1
|
Neyaz LA, Arafa SH, Alsulami FS, Ashi H, Elbanna K, Abulreesh HH. Culture-Based Standard Methods for the Isolation of Campylobacter spp. in Food and Water. Pol J Microbiol 2024; 73:433-454. [PMID: 39670639 PMCID: PMC11639288 DOI: 10.33073/pjm-2024-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Campylobacter spp. is a major source of global gastrointestinal infections. Their enteric infections are linked to the consumption of undercooked poultry products, contaminated milk and water, and the handling of wild animals and birds. The detection of Campylobacter spp. in water and food samples mainly depends on culture-based techniques. Public Health England (PHE), the U.S. Food and Drug Administration (FDA), and the International Standard Organization (ISO) have standardized Campylobacter spp. isolation and enumeration procedures for food and water samples, which involve the usage of selective agar media and enrichment broth. Different types of selective plating and enrichment media have been prepared for Campylobacter spp. detection and assessment during regular food surveillance and food poisoning. To date, culture media remains the standard option for microbiological food analysis and has been approved by the U.S. Environmental Protection Agency (US EPA), Food and Agriculture Organization (FAO), and World Health Organization (WHO). This review discusses the standard microbiological protocols for Campylobacter spp. isolation and enumeration in food and water and evaluates detection media (pre-enrichment, selective enrichment, and selective plating) for their rational applications. Moreover, it also elaborates on the advantages and disadvantages of recent chromogenic culture media in Campylobacter spp.-oriented food surveillance. This review also highlights the challenges of culture-based techniques, future developments, and alternative methods for Campylobacter spp. detection in food and water samples.
Collapse
Affiliation(s)
- Leena A. Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sara H. Arafa
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fatimah S. Alsulami
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayat Ashi
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Li C, Chen X, Wen R, Ma P, Gu K, Li C, Zhou C, Lei C, Tang Y, Wang H. Immunocapture Magnetic Beads Enhanced the LAMP-CRISPR/Cas12a Method for the Sensitive, Specific, and Visual Detection of Campylobacter jejuni. BIOSENSORS 2022; 12:bios12030154. [PMID: 35323424 PMCID: PMC8946501 DOI: 10.3390/bios12030154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Campylobacter jejuni is one of the most important causes of food-borne infectious disease, and poses challenges to food safety and public health. Establishing a rapid, accurate, sensitive, and simple detection method for C. jejuni enables early diagnosis, early intervention, and prevention of pathogen transmission. In this study, an immunocapture magnetic bead (ICB)-enhanced loop-mediated isothermal amplification (LAMP) CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a) was developed for the rapid and visual detection of C. jejuni. Using the ICB-LAMP-CRISPR/Cas12a method, C. jejuni was first captured by ICB, and the bacterial genomic DNA was then released by heating and used in the LAMP reaction. After the LAMP reaction, LAMP products were mixed and detected by the CRISPR/Cas12a cleavage mixture. This ICB-LAMP-CRISPR/Cas12a method could detect a minimum of 8 CFU/mL of C. jejuni within 70 min. Additionally, the method was performed in a closed tube in addition to ICB capture, which eliminates the need to separate preamplification and transfer of amplified products to avoid aerosol pollution. The ICB-LAMP-CRISPR/Cas12a method was further validated by testing 31 C. jejuni-positive fecal samples from different layer farms. This method is an all-in-one, simple, rapid, ultrasensitive, ultraspecific, visual detection method for instrument-free diagnosis of C. jejuni, and has wide application potential in future work.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| |
Collapse
|
3
|
Campylobacteriosis, Shigellosis and Salmonellosis in Hospitalized Children with Acute Inflammatory Diarrhea in Georgia. Pathogens 2022; 11:pathogens11020232. [PMID: 35215176 PMCID: PMC8877102 DOI: 10.3390/pathogens11020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
