1
|
Olson EG, Chatman CC, Dittoe DK, Majumder ELW, Mantovani HC, Ricke SC. Deaminase inhibitor and casein hydrolysates drive microbial shifts favoring Campylobacter jejuni in an in vitro poultry cecal model. J Appl Microbiol 2025; 136:lxaf046. [PMID: 40036660 DOI: 10.1093/jambio/lxaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/22/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
AIM The dietary proteins in poultry feeds, including the polypeptide chain size, influence gut microbial composition and function. This study assessed the microbial preference for peptide size using the same protein source in three polypeptide forms. METHODS AND RESULTS We investigated the effects of diphenyliodonium chloride (DIC) on poultry cecal microbiota inoculated with Campylobacter jejuni and supplemented with various casein hydrolysates (intact casein, enzyme hydrolysate, acid hydrolysate, and a mix of all three) using an in vitro cecal model. The incubation occurred over 18 h at 42°C under microaerophilic conditions. We hypothesized a decrease in C. jejuni abundance by limiting nitrogenous metabolites while promoting the growth of protein fermentative bacteria. Additionally, we speculated that the response to DIC would vary with different polypeptides. Genomic DNA was extracted, amplified, and sequenced on an Illumina MiSeq platform. Analysis within QIIME2-2021.11 showed that DIC treatments did not significantly affect C. jejuni abundance but drastically decreased Enterobacteriaceae abundance (ANCOM, P < 0.05). DIC-treated groups exhibited a more stable community structure, especially in the peptide-amended group. Microbial interactions likely aided C. jejuni survival in DIC groups with casein hydrolysates. Methanocorpusculum, Phascolarctobacterium, and Campylobacter formed a core microbial community in both DIC-treated and non-treated groups. DIC altered co-occurrence patterns among core members and differentiated taxa in abundance in acid and peptide-DIC treated groups, changing negative relationships to positive ones (Spearman's Correlation, P < 0.05). Variations in polypeptide composition affected metabolite abundance, notably impacting the urea cycle in Campylobacter and Clostridiaceae. DIC shifted communal energy metabolism in microbiota on casein sources. CONCLUSION Campylobacter's adaptability to the deaminase inhibitor indicates reliance on the microbial community and their metabolic products, showcasing its metabolic versatility.
Collapse
Affiliation(s)
- Elena G Olson
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Chamia C Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Dana K Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Hilario C Mantovani
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Steven C Ricke
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
2
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
3
|
Hankel J, Kittler S, Chuppava B, Galvez E, Strowig T, Becker A, von Köckritz-Blickwede M, Plötz M, Visscher C. Luminal and mucosa-associated caecal microbiota of chickens after experimental Campylobacter jejuni infection in the absence of Campylobacter-specific phages of group II and III. Microb Genom 2022; 8. [PMID: 36190827 DOI: 10.1099/mgen.0.000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is still the most commonly reported zoonosis in the European Union causing gastrointestinal disease in humans. One of the most common sources for these food-borne infections is broiler meat. Interactions between Campylobacter (C.) jejuni and the intestinal microbiota might influence Campylobacter colonization in chickens. The aim of the present study was to gain further knowledge about exclusive interactions of the host microbiota with C. jejuni in Campylobacter-specific phage-free chickens under standardized conditions and special biosafety precautions.Therefore, 12 artificially infected (C. jejuni inoculum with a challenge dose of 7.64 log10 c.f.u.) and 12 control chickens of the breed Ross 308 were kept under special biosafety measures in an animal facility. At day 42 of life, microbiota studies were performed on samples of caecal digesta and mucus. No Campylobacter-specific phages were detected by real-time PCR analysis of caecal digesta of control or artificially infected chickens. Amplification of the 16S rRNA gene was performed within the hypervariable region V4 and subsequently sequenced with Illumina MiSeq platform. R (version 4.0.2) was used to compare the microbiota between C. jejuni-negative and C. jejuni-positive chickens. The factor chickens' infection status contributed significantly to the differences in microbial composition of mucosal samples, explaining 10.6 % of the microbiota variation (P=0.007) and in digesta samples, explaining 9.69 % of the microbiota variation (P=0.015). The strongest difference between C. jejuni-non-infected and C. jejuni-infected birds was observed for the family Peptococcaceae whose presence in C. jejuni-infected birds could not be demonstrated. Further, several genera of the family Ruminococcaceae appeared to be depressed in its abundance due to Campylobacter infection. A negative correlation was found between Christensenellaceae R-7 group and Campylobacter in C. jejuni-colonised chickens, both genera potentially competing for substrate. This makes Christensenellaceae R-7 group highly interesting for further studies that aim to find control options for Campylobacter infections and assess the relevance of this finding for chicken health and Campylobacter colonization.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Eric Galvez
