cells via the miR-200a/NRF pathway. The cells were isolated and purified from the testes of 8-month-old sheep via a Percoll density gradient. After the cells were treated with different concentrations of Se (0, 2.0, 4.0, 6.0, and 8.0 μmol/L of Se) for 18 h, the miR-200a levels was detected. MiR-200a mimics and inhibitors were transfected into the cells, resulting in five groups (control, NC mimics, miR-200a mimics, NC inhibitor and miR-200a inhibitor). Cell viability and antioxidant status were measured via CCK8 and antioxidant assays, respectively. The abundances of pro-apoptotic (BAX, CASPASE 3 and CASPASE 8), cell cycle (P21, P27 and CDK1), and NRF2-related (NRF2, HO-1, NQO1 and KEAP1) genes were detected by real-time PCR and Western blot analysis. The results revealed that miR-200a mimics group presented greater (P < 0.05) abundances of NRF2, HO-1 and NQO1 mRNA transcripts and proteins. Compared with those both in the NC mimics and the miR-200a inhibitor groups, the activities of GSH-Px and SOD, as well as cell viability in the miR-200a mimics group were significantly greater (P < 0.05). In contrast, the ROS levels, MDA content and abundances of KEAP1, P21, P27 and apoptosis-related genes mRNA transcripts and proteins were decreased (P < 0.05). The highest (P < 0.05) miR-200a expression level was detected in the Se6.0 group. Compared with that in the Se (6.0 μmol/L) group, cell viability in the Se + miR-200a inhibitor group was lower (P < 0.05). The abundances of NRF2, HO-1 and NQO1 in the Se + miR-200a inhibitor group were lower (P < 0.05) than those in the Se (6.0 μmol/L) group but greater (P < 0.05) than those in the inhibitor group, while KEAP1 displayed the opposite trend (P < 0.05). These results indicate that Se can activate the NRF2 antioxidant signaling pathway to regulate the proliferation and apoptosis of sheep Leydig cells and that miR-200a plays a vital role in this process. The regulatory effect of Se on male reproduction and spermatogenesis may be related to the number of Leydig cells. This study aimed to provide experimental data for Se regulation of spermatogenesis.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Wang
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Liang Ma
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
5
|
Zhou J, Obianwuna UE, Zhang L, Liu Y, Zhang H, Qiu K, Wang J, Qi G, Wu S. Comparative effects of selenium-enriched lactobacilli and selenium-enriched yeast on performance, egg selenium enrichment, antioxidant capacity, and ileal microbiota in laying hens. J Anim Sci Biotechnol 2025; 16:27. [PMID: 39966907 PMCID: PMC11837603 DOI: 10.1186/s40104-025-01160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Organic selenium (Se) has gained recognition in poultry nutrition as a feed additive to boost production and Se deposition in eggs and tissues, owing to its high bioavailability, efficient tissue accumulation and minimal toxicity. Selenium-enriched yeast (SeY) is a well-established source, while selenium-enriched lactobacilli (SeL), a newer alternative, offers the added benefits of probiotics. This study examined the effects of SeY and SeL on egg quality, antioxidant capacity, Se deposition, and gut health in laying hens. After a two-week pre-treatment with a Se-deficient diet (SeD), 450 Hy-Line Brown laying hens (30-week-old) were assigned into five dietary groups with six replicates of 15 hens each. The groups included a SeD, SeD supplemented with 1.5 mg Se/kg from SeY (SeY15), or 1.5, 3.0, and 6.0 mg Se/kg from SeL (SeL15, SeL30, SeL60). The feeding trial lasted for 12 weeks. RESULTS SeY15 and SeL15 improved the feed-to-egg ratio (P < 0.05) in the latter stages. Haugh units were significantly increased (P < 0.05) in the SeY15 and SeL30 groups, while darker yolk color (P < 0.05) was observed in the SeY15, SeL15, and SeL60 groups. All Se-supplemented diets increased Se content in whole eggs, albumen, and yolk (P < 0.05), while SeL groups showed a dose-dependent effect. Antioxidant enzyme activities increased, and MDA content decreased in the serum (P < 0.05), with SeY15 showing the highest GSH-Px levels (P < 0.05). SeL60 increased serum alkaline phosphatase and aspartate transaminase, and distorted the liver architecture (P < 0.05). Se-diets reduced concentrations of reactive oxygen species (ROS) in the ileum and liver (P < 0.05). SeL15 improved the ileal villus height-to-crypt depth ratio (P < 0.05). SeY15 and/or SeL15 up-regulated TXNRD1 and SEPHS1 mRNA while down-regulating SCLY expression in the liver. SeY15 altered ileal microbiota by increasing both beneficial and pathogenic bacteria, whereas SeL15 predominantly boosted beneficial bacteria. CONCLUSION SeL integrates the antioxidant properties of organic Se with the probiotic benefits on gut health, resulting in a performance-enhancing effect comparable to that of SeY. However, high SeL level (6.0 mg Se/kg) compromised productivity and metabolic functions while enhancing Se deposition.
Collapse
Affiliation(s)
- Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Uchechukwu Edna Obianwuna
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Longfei Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- College of Animal Science and Technology, Beijing Agricultural University, Beijing, 100096, China
| | - Yongli Liu
- Baiyian Biological Engineering Co., Ltd., Jiaozuo, Henan, 454000, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, China Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
6
|
Kyoung H, Shin I, Kim Y, Cho JH, Park KI, Kim Y, Ahn J, Nam J, Kim K, Kang Y, Kim HB, Song M. Mixed supplementation of dietary inorganic and organic selenium modulated systemic health parameters and fecal microbiota in weaned pigs. Front Vet Sci 2025; 12:1531336. [PMID: 40027358 PMCID: PMC11869213 DOI: 10.3389/fvets.2025.1531336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
This study was conducted to evaluate the effects of dietary mixed selenium [MSe: inorganic selenium (ISe) + organic selenium (OSe)] levels on the growth performance, blood parameters, and fecal microbiota of weaned pigs. In a randomized complete block design (block = initial body weight), 156 weaned pigs were allotted to three dietary treatments (4 pigs per pen; 13 replicates per treatment) for 42 days. Dietary treatments included (1) a non-Se-fortified diet based on corn and soybean meal (CON), (2) CON + 0.15 ppm ISe and 0.15 ppm OSe (MSe3), and (3) CON + 0.25 ppm ISe and 0.25 ppm OSe (MSe5). Pigs fed both MSe diets showed no effects on growth performance or diarrhea frequency compared with those fed the CON diet. However, pigs fed MSe3 and MSe5 had higher serum interleukin-6 (p = 0.021, linear p = 0.011) on day 7 and higher Se concentrations (p = 0.002, linear p = 0.001) on day 42 than those fed the CON. In addition, pigs fed different levels of MSe exhibited quadratic (p = 0.054) and linear (p = 0.069) effects on the number of white blood cells and hematocrit on day 42 compared with those fed CON, respectively. Moreover, the MSe3 group had higher total protein concentration (p = 0.049, quadratic p = 0.026) on day 42 than the CON group, and the MSe5 group had lower blood urea nitrogen concentration (p = 0.094, linear p = 0.033). There were no differences in alpha diversity indices of fecal microbiota among dietary treatments. However, beta diversity indices based on the Bray-Curtis dissimilarity were clustered differently (r 2 = 0.56, p = 0.001) among dietary treatments. Pigs fed the MSe5 diet showed an increase in the relative abundance of phylum Bacteroidetes [false discovery rate (FDR) adjusted p = 0.004], families Barnesiellaceae (FDR adjusted p = 0.006) and Veillonellaceae (FDR adjusted p = 0.006), genera Barnesiella (FDR adjusted p = 0.023) and Megasphaera (FDR adjusted p = 0.023), and species Barnesiella intestinihominis (FDR adjusted p = 0.016) and Megasphaera elsdenii (FDR adjusted p = 0.019) compared with those fed the CON diet. In conclusion, dietary MSe modulated the systemic health parameters and fecal microbial community in weaned pigs.
Collapse
Affiliation(s)
- Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ikcheol Shin
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyeong Il Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yonghee Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jinmu Ahn
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jinuk Nam
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kimoon Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yonggu Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Liu G, Cao S, Huang L, Lin X, Sun Z, Lin G, Zhang L, Lu L, Luo X, Liao X. Relative bioavailability of selenium yeast, selenomethionine, hydroxyl-selenomethionine and nano-selenium for broilers. Front Vet Sci 2025; 11:1542557. [PMID: 39897155 PMCID: PMC11782124 DOI: 10.3389/fvets.2024.1542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (p < 0.03) as added Se level increased. Furthermore, the differences (p < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY, SM, SO, NS relative to SS (100%) were 78 to 367%, 67.8 to 471%, 57 to 372%, and 45 to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Yan M, Cong X, Wang H, Qin K, Tang Y, Xu X, Wang D, Cheng S, Liu Y, Zhu H. Dietary Se-enrich Cardamine violifolia supplementation decreases lipid deposition and improves antioxidant status in the liver of aging laying hens. Poult Sci 2025; 104:104620. [PMID: 39647356 PMCID: PMC11666952 DOI: 10.1016/j.psj.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024] Open
Abstract
Aging-related lipid metabolic disorder is related to oxidative stress. Selenium (Se)-enriched Cardamine violifolia (SEC) is known for its excellent antioxidant function. The objective of this study was to evaluate the effects of SEC on antioxidant capacity and lipid metabolism in the liver of aged laying hens. A total of 450 sixty-five-wk-old Roman laying hens were randomly divided into 5 treatments: a basal diet (without Se supplementation, CON) and basal diets supplemented with 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se from SEC (SEC), or 0.3 mg/kg Se from SEC and 0.3 mg/kg Se from SEY (SEC + SEY). The experiment lasted for 8 wk. The results showed that dietary SEC + SEY supplementation decreased (P < 0.05) triglyceride (in the plasma and liver) and total cholesterol levels (in the plasma), and increased (P < 0.05) HDL-C concentration in plasma compared to CON diet. Compared with CON diet, SEC and/or SEY supplementation decreased (P < 0.05) the mRNA expression of hepatic ACC, FAS and HMGCR, and increased (P < 0.05) PPARα, VTG-II, Apo-VLDL II and ApoB expression. Dietary SEC + SEY and SEY supplementation increased (P < 0.05) Se content in egg yolk and breast muscle compared to CON diet. Dietary SEC, SEY or SEC + SEY supplementation increased (P < 0.05) the activity of antioxidant enzymes (GSH-PX, T-AOC and T-SOD) in the plasma and liver and decreased (P < 0.05) MDA content in the plasma compared to CON diet. Dietary Se supplementation promoted (P < 0.05) mRNA expression of Nrf2 in the liver. In contrast, dietary SEY and SEC supplementation resulted in a decrease (P < 0.05) of hepatic Keap1 mRNA expression compared to CON diet. Dietary SEC + SEY and/or SEC supplementation increased (P < 0.05) mRNA expression of Selenof, GPX1 and GPX4 in the liver compared with CON diet. In conclusion, dietary SEC (0.3 mg/kg Se) or SEC (0.3 mg/kg Se) + SEY (0.3 mg/kg Se) improved the antioxidant capacity and the lipid metabolism in the liver of aged laying hens, which might be associated with regulating Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Mengke Yan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Hui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Kun Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Yuhui Tang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China.