This is the first study on campylobacteriosis carried out in Georgia. It targeted 382 hospitalized children with acute inflammatory diarrhea. The study was conducted between July 2020 to July 2021 based on the main infection clinic of the capital city. Culture-based bacteriological methods were followed by phenotypic and Real-time PCR tests for bacterial confirmation and identification. The data revealed recent epidemiologic prevalences of the three main causative bacteria in the target population. Shigella sonnei with 19.1% (95% CI: 15.2%−23.4%) was the most frequently detected pathogen followed by Campylobacter spp. with 12.3% (95% CI: 9.2%−16.0%) and Salmonella spp. with 4.9% (95% CI: 3.0%−7.6%). However, in 63.6% of the samples, the causative agent remained unknown. Species differentiation of Campylobacter spp. revealed 81% Campylobacter jejuni and 19% Campylobacter coli. An epidemiological pyramid with estimated magnification factors may give more insights into the burden of campylobacteriosis among the studied population, resulting in a putative annual incidence of 6 per 1000 children in Tbilisi. Children with campylobacteriosis were younger (median age 40 months (interquartile range (IQR) 22−95)) than with shigellosis (median age 92 months (interquartile range (IQR) 52−140)). However, no statistically significant difference was found with the age range of patients with campylobacteriosis and salmonellosis as well as with salmonellosis and shigellosis. In conclusion, Campylobacter spp. may be suspected to be the second most frequent bacterial causative agent of acute inflammatory diarrhea in hospitalized children and the primary cause in the 0–3 age group in Georgia. In addition, Campylobacter CROMagar showed better selectivity in comparison to mCCDA selective agar of stool samples in our study.
Collapse
|
4
|
Guernier-Cambert V, Trachsel J, Maki J, Qi J, Sylte MJ, Hanafy Z, Kathariou S, Looft T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front Microbiol 2021; 12:732969. [PMID: 34646252 PMCID: PMC8504540 DOI: 10.3389/fmicb.2021.732969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022] Open
Abstract
Antibiotic-resistant Campylobacter constitutes a serious threat to public health. The clonal expansion of resistant strains and/or the horizontal spread of resistance genes to other strains and species can hinder the clinical effectiveness of antibiotics to treat severe campylobacteriosis. Still, gaps exist in our understanding of the risks of acquisition and spread of antibiotic resistance in Campylobacter. While the in vitro transfer of antimicrobial resistance genes between Campylobacter species via natural transformation has been extensively demonstrated, experimental studies have favored the use of naked DNA to obtain transformants. In this study, we used experimental designs closer to real-world conditions to evaluate the possible transfer of antimicrobial resistance genes between Campylobacter strains of the same or different species (Campylobacter coli or Campylobacter jejuni) and originating from different animal hosts (swine or turkeys). This was evaluated in vitro through co-culture experiments and in vivo with dual-strain inoculation of turkeys, followed by whole genome sequencing of parental and newly emerged strains. In vitro, we observed four independent horizontal gene transfer events leading to the acquisition of resistance to beta-lactams (blaOXA), aminoglycosides [aph(2′′)-If and rpsL] and tetracycline [tet(O)]. Observed events involved the displacement of resistance-associated genes by a mutated version, or the acquisition of genomic islands harboring a resistance determinant by homologous recombination; we did not detect the transfer of resistance-carrying plasmids even though they were present in some strains. In vivo, we recovered a newly emerged strain with dual-resistance pattern and identified the replacement of an existing non-functional tet(O) by a functional tet(O) in the recipient strain. Whole genome comparisons allowed characterization of the events involved in the horizontal spread of resistance genes between Campylobacter following in vitro co-culture and in vivo dual inoculation. Our study also highlights the potential for antimicrobial resistance transfer across Campylobacter species originating from turkeys and swine, which may have implications for farms hosting both species in close proximity.
Collapse
Affiliation(s)
- Vanina Guernier-Cambert
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Joel Maki
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jing Qi
- Shandong Academy of Agricultural Sciences, Institute of Animal Science and Veterinary Medicine, Jinan, China
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Zahra Hanafy
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| |
Collapse
|
5
|
Sylte MJ, Sivasankaran SK, Trachsel J, Sato Y, Wu Z, Johnson TA, Chandra LC, Zhang Q, Looft T. The Acute Host-Response of Turkeys Colonized With Campylobacter coli. Front Vet Sci 2021; 8:613203. [PMID: 33889603 PMCID: PMC8057350 DOI: 10.3389/fvets.2021.613203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023] Open
Abstract
Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) and C. coli are responsible for ~98% of the cases. In turkeys, the ceca are an important anatomical site where Campylobacter asymptomatically colonizes. We previously demonstrated that commercial turkey poults colonized by C. jejuni showed acute changes in cytokine gene expression profiles, and histological intestinal lesions at 2 days post-inoculation (dpi). Cecal tonsils (CT) are an important part of the gastrointestinal-associated lymphoid tissue that surveil material passing in and out of the ceca, and generate immune responses against intestinal pathogens. The CT immune response toward Campylobacter remains unknown. In this study, we generated a kanamycin-resistant C. coli construct (CcK) to facilitate its enumeration from cecal contents after experimental challenge. In vitro analysis of CcK demonstrated no changes in motility when compared to the parent isolate. Poults were inoculated by oral gavage with CcK (5 × 107 colony forming units) or sterile-media (mock-colonized), and euthanized at 1 and 3 dpi. At both time points, CcK was recovered from cecal contents, but not from the mock-colonized group. As a marker of acute inflammation, serum alpha-1 acid glycoprotein was significantly elevated at 3 dpi in CcK inoculated poults compared to mock-infected samples. Significant histological lesions were detected in cecal and CT tissues of CcK colonized poults at 1 and 3 dpi, respectively. RNAseq analysis identified 250 differentially expressed genes (DEG) in CT from CcK colonized poults at 3 dpi, of which 194 were upregulated and 56 were downregulated. From the DEG, 9 significantly enriched biological pathways were identified, including platelet aggregation, response to oxidative stress and negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway. These data suggest that C. coli induced an acute inflammatory response in the intestinal tract of poults, and that platelet aggregation and oxidative stress in the CT may affect the turkey's ability to resist Campylobacter colonization. These findings will help to develop and test Campylobacter mitigation strategies to promote food safety in commercial turkeys.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Yuko Sato
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, United States
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Timothy A Johnson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Lawrance C Chandra
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
6
|
Sylte MJ, Shippy DC, Bearson BL, Bearson SMD. Detection of Campylobacter jejuni liver dissemination in experimentally colonized turkey poults. Poult Sci 2020; 99:4028-4033. [PMID: 32731990 PMCID: PMC7597910 DOI: 10.1016/j.psj.2020.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/03/2022] Open
Abstract
Consumption of contaminated poultry products, including chicken livers, is the main source of human campylobacteriosis and approximately 90% of human cases are caused by Campylobacter jejuni subsp. jejuni (C. jejuni). Recent culinary trends that favor undercooked chicken livers may be responsible for outbreaks. Turkey is an emerging human protein source, and poultry livers are commonly prepared in popular cuisine such as pâté. The mechanism of how Campylobacter disseminates to poultry liver tissue is unknown. We have previously demonstrated that certain strains of C. jejuni persistently colonize turkeys with the highest density in the ceca. Whether C. jejuni disseminates to the liver of turkeys following intestinal colonization is unknown. In this study, 45 D of hatch turkey poults were co-housed for 30 D. Five poults were euthanized to screen for Campylobacter colonization, and were free of detectable Campylobacter. The remaining 40 poults were randomly split into 2 rooms, with 20 poults per room. At 35 D of age, poults were inoculated by oral gavage with 1 × 106 cfu of C. jejuni isolate NCTC 11168 or mock-inoculated with sterile medium. Ten poults from each room were euthanized at 7 and 14 D post-inoculation (dpi), and cecal contents and livers were cultured and/or enriched for Campylobacter. Livers were harvested aseptically. The ceca of C. jejuni-inoculated poults were highly colonized at 7 and 14 dpi with approximately 108 cfu/mL of cecal contents. At 7 and 14 dpi, 3 and 5 of 10 liver samples were positive for C. jejuni culture (8.6 × 103 cfu/g of liver ± 4.43 × 103 and 5.10 × 103 cfu/g of liver ± 1.74 × 103), respectively. At 14 dpi, liver samples were cultured by enrichment, and 6 of 10 were positive for Campylobacter. Some liver samples may be below the limit of detection for direct plate culturing. These data determined that turkey liver is a potential reservoir of C. jejuni following intestinal colonization, and identified a potential food safety consideration when turkey liver is prepared for human or pet food consumption.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA.