| |
Collapse
|
9
|
Zhang L, Zhou J, Obianwuna UE, Long C, Qiu K, Zhang H, Qi X, Wu S. Optimizing selenium-enriched yeast supplementation in laying hens: Enhancing egg quality, selenium concentration in eggs, antioxidant defense, and liver health. Poult Sci 2025; 104:104584. [PMID: 39615326 PMCID: PMC11648770 DOI: 10.1016/j.psj.2024.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
This study evaluated the effects of selenium-enriched yeast (SY) supplementation at various levels on health and production parameters in laying hens, including egg production, egg quality, selenium (Se) concentrations in eggs, liver health, serum biochemical markers, antioxidant function, and immune responses. A total of 360 Hy-Line Brown hens (28 weeks old) were randomly assigned to four dietary groups with six replicates of 15 birds each, monitored over a 12-week feeding trial after a two-week acclimatization period. The dietary groups included a control (basal diet without selenium) and three SY-supplemented groups with Se levels of 0.3 mg/kg (SY03), 1.5 mg/kg (SY15), and 6.0 mg/kg (SY60). The results showed no significant effects of dietary SY on laying performance or feed efficiency (P > 0.05). However, the SY15 group showed significant improvements in egg quality, particularly in albumen height, Haugh Unit and yolk color (P < 0.05). Selenium concentrations in eggs, albumen, and yolk increased dose-dependently, with significant differences in the SY-supplemented groups (P < 0.001). Increased activities of liver enzymes including alanine transaminase, alkaline phosphatase, and aspartate transaminase, alongside elevated levels of uric acid were notable in the SY60 group (P < 0.05). In addition, histological analysis revealed significant hepatocyte degeneration and a higher liver organ index (P < 0.05), in the SY60 group. All of which suggests potential liver toxicity at higher selenium levels. Antioxidant capacity of the birds were significantly enhanced due to dietary supplementation of SY as indicated by increased serum levels of total antioxidant capacity, and activities of catalase, glutathione peroxidase, and superoxide dismutase (P < 0.05). Analysis of hepatic genes expression revealed that SY15 supplementation significantly upregulated key antioxidant-related genes (Nrf2, HO-1, CAT, and NQO1) and downregulated Keap1 expression (P < 0.05), suggesting strong activation of the antioxidant defense system. In conclusion, SY supplementation at 1.5 mg/kg improved egg quality, increased Se concentrations in eggs, and enhanced antioxidant capacity without affecting laying performance or liver health. This makes it a balanced approach to improving egg quality and poultry health. However, higher supplementation levels (6.0 mg/kg) resulted in liver damage, underscoring the importance of careful dosage consideration.
Collapse
Affiliation(s)
- Longfei Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China; College of Animal Science and Technology, Beijing Agricultural University, Beijing 100096, China
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| | - Uchechukwu Edna Obianwuna
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Cheng Long
- College of Animal Science and Technology, Beijing Agricultural University, Beijing 100096, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Xiaolong Qi
- College of Animal Science and Technology, Beijing Agricultural University, Beijing 100096, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture & Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| |
Collapse
|
10
|
Gao S, Qiu H, Chen F, Yang G, Hou L, Dong J, Dong W. Effects of high-dose selenium-enriched Saccharomyces cerevisiae on growth performance, antioxidant status, tissue fat content and selenium concentration, and selenoenzyme mRNA expression in chicks. Poult Sci 2024; 103:104312. [PMID: 39316981 PMCID: PMC11462486 DOI: 10.1016/j.psj.2024.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Selenium-enriched Saccharomyces cerevisiae (SSC) as organic selenium (Se) has been shown to have better advantages and is approved for use in animal feed rather than inorganic Se, however, there is little available data on the toxic effects of SSC on poultry. The present study was conducted to investigate the effects of high-dose SSC on growth performance, antioxidant status, tissue fat content and Se concentration, and selenoenzyme mRNA expression in chicks. A total of 500, 1-day-old SPF chicks were randomly divided into 5 groups with 10 replicates of 10 chicks each. Group 1 served as a control and was fed a basal diet supplemented with 0.15 mg/kg Se from sodium selenite (SS), group 2 was fed the basic diet supplemented with 1.5 mg/kg Se from SS, while groups 3, 4, and 5 were fed the basal diet supplemented with 1.5, 5 and 10 mg/kg Se from SSC, respectively. The results showed that SS and SSC supplementation significantly affected the average daily feed intake (ADFI), feed/gain ratio (FCR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, tissue fat content and Se concentration, and GPx1 and GPx4 mRNA levels compared with the control group (P < 0.05). Compared with group 2, group 3 exhibited higher GPx and SOD activities, tissue Se concentration, and lower MDA content on d 30, and higher Se concentration, GPx1 mRNA levels in liver and breast muscle and GPx4 mRNA levels in liver and thigh muscle, and lower MDA content on d 60 (P < 0.05). The results of correlation analysis showed that high-dose SSC supplementation was positively correlated with AFDI, FCR, MDA content, and tissue Se concentration, and negatively correlated with GPx and SOD activities, T-AOC, GPx1 and GPx4 mRNA levels in tissues. In conclusion, up to 1.5 mg/kg Se from SSC in diet may be a safe concentration for chicks that exhibited better biological effects than SS, the toxic effects of high-dose SSC supplementation mainly exhibited growth decrease, peroxidation and lipid metabolism disturbance, and became stronger with the increase of dietary Se levels.
Collapse
Affiliation(s)
- Shansong Gao
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Huiling Qiu
- Department of Life Sciences, Haidu College, Qingdao Agricultural University, Laiyang 265200, Shandong Province, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Guoming Yang
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lele Hou
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wenxuan Dong
- Institute of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
11
|
Li R, Liu J, Liu M, Liang M, Wang Z, Sha Y, Ma H, Lin Y, Li B, You J, Zhang L, Qin M. Effects of selenium-enriched yeast dietary supplementation on egg quality, gut morphology and caecal microflora of laying hens. Anim Biotechnol 2024; 35:2258188. [PMID: 38193802 DOI: 10.1080/10495398.2023.2258188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.
Collapse
Affiliation(s)
- Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Huiwen Ma
- Yantai Animal Disease Prevention and Control Center, Yantai, China
| | - Yafeng Lin
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Baohua Li
- Haiyang Animal Disease Prevention and Control Center, Yantai, China
| | - Jinming You
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang, China
| | - Lei Zhang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
12
|
Ge X, Liang Z, Li K, Dong Y, Wang Y, Liu Y, Liu Z, Wang H, Nan Y, Chen S, Li L, Guo Y, Zhou X. Selenium nanoparticles enhance mucosal immunity against Mycobacterium bovis infection. Int Immunopharmacol 2024; 137:112384. [PMID: 38878484 DOI: 10.1016/j.intimp.2024.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Selenium nanoparticles (SeNPs) enhance the immune response as adjuvants, increasing the efficacy of viral vaccines, including those for COVID-19. However, the efficiency of mucosal SeNPs in boosting vaccine-induced protective immunity against tuberculosis remains unclear. Therefore, this study aims to investigate whether the combination of SeNPs with the AH antigen (Ag85A-HspX) can boost respiratory mucosal immunity and thereby enhance the protective effects against tuberculosis. We synthesized SeNPs and assessed their impact on the immune response and protection against Mycobacterium bovis (M. bovis) as a mucosal adjuvant in mice, administered intranasally at a dose of 20 µg. SeNPs outperformed polyinosinic-polycytidylic acid (Poly IC) in stimulating the maturation of bone marrow-derived dendritic cells (BMDCs), which enhanced antigen presentation. SeNPs significantly activated and proliferated tissue-resident memory T cells (TRMs) and effector CD4+ T cells in the lungs. The vaccines elicited specific antibody responses in the respiratory tract and stimulated systemic Th1 and Th17 immune responses. Immunization with AH and SeNPs led to higher levels of mucosal secretory IgA in bronchoalveolar lavage fluid (BALF) and secretory IL-17 in splenocytes. Moreover, SeNPs immunized mice showed reduced M. bovis infection loads and inflammatory lesions in the lungs post-challenge. Notably, immunization with AH and SeNPs significantly reduced bacterial load in the lungs, achieving the lowest levels compared to all other tested groups. This study calls for pre-clinical investigation of AHB-SeNPs as an anti-bovine tuberculosis vaccine and for exploring its human vaccine potential, which is anticipated to aid in the development of innovative vaccines or adjuvants.
Collapse
Affiliation(s)
- Xin Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhengmin Liang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - ZiYi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoran Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Nan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - SiYan Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Chang XY, Uchechukwu Edna O, Wang J, Zhang HJ, Zhou JM, Qiu K, Wu SG. Histological and molecular difference in albumen quality between post-adolescent hens and aged hens. Poult Sci 2024; 103:103618. [PMID: 38564835 PMCID: PMC10999699 DOI: 10.1016/j.psj.2024.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
The decline in albumen quality resulting from aging hens poses a threat to the financial benefits of the egg industry. Exploring the underlying mechanisms from the perspective of cell molecules of albumen formation is significant for the efficient regulation of albumen quality. Two individual groups of Hy-Line Brown layers with ages of 40 (W40) and 100 (W100) wk old were used in the present study. Each group contained over 2,000 birds. This study assessed the egg quality, biochemical indicators and physiological status of hens between W40 and W100. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in magnum tissues between W40 and W100. In the W40 group, significant increases (P < 0.05) were notable for albumen quality (thick albumen solid content, albumen height, Haugh unit), serum indices (calcium, estrogen, and progesterone levels), magnum histomorphology (myosin light-chain kinase content, secretory capacity, mucosal fold, goblet cell count and proportion) as well as the total antioxidant capacity of the liver. However, the luminal diameter of the magnum, albumen gel properties and random coil of the albumen were increased (P < 0.05) in the W100 group. The activity of glutathione, superoxidase dismutase, and malondialdehyde in the liver, magnum, and serum did not vary (P > 0.05) among the groups. Proteomic analysis revealed the identification of 118 differentially expressed proteins between the groups, which comprised proteins associated with protein secretion, DNA damage and repair, cell proliferation, growth, antioxidants, and apoptosis. Furthermore, Kyoto Encyclopedia of Genes pathway analysis revealed that BRCA2 and FBN1 were significantly downregulated in Fanconi anemia (FA) and TGF-β signaling pathways in W100, validated through quantitative real-time PCR (qRT-PCR). In conclusion, significant age-related variations in albumen quality, and magnum morphology are regulated by proteins involved in antioxidant capacity.