| | - Daniel C Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA
| | - Bradley L Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, ARS, USDA, Ames, IA, USA
| | - Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA
| |
Collapse
|
7
|
Complete Genome Sequence of Campylobacter jejuni Strain NADC 20827, Isolated from Commercial Turkeys. Microbiol Resour Announc 2020; 9:9/1/e01403-19. [PMID: 31896652 PMCID: PMC6940304 DOI: 10.1128/mra.01403-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is the main cause of bacterial foodborne disease in humans, who are exposed mostly by consumption of contaminated poultry products. C. jejuni strain NADC 20827 was isolated from the feces of turkeys naturally colonized with Campylobacter spp. We present the complete annotated genome and plasmid sequences of strain NADC 20827. Campylobacter jejuni is the main cause of bacterial foodborne disease in humans, who are exposed mostly by consumption of contaminated poultry products. C. jejuni strain NADC 20827 was isolated from the feces of turkeys naturally colonized with Campylobacter spp. We present the complete annotated genome and plasmid sequences of strain NADC 20827.
Collapse
|
8
|
Sylte MJ, Johnson TA, Meyer EL, Inbody MH, Trachsel J, Looft T, Susta L, Wu Z, Zhang Q. Intestinal colonization and acute immune response in commercial turkeys following inoculation with Campylobacter jejuni constructs encoding antibiotic-resistance markers. Vet Immunol Immunopathol 2019; 210:6-14. [PMID: 30947981 DOI: 10.1016/j.vetimm.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) is responsible for approximately 90% of the cases. At slaughter, the ceca of commercial chickens and turkeys are the main anatomical site where C. jejuni asymptomatically colonizes. We have previously colonized commercial turkey poults with different isolates of C. jejuni and evaluated different media to best enumerate Campylobacter from intestinal samples, but the host-response is unknown in turkeys. Enumeration of Campylobacter (colony forming units (cfu)/gram of intestinal contents) can be challenging, and can be confounded if animals are colonized with multiple species of Campylobacter. In order to precisely enumerate the C. jejuni isolate used to experimentally colonize turkeys, constructs of C. jejuni (NCTC 11,168) were tagged with different antibiotic resistance markers at the CmeF locus (chloramphenicol (CjCm) or kanamycin (CjK)). We sought to examine the kinetics of intestinal colonization using the antibiotic resistant constructs, and characterize the immune response in cecal tissue of turkeys. In vitro analysis of the tagged antibiotic-resistant constructs demonstrated no changes in motility, morphology, or adherence and invasion of INT-407 cells compared to the parent isolate NCTC 11,168. Two animal experiments were completed to evaluate intestinal colonization by the constructs. In experiment 1, three-week old poults were colonized after oral gavage for 14 days, and CjCm and CjK cfu were recovered from cecal, but not ileal contents. In experiment 2, nine-week old poults were orally inoculated with CjCm, and the abundance of CjCm cfu/g of cecal contents significantly decreased beyond 14 days after inoculation. Significant lesions were detected in CjCm colonized poults at day 2 post-colonization. Using immunohistochemistry, Campylobacter antigen was detected in between cecal villi by day 7 of CjCm colonized poults. Quantitative RT-PCR of CjCm-colonized cecal tissue demonstrated significant down-regulation of IL-1β, IL-10 and IL-13 mRNA, and significant up-regulation of IL-6, IL-8, IL-17 A, IL-22 and IFNγ mRNA on day 2, and for some on day 7 post-colonization. All differentially expressed genes were similar to mock-infected poults by day 14. These data suggest that C. jejuni induced a brief inflammatory response in the cecum of poults that quickly resolved. Results from this study provide valuable insight into host-response and persistent colonization of the turkey cecum. These findings will help to develop and test strategies to promote food safety in commercial turkeys.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA.
| | - Timothy A Johnson
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Ella L Meyer
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Matt H Inbody
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, IA, USA
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|