Collapse
Affiliation(s)
- Xin-Yu Chang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Obianwuna Uchechukwu Edna
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Min Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Chen Y, He H, Bi X, Zhang Y, Yin H. Effects of various selenium-enriched yeasts, selenomethionine, and nanoselenium on production performance, quality, and antioxidant capacity in laying hens. Poult Sci 2024; 103:103387. [PMID: 38198916 PMCID: PMC10792640 DOI: 10.1016/j.psj.2023.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to compare the effects of various selenium (Se) sources (2 mg/kg) on the performance, quality, and antioxidant capacity of laying hens as well as the Se content in their eggs and blood. We selected 720 34-wk-old Lohmann pink-shell laying hens were randomly assigned into 6 groups and fed a basal diet (control) or a basal diet supplemented with various Se sources (Se-enriched yeast, SY-A, SY-C, SY-N; selenomethionine SM, nano-Se SN) for 16 wk. There were 10 replicates of 120 hens per group. Dietary Se supplementation increased the egg production rate of all laying hens. Egg and serum Se deposition was highest in the SM group. Yolk color scores of SY-A and SY-N groups were significantly lower than those of other groups (P < 0.01). The protein height and Haugh unit were significantly lower in the SN group than in the other groups (P < 0.05). The yolk height was significantly higher in the SN and SY-N groups than in the SY-A group (P < 0.05). Dietary supplementation of selenium can improve the antioxidant capacity of laying hens. The SOD content of SM group was significantly lower than that of SY-A and SN group (P < 0.05). The malondialdehyde (MDA) content was significantly higher in the SM group than in the SY-A group (P < 0.05). The present work empirically demonstrated that the production performance of laying hens supplemented with 2 mg/kg Se was superior to that of the hens receiving only a basal diet. The SY-C group exhibited the best production performance, the SY-A group had the highest antioxidant capacity, and the SM group produced eggs with the highest level of Se enrichment.
Collapse
Affiliation(s)
- Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xuejiao Bi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
15
|
Yang X, Song W, Gao F, Luo H, Liu P, Tan Z, Zhou J, Wang D, Nie X, Lai C, Shi H, Li X, Zhang D. Superoxide Dismutase Catalyzed Size-Adjustable Selenium Nanoparticles in Saccharomyces boulardii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4257-4266. [PMID: 38354318 DOI: 10.1021/acs.jafc.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.
Collapse
Affiliation(s)
- Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wancheng Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Feng Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Pei Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xinling Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
| | - Daihui Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210097, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210037, China
| |
Collapse
|
16
|
Liu J, Wang Z, Li C, Chen Z, Zheng A, Chang W, Liu G, Cai H. Effects of Selenium Dietary Yeast on Growth Performance, Slaughter Performance, Antioxidant Capacity, and Selenium Deposition in Broiler Chickens. Animals (Basel) 2023; 13:3830. [PMID: 38136867 PMCID: PMC10740573 DOI: 10.3390/ani13243830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) yeast, a bioavailable form of selenium, exhibits enhanced bioavailability due to its unique organic matrix and superior metabolic availability compared to the inorganic selenium sources. This study aims to evaluate the effects of Se yeast on the growth performance, slaughter performance, antioxidant capacity, and Se deposition in broiler chickens. A total of 264 1-day-old male AA broilers (38.7 ± 0.1 g) were randomly assigned to four treatment groups, with six replicates of 11 chickens per replicate. The broilers were fed a basal diet or a diet supplemented with 0.1, 0.2, and 0.4 mg/kg Se yeast. The experiment lasted for 42 days. Although the results showed that Se yeast did not significantly improve the growth performance of broilers, it did significantly decrease the abdominal fat ratio. Additionally, supplementation of Se yeast significantly improved the antioxidant capacity of broilers. The quadratic regression models were used to simulate the relationship between Se content in the feed and Se deposition in broiler tissues. The regression equations were as follows: pectoral muscle, Y = 2.628X - 0.340X2 - 0.592 (R2 = 0.927); leg muscle, Y = 2.317X - 0.272X2 - 0.490 (R2 = 0.937); liver, Y = 3.357X - 0.453X2 - 0.493 (R2 = 0.961); kidney, Y = 4.084X - 0.649X2 + 0.792 (R2 = 0.932). Based on these findings, the Se deposition in broiler tissues can be predicted by the Se content of the additive, which is of great significance for the precise production of Se-enriched functional chicken products.
Collapse
Affiliation(s)
- Jinmei Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Zheng Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (J.L.); (C.L.); (Z.C.); (A.Z.); (H.C.)
| |
Collapse
|
17
|
Zhao M, Li J, Shi Q, Shan H, Liu L, Geng T, Yu L, Gong D. The Effects of In Ovo Feeding of Selenized Glucose on Selenium Concentration and Antioxidant Capacity of Breast Muscle in Neonatal Broilers. Biol Trace Elem Res 2023; 201:5764-5773. [PMID: 36899096 DOI: 10.1007/s12011-023-03611-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 μg Se from SeGlu (SeGlu10 group) and 20 μg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Qiao Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Haoshu Shan
- Zhenjiang Animal Disease Prevention and Control Center, Zhenjiang, 212009, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
18
|
Mohammadsadeghi F, Afsharmanesh M, Salarmoini M, Bami MK. The effect of replacing sodium selenite with selenium-chitosan in laying hens on production performance, egg quality, egg selenium concentration, microbial population, immunological response, antioxidant enzymes, and fatty acid composition. Poult Sci 2023; 102:102983. [PMID: 37598554 PMCID: PMC10458345 DOI: 10.1016/j.psj.2023.102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The purpose of this study was to investigate into the effects of Se-chitosan and Na selenite supplementation on laying hen production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant enzymes activity, and yolk fatty acid profile. Using a 2 × 2 factorial design, 168 27-wk-old laying hens were randomly divided into 4 treatment groups and 7 replications. Se source (Na selenite and Se-chitosan) and Se level (0.3 and 0.6 mg/kg) were used as treatments. Se-chitosan enhanced egg production percentage and egg mass (P < 0.05) when compared with Na selenite. There was an interaction, with 0.6 mg Se-chitosan/kg causing an increase in albumen height, Haugh unit, albumen index, and shell thickness of fresh eggs (P < 0.05). Se-chitosan increased yolk share, yolk color, and shape index of fresh eggs and shape index, albumen index, albumen height, Haugh unit, yolk color, shell thickness, and specific gravity of stored eggs (P < 0.05). The interaction showed that, 0.6 mg Se-chitosan/kg increased albumen Se concentration and decreased the level of malondialdehyde (MDA) in fresh egg yolk compared with 0.3 and 0.6 mg Na selenite/kg (P < 0.05). When compared with Na selenite, Se-chitosan increased the Se concentration in the yolk and decreased level of MDA in stored egg yolk (P < 0.01). When compared with Na selenite, Se-chitosan reduced coliforms (P < 0.01), increased lactic acid bacteria, and the lactic acid bacteria/coliform ratio (P < 0.05). Se-chitosan supplementation increased antibody response to sheep red blood cells and IgM titers and the activities of glutathione peroxidase and superoxide dismutase in plasma (P < 0.05). Furthermore, compared with Na selenite, supplementing diets with Se-chitosan decreased ∑ n-6 PUFA/∑ n-3 PUFA ratio (P < 0.01). In conclusion, Se-chitosan supplementation of laying hen feed improved production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzymes activity, and yolk fatty acid profile, with 0.6 mg Se-chitosan/kg supplementation being optimal.
Collapse
Affiliation(s)
- Farimah Mohammadsadeghi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohsen Afsharmanesh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439.
| | - Mohammad Salarmoini
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| | - Mohammad Khajeh Bami
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran, 7616913439
| |
Collapse
|
19
|
Chen R, Jiang C, Li X, Shi X, Zhuang L, Zhou W, Zhou C, Xuan L, Xu G, Zheng J. Research on Chinese consumers' shell egg consumption preferences and the egg quality of functional eggs. Poult Sci 2023; 102:103007. [PMID: 37598555 PMCID: PMC10462883 DOI: 10.1016/j.psj.2023.103007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The purpose of this study is to investigate the characteristics of egg consumption in China and the production of functional eggs, and finally enrich the types of shell egg products. Trial 1 explored the influence of egg quality on Chinese consumers' willingness to purchase eggs through a questionnaire, which investigated 1,317 consumers' preferences for egg appearance, factors influencing egg purchase, and purchase of functional eggs. The results showed that about 65% of respondents ate more than 4 eggs per wk, pink eggs were the most popular in China, about 65% of consumers preferred eggs with an egg weight of 48 to 58 grams. For functional eggs, 75.32% of consumers have never heard of them. Preferences for eggshell color and yolk color varied by geographic region, with darker colors preferred in Northeast China. Based on the survey results of functional eggs consumption in Trial 1, the dwarf layers of China Agricultural University were used in Trial 2 to produce functional eggs. The eggs are small and pink in color, which is in line with the preferences of Chinese consumers. Three hundred dwarf layers were divided into 4 groups, using the linseed oil added, marigold extract added, and yeast selenium added diets to produce normal, n-3 fatty acid-enriched, lutein-enriched and selenium-enriched eggs by feeding for 28 d, determined the eggs' nutrient content and egg quality. The results showed that the n-3 fatty acid, lutein and selenium contents of the eggs of dwarf layers were significantly increased by changing the diets and did not affect the egg weight, eggshell strength, Haugh units or the proportion of egg parts. The results of this study are helpful to understand the trend of egg consumption preferences in China, and on this basis to produce functional eggs that meet the consumers' expectations.
Collapse
Affiliation(s)
- Ruochen Chen
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Caiyun Jiang
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xuefeng Shi
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Longyu Zhuang
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Wenbin Zhou
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Chen Zhou
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Lin Xuan
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, National Engineering Lab oratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Wang H, Wang L, Tian C, Rajput SA, Qi D. Effects of Methyl Sulfonyl Methane and Selenium Yeast on Fatty Liver Syndrome in Laying Hens and Their Biological Mechanisms. Animals (Basel) 2023; 13:2466. [PMID: 37570275 PMCID: PMC10416963 DOI: 10.3390/ani13152466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to explore the effects of MSM and Se-Y on FLS in laying hens during the late peak laying period and the underlying biological mechanisms. Therefore 240 55-week-old Jing-fen No. 6 laying hens were randomly divided into five groups, with eight replicates in each group and six laying hens in each replicate. The hens were fed a basal diet (Control) and diets supplemented with 350 and 700 mg/kg MSM and 25 and 50 mg/kg Se-Y, respectively, for four weeks. The results showed that MSM and Se-Y had no significant effects on the performance of laying hens. With the increasing dosage of MSM and Se-Y, the symptoms of liver steatosis in laying hens were reduced, and MSM and Se-Y could significantly reduce the content of malondialdehyde (MDA) in serum and liver (p < 0.05) and increase the contents of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPX) in serum and liver (p < 0.05). The RNA-seq results showed that 700 mg/kg MSM significantly downregulated the expression levels of the ATP5I, ATP5G1, CYCS, and UQCRQ genes in the liver, and 50 mg/kg Se-Y significantly downregulated the expression levels of MAPK10, SRC, BMP2, and FGF9 genes in the liver. In conclusion, dietary supplementation with MSM and Se-Y can effectively reduce the FLS of laying hens in the late peak laying period and increase their antioxidant capacity. The underlying biological mechanism may be related to the downregulation of genes involved in liver oxidative phosphorylation and inflammation-related pathways.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Changyu Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| |
Collapse
|
21
|
Bień D, Michalczuk M, Łysek-Gładysińska M, Jóźwik A, Wieczorek A, Matuszewski A, Kinsner M, Konieczka P. Nano-Sized Selenium Maintains Performance and Improves Health Status and Antioxidant Potential While Not Compromising Ultrastructure of Breast Muscle and Liver in Chickens. Antioxidants (Basel) 2023; 12:antiox12040905. [PMID: 37107280 PMCID: PMC10135471 DOI: 10.3390/antiox12040905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The poultry industry is looking for the most effective sources of selenium (Se) for commercial use. Over the past five years, nano-Se has attracted a great deal of attention in terms of its production, characterisation and possible application in poultry production. The objective of this study was to evaluate the effects of dietary levels of inorganic and organic Se, selenised yeast and nano forms of selenium on breast meat quality, liver and blood markers of antioxidants, the ultrastructure of tissue and the health status of chickens. A total of 300 one-day-old chicks Ross 308 were divided into 4 experimental groups, in 5 replications, with 15 birds per replication. Birds were fed the following treatments: a standard commercial diet containing inorganic Se in the form of inorganic Se at the level of 0.3 mg/kg diet and an experimental diet with an increased level of Se (0.5 mg/kg diet). The use of other forms of Se (nano-Se) versus sodium selenate significantly influences (p ≤ 0.05) a higher collagen content and does not impair physico-chemical properties in the breast muscle or the growth performance of the chickens. In addition, the use of other forms of selenium at an increased dose versus sodium selenate affected (p ≤ 0.01) the elongation of sarcomeres in the pectoral muscle while reducing (p ≤ 0.01) mitochondrial damage in hepatocytes and improving (p ≤ 0.05) oxidative indices. The use of nano-Se at a dose of 0.5 mg/kg feed has high bioavailability and low toxicity without negatively affecting the growth performance and while improving breast muscle quality parameters and the health status of the chickens.
Collapse
Affiliation(s)
- Damian Bień
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Institute of Biology, University of Jan Kochanowski, Uniwersytecka 7, 25-406 Kielce, Poland
- Institute of Genetics and Animal Breeding PAS, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding PAS, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, University of Jan Kochanowski, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
22
|
Effects of Selenium Yeast on Egg Quality, Plasma Antioxidants, Selenium Deposition and Eggshell Formation in Aged Laying Hens. Animals (Basel) 2023; 13:ani13050902. [PMID: 36899759 PMCID: PMC10000209 DOI: 10.3390/ani13050902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Internal egg and eggshell quality are often deteriorated in aging laying hens, which causes huge economic losses in the poultry industry. Selenium yeast (SY), as an organic food additive, is utilized to enhance laying performance and egg quality. To extend the egg production cycle, effects of selenium yeast supplementation on egg quality, plasma antioxidants and selenium deposition in aged laying hens were evaluated. In this study, five hundred and twenty-five 76-week-old Jing Hong laying hens were fed a selenium-deficient (SD) diet for 6 weeks. After Se depletion, the hens were randomly divided into seven treatments, which included an SD diet, and dietary supplementation of SY and sodium selenite (SS) at 0.15, 0.30, and 0.45 mg/kg to investigate the effect on egg quality, plasma antioxidant capacity, and selenium content in reproductive organs. After 12 weeks of feeding, dietary SY supplementation resulted in higher eggshell strength (SY0.45) (p < 0.05) and lower shell translucence. Moreover, organs Se levels and plasma antioxidant capacity (T-AOC, T-SOD, and GSH-Px activity) were significantly higher with Se supplementation (p < 0.05). Transcriptomic analysis identified some key candidate genes including cell migration inducing hyaluronidase 1 (CEMIP), ovalbumin (OVAL), solute carrier family 6 member 17 (SLC6A17), proopiomelanocortin (POMC), and proenkephalin (PENK), and potential molecular processes (eggshell mineralization, ion transport, and eggshell formation) involved in selenium yeast's effects on eggshell formation. In conclusion, SY has beneficial functions for eggshell and we recommend the supplementation of 0.45 mg/kg SY to alleviate the decrease in eggshell quality in aged laying hens.
Collapse
|
23
|
Chantiratikul A, Thongpitak P, Arunsangseesod O, Wangkahart E, Leamsamrong K, Aengwanich W, Liang JB, Xin W, Chantiratikul P. Effect of supplementation and withdrawal of selenium-enriched kale sprouts on productivity and egg selenium concentration of laying hens. Anim Biosci 2023; 36:484-491. [PMID: 36108682 PMCID: PMC9996254 DOI: 10.5713/ab.22.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this trial was to investigate the effect of supplementation and withdrawal of selenium-enriched kale sprouts (SeKS) on productivity and egg Se concentration of laying hens. Selenium from commercial Se-enriched yeast (SeY) was used as a comparative Se source. METHODS One-hundred and eighty 61-week-old laying hens were randomly divided into 5 treatment groups with 4 replicates (9 hens each) in a 2×2+1 Augmented Factorial Experiment in a completely randomized design. The experimental diets were basal diet, basal diet supplemented with 0.2 and 0.4 mg Se/kg from SeKS and SeY, respectively. The 8-week feeding trial was divided into 2 periods, namely the Se supplemental period (week 1 to 4) and the Se withdrawal period (week 5 to 8). RESULTS Productive performance, egg quality and egg Se concentration of laying hens were not affected by sources of Se (SeKS and SeY) during both, the Se supplemental and withdrawal periods. Egg production and egg Se concentration increased (p<0.05) with increasing levels of Se supplementation. The egg Se concentration increased and reached a peak 1 week after Se supplementation. However, concentration of Se in eggs of hens fed Se from both sources decreased rapidly from the second week of the Se withdrawal period to reach the same egg Se concentration of hens fed the basal diet by the fourth week of the Se withdrawal period. CONCLUSION The efficacy of Se from SeKS on productivity and egg Se concentration in laying hens was comparable to commercial SeY. Thus, SeKS can provide an alternate organic Se source for production of Se-enriched eggs.
Collapse
Affiliation(s)
- Anut Chantiratikul
- Applied Animal and Aquatic Sciences Research Unit and Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand
| | - Pinyada Thongpitak
- Applied Animal and Aquatic Sciences Research Unit and Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand
| | - Orawan Arunsangseesod
- Applied Animal and Aquatic Sciences Research Unit and Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand
| | - Eakapol Wangkahart
- Applied Animal and Aquatic Sciences Research Unit and Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand
| | - Kwanyuen Leamsamrong
- Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Mueang, Maha Sarakham 44000, Thailand
| | - Worapol Aengwanich
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Juan Boo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Wu Xin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Piyanete Chantiratikul
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham 44150, Thailand
| |
Collapse
|
24
|
Wang H, Cong X, Qin K, Yan M, Xu X, Liu M, Xu X, Zhang Y, Gao Q, Cheng S, Zhao J, Zhu H, Liu Y. Se-Enriched Cardamine violifolia Improves Laying Performance and Regulates Ovarian Antioxidative Function in Aging Laying Hens. Antioxidants (Basel) 2023; 12:antiox12020450. [PMID: 36830007 PMCID: PMC9952132 DOI: 10.3390/antiox12020450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
As a selenium-enriched plant, Cardamine violifolia (SEC) has an excellent antioxidant function. The edibility of SEC is expected to develop new sources of organic Se supplementation for human and animal nutrition. This study was conducted to investigate the effects of SEC on laying performance and ovarian antioxidant capacity in aging laying hens. A total of 450 laying hens were assigned to five treatments. Dietary treatments included the following: a basal diet (diet without Se supplementation, CON) and basal diets supplemented with 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se from SEC, or 0.3 mg/kg Se from SEC and 0.3 mg/kg Se from SEY (SEC + SEY). Results showed that supplementation with SEC tended to increase the laying rate, increased the Haugh unit of eggs, and reduced the FCR. SEC promoted ovarian cell proliferation, inhibited apoptosis, and ameliorated the maintenance of follicles. SEC, SEY, or SEC + SEY increased ovarian T-AOC and decreased MDA levels. SEC increased the mRNA abundance of ovarian selenoproteins. SEC and SEC + SEY increased the mRNA abundance of Nrf2, HO-1, and NQO1, and decreased the mRNA abundance of Keap1. These results indicate that SEC could potentially to improve laying performance and egg quality via the enhancement of ovarian antioxidant capacity. SEC exerts an antioxidant function through the modulation of the Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Kun Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengke Yan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xianfeng Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingkang Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Qingyu Gao
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, NC 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-27-8395-6175 (H.Z. & Y.L.)
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-27-8395-6175 (H.Z. & Y.L.)
| |
Collapse
|
25
|
Ahmad Najmaddin S, Abdulqader Amin Z. Adiantum capillus attained selenium nanoparticles (SeNPs) ameliorate resistive effects in rat model of gentamicin nephrontoxicity via regulation of Interlukin-1β, tumor necrosis factor-α and engagement of Vimentin and Bcl-2 proteins. Saudi J Biol Sci 2023; 30:103550. [PMID: 36619677 PMCID: PMC9812709 DOI: 10.1016/j.sjbs.2022.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
In this study the green method for synthesizing selenium nanoparticles (SeNPs) is experienced, in which the leaf extract of Adiantum capillus was used as an effective chelating and capping agent for producing SeNPs. The characterization techniques that achieved to confirm the synthesis and the structure details of the SeNPs were: UV-Vis spectroscopy, FT-IR analysis, XRD, EDX and SEM analysis. The biological activity of the synthesized SeNPs were tested and compared to the crude extract of Adiantum capillus on gentamicin model of nephrotoxicity in Wistar rats. Sera were used to test the pro-inflammatory cytokines Tumor necrosis factor alpha (TNF-α) and Interleukin beta (IL-β) levels. Histopathology and immunohistochemistry analysis for the apoptosis regulator protein (Bcl-2) and the interstitial filament protein (Vimentin) were performed. Results revealed that the synthesized SeNPs peak appeared at 400-430 nm wave length with crystallite particle size is around 37 nm. The predominant shape is spherical and cubic at different magnification levels with a narrow size distribution of 22.04-128.43 nm. The synthesized SeNPs showed a strong protective effect against gentamicin induced toxic effects to the rat's kidneys obtained from the (kidney function parameters, histopathology evaluation, recovery of the pro-inflammatory cytokines IL-β and TNF-α level with retrieval of Bcl-2 and vimentin protein levels proximate to the vehicle control groups). Due to the significant protective effect of SeNPs, it considered much better than the crude extract of Adiantum capillus in the treatment of kidney injury; however, additional studies are necessary to find the precise mechanism of their action.
Collapse
|
26
|
ZHAO X, XIN K, SUN L, QIN S, LIU W, REN C, TANG D. Effects of increasing dietary sodium selenite and selenium yeast levels on growth performance, meat quality and muscle anti-oxidative capacity of broilers. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
| | - Keqi XIN
- Gansu Agricultural University, China
| | - Likun SUN
- Gansu Agricultural University, China
| | | | | | | | - Defu TANG
- Gansu Agricultural University, China
| |
Collapse
|
27
|
Kim YB, Lee SH, Kim DH, Lee KW. Effects of dietary methyl sulfonyl methane and selenium on laying performance, egg quality, gut health indicators, and antioxidant capacity of laying hens. Anim Biosci 2022; 35:1566-1574. [PMID: 35507865 PMCID: PMC9449386 DOI: 10.5713/ab.21.0564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study investigated the effects of dietary methyl sulfonyl methane (MSM) and selenium (Se) on the laying performance, egg quality, gut health indicators, egg yolk Se content, and antioxidant markers in laying hens. Methods One hundred ninety-two 73-wk-old laying hens were randomly divided into four groups with eight replicates of six hens each. Four diets were prepared in a 2×2 factorial arrangement with or without MSM and Se. The trial lasted for 12 wk. Results There were no interaction effects or main effects (p>0.05) on laying performance and egg quality. However, feed intake increased in Se-fed hens (p = 0.051) and decreased in MSM-fed hens (p = 0.067) compared with that of hens in the control group. Dietary MSM increased (p<0.05) the ileal villus height and villus height:crypt ratio in hens compared with those receiving the non-supplemented control diet. Dietary MSM and Se did not affect the percentage of short-chain fatty acids in the ileal contents. Dietary Se enriched the Se content in egg yolk compared with that of the non-supplemented control diet (p<0.05). Dietary Se increased (p<0.05) glutathione peroxidase levels in the liver and serum samples compared to the control diet. The total antioxidant capacity in the liver increased (p<0.05) in laying hens that were fed MSM-supplemented diets than in hens fed the control diet. Dietary MSM significantly increased the relative superoxide dismutase levels in serum samples (p<0.05). Conclusion Supplementation with either MSM or Se independently improved the antioxidant capacity of laying hens. Furthermore, dietary Se produced Se-enriched eggs, but this effect was neither additive nor synergistic with dietary MSM.
Collapse
|
28
|
Selenium-Enriched Spirulina (SeE-SP) Enhance Antioxidant Response, Immunity, and Disease Resistance in Juvenile Asian Seabass, Lates calcarifer. Antioxidants (Basel) 2022; 11:antiox11081572. [PMID: 36009291 PMCID: PMC9404762 DOI: 10.3390/antiox11081572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
The present study examined the efficacy of dietary selenium-enriched spirulina (SeE-SP) on growth performance, antioxidant response, liver and intestinal health, immunity and disease resistance of Asian seabass, Lates calcarifer. A total of 480 seabass juveniles with an initial weight of 9.22 ± 0.09 g/fish were randomly assigned to four dietary groups. The fish were fed a fishmeal protein replacement diets with SeE-SP at 5%, 10%, and 20%, namely SeE-SP5, SeE-SP10, and SeE-SP20, and a fishmeal-based diet as control for 8 weeks. The results indicated that seabass juveniles fed SeE-SP5 and SeE-SP10 diets grew at the same rate as the fish fed a fishmeal-based control diet after 8 weeks of feeding, while SeE-SP20 grew at a significantly lower rate than the control (p < 0.05). Although most of the measured biochemical parameters were not influenced by the Se-SP diets, serum antioxidant-enzyme glutathione peroxidase (GPx) and immunological indices, such as lysozyme activity and immunoglobulin-M, were found significantly higher in the SeE-SP5 and SeE-SP10 diets compared to control. In addition, the fish fed the SeE-SP5 diet showed significantly lower mortalities after the 14-day of bacterial challenge with V. harveyi. These outcomes indicated that up to 10% inclusion of SeE-SP in the diet of juvenile Asian seabass does not compromise growth, while SeE-SP5 enhanced disease resistance in juvenile seabass.
Collapse
|
29
|
Kang R, Wang W, Liu Y, Huang S, Xu J, Zhao L, Zhang J, Ji C, Wang Z, Hu Y, Ma Q. Dietary selenium sources alleviate immune challenge induced by Salmonella Enteritidis potentially through improving the host immune response and gut microbiota in laying hens. Front Immunol 2022; 13:928865. [PMID: 36016957 PMCID: PMC9396296 DOI: 10.3389/fimmu.2022.928865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effects of different selenium (Se) sources on the immune responses and gut microbiota of laying hens challenged with Salmonella enteritidis (S. Enteritidis). A total of 240 45-week-old layers were randomly divided into eight groups with six replicates per group according to a 4 × 2 factorial design, including a blank diet without Se supplementation (CON group) and three diets with 0.3 mg/kg Se supplementation from sodium selenite (IS group), yeast Se (YS group), and selenium-enriched yeast culture (SYC group), respectively. After 8 weeks of feeding, half of them were orally challenged with 1.0 ml suspension of 109 colony-forming units per milliliter of S. Enteritidis daily for 3 days. The serum was collected on days 3, 7, and 14, and the cecum content was collected on day 14 after challenge. There was no significant difference in laying performance among the eight groups before challenge. The S. Enteritidis challenge significantly decreased the laying performance, egg quality, GSH-Px, IgG, and IgM and increased the ratio of feed and egg, malondialdehyde (MDA), Salmonella-specific antibody (SA) titers, IL-6, IL-2, IL-1β, and INF-γ. However, SYC increased the level of GSH-Px and IgG and decreased IL-6, while YS decreased the level of IL-2 and IL-1β. What is more, Se supplementation decreased the SA titers to varying degrees and reduced the inflammatory cell infiltration in the lamina propria caused by S. Enteritidis infection. In addition, the S. Enteritidis challenge disrupted the intestinal flora balance by reducing the abundance of the genera Clostridium innocuum, Lachnospiraceae, and Bifidobacterium and increasing the genera Butyricimonas and Brachyspira, while Se supplementation increased the gut microbial alpha diversity whether challenged or not. Under the S. Enteritidis challenge condition, the alteration of microbial composition by the administration of different Se sources mainly manifested as IS increased the relative abundance of the genera Lachnospiraceae and Christensenellaceae, YS increased the relative abundance of the genera Megamonas and Sphingomonas, and SYC increased the genera Fusobacterium and Lactococcus. The alteration of gut microbial composition had a close relationship with antioxidant or immune response. To summarize, different Se sources can improve the egg quality of layers challenged by S. Enteritidis that involves elevating the immunity level and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Ruifen Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Weihan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yafei Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Jiawei Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
30
|
Obianwuna UE, Oleforuh-Okoleh VU, Wang J, Zhang HJ, Qi GH, Qiu K, Wu SG. Natural Products of Plants and Animal Origin Improve Albumen Quality of Chicken Eggs. Front Nutr 2022; 9:875270. [PMID: 35757269 PMCID: PMC9226613 DOI: 10.3389/fnut.2022.875270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Albumen quality is recognized as one of the major yardsticks in measuring egg quality. The elasticity of thick albumen, a strong bond in the ovomucin-lysozyme complex, and excellent biological properties are indicators of high-quality albumen. The albumen quality prior to egg storage contribute to enhance egg’s shelf life and economic value. Evidence suggests that albumen quality can deteriorate due to changes in albumen structure, such as the degradation of β-ovomucin subunit and O-glyosidic bonds, the collapse of the ovomucin-lysozyme complex, and a decrease in albumen protein-protein interaction. Using organic minerals, natural plants and animal products with antioxidant and antimicrobial properties, high biological value, no residue effect and toxicity risk could improve albumen quality. These natural products (e.g., tea polyphenols, marigold extract, magnolol, essential oils, Upro (small peptide), yeast cell wall, Bacillus species, a purified amino acid from animal blood, and pumpkin seed meal) are bio-fortified into eggs, thus enhancing the biological and technological function of the albumen. Multiple strategies to meeting laying hens’ metabolic requirements and improvement in albumen quality are described in this review, including the use of amino acids, vitamins, minerals, essential oils, prebiotics, probiotics, organic trace elements, and phytogenic as feed additives. From this analysis, natural products can improve animal health and consequently albumen quality. Future research should focus on effects of these natural products in extending shelf life of the albumen during storage and at different storage conditions. Research in that direction may provide insight into albumen quality and its biological value in fresh and stored eggs.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vivian U Oleforuh-Okoleh
- Department of Animal Science, Faculty of Agriculture, Rivers State University, Port Harcourt, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Ibrahim SE, Alzawqari MH, Eid YZ, Zommara M, Hassan AM, Dawood MAO. Comparing the Influences of Selenium Nanospheres, Sodium Selenite, and Biological Selenium on the Growth Performance, Blood Biochemistry, and Antioxidative Capacity of Growing Turkey Pullets. Biol Trace Elem Res 2022; 200:2915-2922. [PMID: 34420135 DOI: 10.1007/s12011-021-02894-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Supplementation of selenium in poultry feed is required in an optimum dose and form for optimizing the growth performance and health status. Selenium nanospheres are suggested as an efficient and alternative to the conventional organic or inorganic forms. The study evaluated the effects of selenium (Se) nanospheres (SeNPs) as an alternative to organic Se (Sel-Plex®) or inorganic Se (sodium selenite, Se(IV Se(IV)) on the growth performance, carcass traits, blood biochemistry, and antioxidative capacity in turkey pullets. A total of 160 1-day-old Bronze turkey poults chicks were divided into four groups with 40 pullets each. The birds were fed on four types of diets as fellow: control (basal diet, 0.01 Se mg/kg), SeNPs (0.43 Se mg/kg), organic Se Sel-Plex® (0.41 Se mg/kg), and inorganic Se(IV) (0.42 Se mg/kg) for 8 weeks. No changes were seen in the body weight gain in growing turkey pullet, but chicks fed with Sel-Plex® form recorded the lowest feed intake (p < 0.05) compared to other treatments. Dietary SeNPs and Se(IV) selenium sources improved the feed conversion ratio compared to other treatments. All Se forms fed on turkey pullets showed higher carcass percentage weight and liver Se content than the control group. However, the gizzard percentage weight in the SeNPs group was lower than in the other treatments (p < 0.05). Birds fed SeNPs, and Sel-Plex® forms supplemental diets had a lower cholesterol concentration (p < 0.05) than the control and Se(IV). While high-density lipoprotein (HDL) concentration was increased in SeNPs and Se(IV) groups, and total protein concentration was higher in the Se(IV) group. Furthermore, dietary SeNPs reduced (p < 0.05) the low-density lipoprotein (LDL), total lipids, triglycerides, alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine, uric acid, urea, and malondialdehyde plasma concentrations and increased the glutathione peroxidase activity (GPx) and total antioxidative capacity (TAC). In conclusion, the results confirmed that feeding turkey pullets on SeNPs form with the 0.4 Se mg/kg of feed enhanced feed efficiency, growth performance, carcass traits, plasma lipids concentration, and antioxidative capacity.
Collapse
Affiliation(s)
- Samya E Ibrahim
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohammed H Alzawqari
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Department of Animal Production, Faculty of Agriculture and Food Sciences, Ibb University, 70270, Ibb, Yemen
| | - Yahya Z Eid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Mohsen Zommara
- Department of Dairy Science, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Aziza M Hassan
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33512, Egypt.
| |
Collapse
|
32
|
Abbas AO, Alaqil AA, Mehaisen GMK, El Sabry MI. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front Vet Sci 2022; 9:880790. [PMID: 35573399 PMCID: PMC9096893 DOI: 10.3389/fvets.2022.880790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) induces deleterious effects on the performance of laying hens and causes economic losses for poultry industry. This study was carried out to investigate the organic effect of selenium-enriched yeast (SY) on relieving the performance, immunity and physiological deterioration induced by heat stress in laying hens. A total of 324, 28-week-old, Hy-Line Brown commercial chicken layers were randomly distributed into 4 treatments according to a 2 × 2 factorial design, with 9 hens × 9 replicates per treatment (n = 81). From 30 to 34 weeks of age, layers were exposed to 2 temperature treatments (the HS treatment groups): a thermoneutral temperature at 24°C and a heat stress at 35°C. Layers were further assigned into the 2 subgroups according to dietary supplementation with organic selenium-enriched yeast (the SY treatment groups) at either 0 or 0.4 mg/kg diet. Results indicated that all the aspects of the layer performance during the experimental period were impaired by exposure to HS, while SY supplementation improved the layer performance in both the HS and non-HS layers. Intestinal villi disruptions and liver necrotic hepatocytes were observed in the layers exposed to HS, while villi integrity and hepatocytic normality were enhanced by SY treatment. A significant (P < 0.05) decrease in the total leukocyte count, sheep red blood cell (SRBC) antibody titer, and T- and B-lymphocyte proliferation along with an increase in the heterophils/lymphocytes (H/L) ratio were observed in the HS layers compared to non-HS layers. On the contrary, SY treatment significantly (P < 0.05) improved the immune function traits in both the HS layers and non-HS layers. Furthermore, the SY treatment plays an important role in mitigating the oxidative stress and inflammation induced by HS, displaying lower levels of plasma corticosterone, lipid peroxidation, interleukin-1β, and tumor necrosis factor-α in HS layers supplemented with SY compared to HS layers without SY supplementation. These results conclude that addition of SY to the diet of laying hens could be applied as a potential nutritional approach to relieve the deterioration effects of heat stress on the immunity, physiological status, and productive performance of laying hens.
Collapse
Affiliation(s)
- Ahmed O Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
33
|
Arbabi-Motlagh MM, Ghasemi HA, Hajkhodadadi I, Ebrahimi M. Effect of chelated source of additional zinc and selenium on performance, yolk fatty acid composition, and oxidative stability in laying hens fed with oxidised oil. Br Poult Sci 2022; 63:680-690. [PMID: 35522173 DOI: 10.1080/00071668.2022.2071596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The following study determined whether the effects of the combined addition of zinc amino acid complex (ZA) and selenomethionine (SM) was superior to their single addition in controlling the oxidative stress induced by dietary oxidised fat in laying hens.2. Two hundred and forty 32-week-old laying hens were divided into the following dietary treatments (each consisting of six replicates of eight birds): 1) a fresh soy oil (FSO) diet; 2) an oxidised soy oil (OSO) diet; 3) an OSO diet plus 20 mg zinc as ZA/kg (OSO+ZA); 4) an OSO diet plus 0.2 mg selenium as SM/kg (OSO+SM); and 5) an OSO diet plus ZA and SM (OSO+ZA+SM).3. After 10 weeks of feeding hens, feed intake, egg production, and egg mass in the OSO+ZA+SM group were similar to the FSO group but better (P<0.05) than those in the OSO group. Shell thickness and shell breaking strength were significantly improved by the OSO+ZA and OSO+ZA+SM treatments.4. Increases in the yolk concentrations of palmitic acid and total saturated fatty acids (SFA), and decreases in yolk linoleic acid, n-6 polyunsaturated fatty acids (PUFA), total PUFA, and PUFA/SFA ratio were induced by dietary oxidised fat which were normalised (P<0.05) by OSO+SM and OSO+ZA+SM.5. An increase (P<0.05) in malondialdehyde and a decrease in 2,2-diphenyl-picrylhydrazyl radical scavenging activity in the yolk, induced by dietary oxidised fat, was significantly improved by all dietary supplementations, but only birds fed the OSO+ZA+SM diet exhibited similar values to those fed FSO.6. In conclusion, the simultaneous inclusion of organic zinc plus selenium in the oxidised fat diets was beneficial for improving egg-laying performance, yolk fatty acid profile, and oxidative stability, but not for internal egg quality, compared with either zinc or selenium alone in laying hens.
Collapse
Affiliation(s)
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| |
Collapse
|
34
|
Xue J, Fang C, Mu R, Zhuo R, Xiao Y, Qing Y, Tang J, Fang R. Potential Mechanism and Effects of Different Selenium Sources and Different Effective Microorganism Supplementation Levels on Growth Performance, Meat Quality, and Muscle Fiber Characteristics of Three-Yellow Chickens. Front Nutr 2022; 9:869540. [PMID: 35495956 PMCID: PMC9051370 DOI: 10.3389/fnut.2022.869540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A trial was conducted to investigate the effects of different Se sources, including sodium selenite (S-Se) and selenium yeast (Y-Se) and different effective microorganism (EM) addition levels on growth performance, meat quality, and muscle fiber characteristics of three-yellow chickens and its potential mechanism. A total of 400 birds were randomly distributed into 4 groups (S-Se, S-Se + EM, Y-Se, and Y-Se + EM groups) consisting of a 2 × 2 factorial arrangement. The main factors were the source of Se (ISe = inorganic Se: 0.2 mg/kg S-Se; OSe = organic Se: 0.2 mg/kg Y-Se) and the level of EM (HEMB = high EM: 0.5% EM; ZEMB = low EM: 0% EM). Each treatment had 5 replicates and each replicate consisted of 20 broiler chickens. The trial lasted for 70 days. The results showed that, in breast muscle, the broiler chickens fed OSe source decreased the pH24h, drip loss, shear force, perimeter, cross-sectional area, and diameter, but increased the a24h* and density compared with the broiler chickens fed ISe source (p < 0.05); broiler chickens supplied with HEMB level decreased the cross-sectional area and diameter, but increased the pH24h, a24h,* and density compared with the broiler chickens supplied with ZEMB level (p < 0.05). In thigh muscle, OSe source and HEMB level also could improve the meat quality and change muscle fiber characteristics of broiler chickens (p < 0.05). Meat quality was correlated with the muscle fiber characteristics (p < 0.05). OSe source and HEMB level could regulate the expression levels of muscle fiber-relative genes in the breast and thigh muscles (p < 0.05). In conclusion, OSe source and HEMB level could improve the meat quality of the breast and thigh muscles of three-yellow chickens by changing the muscle fiber characteristics, and they changed the muscle fiber characteristics by regulating the expression levels of muscle fiber-relative genes.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rui Mu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yiqing Qing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Jiaxi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
- *Correspondence: Rejun Fang
| |
Collapse
|
35
|
Effects of Different Selenium Sources on the Laying Performance, Egg Quality, Antioxidant, and Immune Responses of Laying Hens under Normal and Cyclic High Temperatures. Animals (Basel) 2022; 12:ani12081006. [PMID: 35454253 PMCID: PMC9028492 DOI: 10.3390/ani12081006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to evaluate the effects of different selenium (Se) sources on the laying performance, egg quality, antioxidant, and immune responses of laying hens under different temperatures. In an 8-week experiment, a total of 480 44-week-old laying hens were randomly divided into 8 groups, with 6 replicates for each group and 10 hens per replicate, and fed with a basal diet (BK), basal diet with 0.3 mg/kg of Se from sodium selenite (SS), from Se yeast (SY), or from selenium-enriched yeast culture (SYC) under normal temperature (NT, 26 ± 2 °C) and cyclic high temperature (CHT, 26 ± 2 °C~33 ± 2 °C). CHT decreased the laying performance and serum levels of Se, immunoglobulin G (IgG), and interleukin-10 (IL-10), and significantly increased the serum free triiodothyronine (FT3), deiodinase-I (DI-I), and heat stress protein (HSPs) (p < 0.05). In addition, SYC increased the egg yolk color, and SS increased serum IgG level. SS, SY, and SYC reduced the level of interleukin-6 (IL-6) (p < 0.05). In conclusion, Se can increase egg yolk color, antioxidant capacity, and immune capacity under heat stress, and the effect of organic Se is better than that of inorganic Se.
Collapse
|
36
|
Wang X, Liu Y, Zhao HH, Wu YM, Liu CJ, Duan GY, Wang YZ, Liu TM, Huang P, Li YH, Fan ZY, Qiu HJ, Zhu SY, Lin Q. Effects of Dietary Ramie Powder at Various Levels on the Production Performance, Serum Biochemical Indices, Antioxidative Capacity, and Intestinal Development of Laying Hens. Front Physiol 2022; 12:823734. [PMID: 35242047 PMCID: PMC8887865 DOI: 10.3389/fphys.2021.823734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate the effects of ramie (0, 3, 6, and 9%) included in diets on production performance, antioxidative capacity, serum biochemical indices, and intestinal development of laying hens. A total of 432 Lohmann commercial laying hens were randomly allotted to one of four dietary treatments and fed for 6 weeks. The results showed that the inclusion of ramie had no negative effects on laying performance, and increased (quadratic, P < 0.05) the laying rate with the highest value in the 6% ramie group. However, ramie content in the diet up to 9% reduced the apparent metabolic energy, dry matter, and organic matter apparent digestibility of laying hens compared with those in the 3% ramie group. The content of high-density lipoprotein (HDL-C) in serum was increased (P < 0.05), but the activity of aspartate aminotransferase (AST) was decreased (P < 0.05) by dietary ramie supplementation. As the dietary ramie level increased, the activity of serum glutathione peroxidase (GSH-Px) was increased quadratically (P < 0.05). Compared with control, 3% ramie group significantly increased (P < 0.01) liver total superoxide dismutase (SOD) activity. Meanwhile, the addition of 3∼6% ramie powder increased (P < 0.05) villus height of jejunum and villus height/crypt depth (V/C) of ileum, which reflected the intestinal promotional effect of ramie powder. In conclusion, ramie in a diet of less than 9% might protect the liver and improve the antioxidative capacity with no detrimental impacts on the laying hens. Moreover, it could promote the intestinal mucosal structure and have a positive impact on the intestine health of the laying hens.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Hao-Han Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yong-Mei Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Chun-Jie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guang-Ying Duan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Yan-Zhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tou-Ming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ying-Hui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhi-Yong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hua-Jiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Si-Yuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| |
Collapse
|
37
|
Qiu K, Zheng JJ, Obianwuna UE, Wang J, Zhang HJ, Qi GH, Wu SG. Effects of Dietary Selenium Sources on Physiological Status of Laying Hens and Production of Selenium-Enriched Eggs. Front Nutr 2021; 8:726770. [PMID: 34938756 PMCID: PMC8685220 DOI: 10.3389/fnut.2021.726770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new sources of organic selenium (Se) has potential benefits for animal production and human nutrition via animal-based foods enriched with Se. The objective of this study was to evaluate the effects of Se-enriched insect protein (SEIP) in comparison with other sources, such as sodium selenite (SS) and selenium-enriched yeast (SEY), on performance, egg quality, selenium concentration in eggs, serum biochemical indices, immune capacity, and intestinal morphology of laying hens. Four hundred and fifty 24-week-old Hy-Line Brown laying hens with 94.0 ± 1.5% laying rate were randomly allocated to five groups with six replicates of 15 hens each. The control diet was prepared without adding exogenous selenium (calculated basal Se content of 0.08 mg/kg). The normal group was fed basal diets supplemented with 0.3 mg/kg of Se provided by sodium selenite. Three treatment groups (SS, SEY, and SEIP, respectively) were fed basal diets supplemented with 2 mg/kg of Se provided by sodium selenite, Se-enriched yeast, and SEIP, respectively. The feeding trial lasted for 12 weeks. Results revealed that dietary supplementation of 2 mg/kg of Se increased egg weight, decreased feed conversion ratio, and enhanced the antioxidant capacity of eggs in laying hens relative to the control group, whereas no significant differences were observed among SS, SEY, and SEIP treatment groups for the same. The organic source of Se provided by SEY or SEIP showed higher bio efficiency, as indicated by higher selenium content in eggs of SEY and SEIP compared with SS, although higher content was observed in SEY compared with SEIP. Also, the organic Se source significantly improved antioxidant capacity and immune functions of laying hens than the inorganic Se source. Diets supplemented with SEIP and SS significantly improved jejunal morphology of the laying hens compared with SEY, whereas SEIP was more effective than SEY to improve the oviduct health of laying hens. The results of this work evidently points the additive effect and nontoxicity of SEIP. Thus, SEIP could be used as another organic source of Se in the diet of laying hens and production of selenium-enriched eggs for humans.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Zheng
- Beijing Agricultural Products Quality and Safety Center, Beijing, China
| | - Uchechukwu Edna Obianwuna
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Zhao M, Sun Q, Khogali MK, Liu L, Geng T, Yu L, Gong D. Dietary Selenized Glucose Increases Selenium Concentration and Antioxidant Capacity of the Liver, Oviduct, and Spleen in Laying Hens. Biol Trace Elem Res 2021; 199:4746-4752. [PMID: 33506411 DOI: 10.1007/s12011-021-02603-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Selenized glucose (SeGlu) is a new type of organic selenium (Se) that is synthesized through the selenide reaction of glucose with sodium hydrogen selenide. This study aimed to clarify the influence of dietary SeGlu on the Se level and antioxidant capacity of the liver, oviduct, and spleen in laying hens. A total of 360, 60-week-old, Hy-Line Brown laying hens were randomly assigned to three treatment groups: a basal diet alone (control group, without adding exogenous Se) or the basal diet supplemented with 0.3 mg/kg of Se from sodium selenite (SS) or 5 mg/kg of Se from SeGlu. Diets with SeGlu increased Se levels in the liver, oviduct, and spleen of laying hens (P < 0.001). Compared with the control and SS groups, diet supplemented with SeGlu enhanced glutathione peroxidase (GSH-Px) activity and total antioxidant capacity (T-AOC) in the spleen and oviduct as well as the scavenging ability of 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH•) in the oviduct (P < 0.05). Compared with the control group, SeGlu treatment resulted in an increase (P < 0.05) in GSH-Px activity, T-AOC, and scavenging abilities of hydroxyl radical and DPPH• in the liver of hens. In addition, dietary SeGlu and SS decreased the hydrogen peroxide level in the oviduct in comparison to the control group (P < 0.05). Therefore, dietary SeGlu increased Se concentration and antioxidant ability in the liver, oviduct, and spleen of laying hens. Moreover, SeGlu may be used as a potential source of Se additive in laying hen production.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Qingyun Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Mawahib Khedir Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
39
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effects of bacterial organic selenium, selenium yeast and sodium selenite on antioxidant enzymes activity, serum biochemical parameters, and selenium concentration in Lohman brown-classic hens. Vet Res Commun 2021; 46:431-445. [PMID: 34845583 DOI: 10.1007/s11259-021-09867-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/21/2021] [Indexed: 02/05/2023]
Abstract
This study compares the effects of sodium selenite, selenium yeast, and enriched bacterial organic selenium protein on antioxidant enzyme activity, serum biochemical profiles, and egg yolk, serum, and tissue selenium concentration in laying hens. In a 112-d experiment, 144 Lohman Brown Classic hens, 23-wks old were divided into four equal groups, each has six replicates. They were assigned to 4 treatments: 1) a basal diet (Con), 2) Con plus 0.3 mg/kg feed sodium selenite (SS); 3) Con plus 0.3 mg/kg feed Se-yeast (SY): 4) Con plus 0.3 mg/kg feed bacterial enriched organic Se protein (ADS18) from Stenotrophomonas maltophilia bacteria. On d 116, hens were euthanized (slaughtered) to obtain blood (serum), liver organ, and breast tissue to measure antioxidant enzyme activity, biochemical profiles, and selenium concentration. The results show that antioxidant enzyme activity of hens was increased when fed bacterial organic Se (ADS18), resulting in a significant (P < 0.05) increase in serum GSH-Px, SOD, and CAT activity compared to other treatment groups. However, ADS18 and SY supplementation increase (P < 0.05) hepatic TAC, GSH-Px, and CAT activity, unlike the SS and Con group. Similarly, dietary Se treatment reduced total cholesterol and serum triglycerides concentrations significantly (P < 0.05) compared to the Con group. At 16 and 18 weeks, selenium concentration in hen egg yolks supplemented with dietary Se was higher (P < 0.05) than in Con, with similar patterns in breast tissue and serum. Supplementation with bacterial organic Se (ADS18) improved antioxidant enzyme activity, decreased total serum cholesterol and serum lipids, and increased Se deposition in egg yolk, tissue, and serum. Hence, organic Se may be considered a viable source of Se in laying hens.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Anjas A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Michalczuk M, Batorska M, Sikorska U, Bień D, Urban J, Capecka K, Konieczka P. Selenium and the health status, production results, and product quality in poultry. Anim Sci J 2021; 92:e13662. [PMID: 34786781 DOI: 10.1111/asj.13662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023]
Abstract
A Selenium (Se) is an element belonging to the nonmetallic group. It was first discovered in 1817 by J.J. Berzelius. Until the 1950s, it was considered to be toxic to animals. However, with increasing research conducted on laboratory animals, it is now clear that Se is necessary for the proper functioning of both plants and animals. Recent studies indicate that Se is necessary for the proper functioning of metabolic pathways in animals. It was evidenced that Se is a component of about 100 proteins involved in the immune system, antioxidant homeostasis, or release of an inflammatory mediator. Therefore, it is of key interest to find the appropriate dosage for the supplementation of Se in the diet of farm animals and thereby eliminate physiological disorders in the body associated with Se imbalance. In this study, we present a literature review on the importance and appropriate dosage of Se in the diet of poultry concerning their health status, production results, and the quality of animal-origin products.
Collapse
Affiliation(s)
- Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Martyna Batorska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Urszula Sikorska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Damian Bień
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jakub Urban
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Capecka
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
41
|
Yang J, Wang J, Huang K, Liu Q, GuofangLiu, Xu X, Zhang H, Zhu M. Selenium-enriched Bacillus subtilis yb-114246 improved growth and immunity of broiler chickens through modified ileal bacterial composition. Sci Rep 2021; 11:21690. [PMID: 34737359 PMCID: PMC8568892 DOI: 10.1038/s41598-021-00699-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Here, a Selenium-enriched Bacillus subtilis (SEBS) strain was generated and supplemented to broiler chickens' diet, and the impact in ileum bacterial microbiome, immunity and body weight were assessed. In a nutshell, five hundred 1-old old chicken were randomly divided into five groups: control, inorganic Se, Bacillus subtilis (B. subtilis), SEBS, and antibiotic, and colonization with B. subtilis and SEBS in the gastrointestinal tract (GIT) were measured by fluorescence in situ hybridization (FISH) assay and quantitative real-time polymerase chain reaction (qPCR). In summary, Chicks fed SEBS or B. subtilis had higher body weight than the control chicks or those given inorganic Se. SEBS colonized in distal segments of the ileum improved bacterial diversity, reduced the endogenous pathogen burden and increased the number of Lactobacillus sp. in the ileal mucous membrane. Species of unclassified Lachnospiraceae, uncultured Anaerosporobacter, Peptococcus, Lactobacillus salivarius, and Ruminococcaceae_UCG-014, and unclassified Butyricicoccus in the ileal mucous membrane played a key role in promoting immunity. Inorganic Se supplementation also improved bacterial composition of ileal mucous membranes, but to a less extent. In conclusion, SEBS improved performance and immunity of broiler chickens through colonization and modulation of the ileal mucous membrane microbiome.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - GuofangLiu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Xiaozhou Xu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Hao Zhang
- College of Animal Science and Technology, Chinese Agricultural University, Beijing, 100093, China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China.
| |
Collapse
|
42
|
Probing the effects of dietary selenised glucose on the selenium concentration, quality, and antioxidant activity of eggs and production performances of laying hens. Animal 2021; 15:100374. [PMID: 34607114 DOI: 10.1016/j.animal.2021.100374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Selenised glucose (SeGlu) is a newly invented organic selenium compound being synthesised through the selenisation reaction of glucose with NaHSe. We hypothesised that glucose could be used as a carrier for the stable low-valent organoselenium to enhance the selenium concentrations of eggs. To probe the effects of SeGlu on production performances of laying hens, egg selenium concentration, egg quality, and antioxidant indexes, 360 Hy-Line Brown laying hens were randomly assigned to three treatment groups fed with a basal diet alone or the diet supplemented with 5 or 10 mg/kg of Se from SeGlu. The results showed that SeGlu treatment not only enhanced (P < 0.001) the Se concentration in albumen and yolks, glutathione peroxidase activity, and total antioxidant capacity of eggs but also increased (P = 0.032) the Haugh unit of eggs being stored for 2 weeks, while the production performances and egg qualities of fresh eggs were not affected. Moreover, SeGlu supplementation linearly (P < 0.001) increased the scavenging ability of superoxide radicals in eggs. Briefly, SeGlu can enhance the selenium deposition and antioxidant activity of eggs, thereby meeting the nutritional requirement for Se-deficient humans.
Collapse
|
43
|
Kong L, Song Z. Organic selenium vs. its combination with sodium selenite in poultry nutrition: food for thoughts - Reply. Poult Sci 2021; 100:101317. [PMID: 34272048 PMCID: PMC8463661 DOI: 10.1016/j.psj.2021.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
44
|
Bi SS, Jin HT, Talukder M, Ge J, Zhang C, Lv MW, Yaqoob Ismail MA, Li JL. The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem Toxicol 2021; 154:112332. [PMID: 34118349 DOI: 10.1016/j.fct.2021.112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd) is one of the toxic environmental heavy metals that poses health hazard to animals due to its toxicity. Nano-Selenium (Nano-Se) is a Nano-composite form of Se, which has emerged as a promising therapeutic agent for its protective roles against heavy metals-induced toxicity. Heat shock proteins (HSPs) play a critical role in cellular homeostasis. However, the potential protective effects of Nano-Se against Cd-induced cerebellar toxicity remain to be illustrated. To investigate the toxic effects of Cd on chicken's cerebellum, and the protective effects of Nano-Se against Cd-induced cerebellar toxicity, a total of 80 male chicks were divided into four groups and treated as follows: (A) 0 mg/kg Cd, (B) 1 mg/kg Nano-Se (C) 140 mg/kg Cd + 1 mg/kg Nano-Se (D) 140 mg/kg Cd for 90 days. We tested heat shock protein pathway-related factors including heat shock factors (HSFs) HSF1, HSF2, HSF3 and heat shock proteins (HSPs) HSP10, HSP25, HSP27, HSP40, HSP60, HSP70 and HSP90 expressions. Histopathological results showed that Cd treatment caused degradation of Purkinje cells. In addition, HSFs and HSPs expression decreased significantly in the Cd group. Nano-Se co-treatment with Cd enhanced the expression of HSFs and HSPs. In summary, our findings explicated a potential protective effect of Nano-Se against Cd-induced cerebellar injury in chicken, suggesting that Nano-Se is a promising therapeutic agent for the treatment of Cd toxicity.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mamoon Ali Yaqoob Ismail
- College of Economics and Management, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
45
|
Zhou Y, Li S, Pang Q, Miao Z. Bacillus amyloliquefaciens BLCC1-0238 Can Effectively Improve Laying Performance and Egg Quality Via Enhancing Immunity and Regulating Reproductive Hormones of Laying Hens. Probiotics Antimicrob Proteins 2021; 12:246-252. [PMID: 30834486 DOI: 10.1007/s12602-019-9524-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we sought to evaluate the effects of dietary Bacillus amyloliquefaciens (B. amyloliquefaciens) BLCC1-0238 supplementation on laying performance, egg quality, antioxidant enzyme activities, reproductive hormone, and immunity of laying hens. A total of 240 Hy-Line Brown laying hens (28 weeks old) were randomly divided into four groups, and three replicates per group (n = 20 per replicate). The control group was fed a standard basal diet, and the three treatment groups were provided the basal diet supplemented with either 0.01%, 0.03%, or 0.06% B. amyloliquefaciens BLCC1-0238 (2 × 1010 CFU/g), respectively. Hens were allowed 2 weeks to acclimate prior to initiation of the 8-week experiment. It was observed that dietary supplementation with 0.01% or 0.03% B. amyloliquefaciens BLCC1-0238 significantly increased egg production and egg mass. However, no significant differences in feed intake, egg weight, and feed conversion ratio among the four groups were observed. Different levels of B. amyloliquefaciens BLCC1-0238 supplementation also significantly increased egg shell strength and thickness. With respect to the levels of reproductive hormones in the hens, B. amyloliquefaciens BLCC1-0238 supplementation significantly reduced serum adrenal cortical hormone (ACTH) levels, while increasing estradiol (E2) and follicle-stimulating hormone (FSH) secretion in the treatment groups compared to the control group. Relative to the control group, supplementation with 0.03% and 0.06% B. amyloliquefaciens BLCC1-0238 was observed to significantly increase serum glutathione S-transferase (GST) concentration, and supplementation significantly reduced serum IL-1 and IL-6 levels, whereas IL-4 levels increased for all concentrations tested. In conclusion, supplementation of a basal chicken diet with B. amyloliquefaciens BLCC1-0238 can improve laying performance and egg quality through the reduction of stress responses, up-regulation of growth hormones, and supporting immunity in laying hens.
Collapse
Affiliation(s)
- Yufa Zhou
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China
| | - Song Li
- School of Basic Medicine, Taishan Medical University, Tai'an, 271000, China
| | - Quanhai Pang
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China.
| | - Zengmin Miao
- School of Life Sciences, Taishan Medical University, Changcheng Road 619, Tai'an, 271018, China.
| |
Collapse
|
46
|
Muhammad AI, Mohamed DA, Chwen LT, Akit H, Samsudin AA. Effect of Selenium Sources on Laying Performance, Egg Quality Characteristics, Intestinal Morphology, Microbial Population and Digesta Volatile Fatty Acids in Laying Hens. Animals (Basel) 2021; 11:1681. [PMID: 34199988 PMCID: PMC8228612 DOI: 10.3390/ani11061681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The use of toxic and less bioavailable inorganic selenium can now be supplemented with an alternative organic source from bacterial species in nutrition for human and animal benefit. This study investigated the effects of selenium sources on laying performance, egg quality characteristics, intestinal morphology, caecum microbial population, and digesta volatile fatty acids in laying hens. One hundred and forty-four Lohman Brown Classic laying hens, at 23 weeks of age, were divided into four experimental groups (36 hens in each), differing in form of Se supplementation: no Se supplementation (Con), 0.3 mg/kg of inorganic Se in the form of sodium selenite (Na2SeO3), 0.3 mg/kg of organic Se from selenium yeast (Se-Yeast), and 0.3 mg/kg of organic Se from Stenotrophomonas maltophilia (bacterial organic Se, ADS18). The results showed that different dietary Se sources significantly affected laying rate, average egg weight, daily egg mass, feed conversion ratio (FCR), and live bodyweight (LBW) (p < 0.05). However, average daily feed intake and shell-less and broken eggs were unaffected (p > 0.05) among the treatment groups. The findings revealed that selenium sources had no (p > 0.05) effect on egg quality (external and internal) parameters. However, eggshell breaking strength and Haugh unit were significantly (p < 0.05) improved with organic (ADS18 or Se-yeast) Se-fed hens compared to the control group. In addition, egg yolk and breast tissue Se concentrations were higher (p < 0.05) in the dietary Se supplemented group compared to the control. Intestinal histomorphology revealed that hens fed ADS18 or Se-Yeast groups had significantly (p < 0.05) higher villi height in the duodenum and jejunum compared to those fed Na2SeO3 or a basal diet. However, when compared to organic Se fed (ADS18 or Se-Yeast) hens, the ileum villus height was higher (p < 0.05) in the basal diet group; with the lowest in the SS among the treatment groups. A significant increase (p < 0.05) of Lactobacilli spp. and Bifidobacteria spp., and a decrease of Escherichia coli and Salmonella spp. population were observed in the organic (ADS18 or Se-yeast) compared to inorganic supplemented and control hens. The individual digesta volatile fatty acid (VFA) was significantly different, but with no total VFA differences. Thus, bacterial selenoprotein or Se-yeast improved the performance index, egg quality characteristics, egg yolk and tissue Se contents, and intestinal villus height in laying hens. Moreover, caecum beneficial microbes increased with a decrease in the harmful microbe population and affected individual cecal volatile fatty acids without affecting the total VFA of the laying hens digesta.
Collapse
Affiliation(s)
- Aliyu Ibrahim Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse 7156, Nigeria
| | - Dalia Alla Mohamed
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, Khartoum 321, Sudan;
| | - Loh Teck Chwen
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
| |
Collapse
|
47
|
Meng TT, Lin X, Xie CY, He JH, Xiang YK, Huang YQ, Wu X. Nanoselenium and Selenium Yeast Have Minimal Differences on Egg Production and Se Deposition in Laying Hens. Biol Trace Elem Res 2021; 199:2295-2302. [PMID: 32845448 DOI: 10.1007/s12011-020-02349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to compare the effects of nanoselenium (NS) and selenium yeast (SY) on the performance, egg selenium (Se) concentration, and anti-oxidative capacity of hens. A total of 216 Brown Hy-line hens (29-week old) were randomly allocated into three treatments (6 replicate/treatment, 12 hens/replicate). The pre-trial period lasted 7 days, and the experimental period lasted 35 days. Dietary treatments included corn-soybean meal basal diet (containing 0.16 μg Se/g, as control group), and basal diet supplemented with 0.3 mg Se/kg diet (Se was from NS or SY), called as SY group or NS group, respectively. At the end of the experiment, one hen per replicate from each treatment was slaughtered. Liver, spleen, and kidney tissues were sampled for the determination of Se concentrations. The results showed that NS or SY supplement significantly improved feed conversion ratio (P < 0.05), soft broken egg rate (P < 0.05), and the serum T-AOC value (P < 0.05) when compared with control group. Remarkably, the deposition of Se increased significantly (P < 0.05) and equivalently in egg, liver, and kidney of hens supplemented with both NS and SY. Interestingly, SY supplement also enhanced the serum CAT and SOD activities (P < 0.05), NS but not SY significantly reduced serum MDA (P < 0.05), whereas RT-PCR results did not show significant differences in the mRNA levels of antioxidant genes among three groups (P > 0.05). Taken together, dietary supplemented with SY or NS improved the Se deposition in eggs, liver and kidney of laying hens, increased antioxidant activity, and NS supplement had greater Se deposition in the kidney tissue than SY supplement. SY or NS supplement could be considered to be applied for Se-enriched egg production.
Collapse
Affiliation(s)
- Tian-Tian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chun-Yan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-Hua He
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yang-Kui Xiang
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Yi-Qiang Huang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Research Center of Mineral Element Nutrition Engineering Technology, Xing-Jia Bio-engineering Co., Ltd., Changsha, 410300, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology & College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
48
|
Application of Selenium Conjugated to Animal Protein in Laying Hens' Diet for the Production of Selenium-Enriched Eggs. Foods 2021; 10:foods10061224. [PMID: 34071289 PMCID: PMC8228457 DOI: 10.3390/foods10061224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The current experiment was conducted to investigate the application effects of selenium conjugated to insect protein (SCIP) in the production of selenium-enriched eggs. A total of 450 laying hens were randomly assigned to five dietary groups, each group consisting of six replicates. Hens in the control group received a diet without selenium supplementation, whereas hens in the other four groups received diets supplemented with either 1, 2, 5, or 10 mg/kg of selenium from SCIP. The productive performance, egg quality, antioxidant and immune capacity, biochemical indices, intestinal morphology, and oviduct health of laying hens were evaluated. The results showed that the supplementation of organic selenium provided by SCIP in the diets of laying hens enhanced performance and egg quality without any toxicity effect, even at the 10 mg/kg inclusion level. A level of 2 mg/kg of selenium provided by SCIP in diets tentatively improved the serum antioxidant and immune capacity, intestinal development, and oviduct health of laying hens in a conspicuous manner. Hence, the biosafety and positive effects of SCIP as a feed additive supplement in laying hens' diet have been demonstrated with the enhanced production of safe and selenium-enriched eggs.
Collapse
|
49
|
Krausova G, Kana A, Vecka M, Hyrslova I, Stankova B, Kantorova V, Mrvikova I, Huttl M, Malinska H. In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats. Antioxidants (Basel) 2021; 10:antiox10030463. [PMID: 33809515 PMCID: PMC7999548 DOI: 10.3390/antiox10030463] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.
Collapse
Affiliation(s)
- Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
- Correspondence: ; Tel.: +420-773-088-810
| | - Antonin Kana
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.K.); (V.K.)
| | - Marek Vecka
- 4th Department of Medicine Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 00 Prague, Czech Republic; (M.V.); (B.S.)
| | - Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
| | - Barbora Stankova
- 4th Department of Medicine Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 128 00 Prague, Czech Republic; (M.V.); (B.S.)
| | - Vera Kantorova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.K.); (V.K.)
| | - Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute, Ltd., Ke Dvoru 12a, 160 00 Prague, Czech Republic; (I.H.); (I.M.)
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (M.H.); (H.M.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (M.H.); (H.M.)
| |
Collapse
|
50
|
Liu B, Xiong YL, Jiang J, Yu D, Lin G. Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|