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D 38124 Braunschweig, Germany.,Hannover Medical School, Carl-Neuberg-Straße 1, D 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D 38124 Braunschweig, Germany.,Hannover Medical School, Carl-Neuberg-Straße 1, D 30625 Hannover, Germany
| | - André Becker
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D 30559 Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| |
Collapse
|
4
|
Lambert W, Chalvon-Demersay T, Bouvet R, Grandmaison JLC, Fontaine S. Reducing dietary crude protein in broiler diets does not compromise performance and reduces environmental impacts, independently from the amino acid density of the diet. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Hankel J, Gibson T, Skov J, Andersen KB, Dargatz M, Kappel A, Thiemann F, Curtis B, Chuppava B, Visscher C. Monitoring of Campylobacter jejuni in a chicken infection model by measuring specific volatile organic compounds and by qPCR. Sci Rep 2022; 12:11725. [PMID: 35821260 PMCID: PMC9276820 DOI: 10.1038/s41598-022-15863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/30/2022] [Indexed: 01/23/2023] Open
Abstract
Campylobacter is one of the leading bacterial foodborne pathogens worldwide. Poultry is the host species with this pathogen with the highest clinical impact. Flocks become colonised with Campylobacter, which leads to contamination of product entering the food-chain. Rapid and reliable Campylobacter detection methods could support controls to minimize the risks of contamination within the food-chain, which would easier enable the implementation of a logistical slaughter schedule or other control options. The present study evaluates current and emerging C. jejuni detection technologies on air samples in a unique study set-up of pre-defined C. jejuni prevalences. Both non-invasive detection technologies on air samples by subsequent measuring of volatile organic compounds (VOCs) or by qPCR detected the C. jejuni presence and could additionally distinguish between the number of present C. jejuni-positive birds in the study set-up. Nevertheless, electrostatic air samplers diagnosed fewer birds as C. jejuni-positive compared to the cultivation-based method. By measuring the VOCs, it was possible to detect the presence of two positive birds in the room. This apparent high sensitivity still needs to be verified in field studies. Techniques, such as these promising methods, that can facilitate C. jejuni surveillance in poultry flocks are desirable to reduce the risk of infection for humans.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Timothy Gibson
- RoboScientific Ltd, Espace North, 181 Wisbech Road, Littleport, CB6 1RA, Cambridgeshire, UK
| | - Julia Skov
- AeroCollect A/S, Park Alle 345, 2605, Brøndby, Denmark
| | | | - Michelle Dargatz
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Andreas Kappel
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Frank Thiemann
- Evonik Operations GmbH, Nutrition & Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Ben Curtis
- RoboScientific Ltd, Espace North, 181 Wisbech Road, Littleport, CB6 1RA, Cambridgeshire, UK
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
6
|
Duangnumsawang Y, Zentek J, Goodarzi Boroojeni F. Development and Functional Properties of Intestinal Mucus Layer in Poultry. Front Immunol 2021; 12:745849. [PMID: 34671361 PMCID: PMC8521165 DOI: 10.3389/fimmu.2021.745849] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Intestinal mucus plays important roles in protecting the epithelial surfaces against pathogens, supporting the colonization with commensal bacteria, maintaining an appropriate environment for digestion, as well as facilitating nutrient transport from the lumen to the underlying epithelium. The mucus layer in the poultry gut is produced and preserved by mucin-secreting goblet cells that rapidly develop and mature after hatch as a response to external stimuli including environmental factors, intestinal microbiota as well as dietary factors. The ontogenetic development of goblet cells affects the mucin composition and secretion, causing an alteration in the physicochemical properties of the mucus layer. The intestinal mucus prevents the invasion of pathogens to the epithelium by its antibacterial properties (e.g. β-defensin, lysozyme, avidin and IgA) and creates a physical barrier with the ability to protect the epithelium from pathogens. Mucosal barrier is the first line of innate defense in the gastrointestinal tract. This barrier has a selective permeability that allows small particles and nutrients passing through. The structural components and functional properties of mucins have been reviewed extensively in humans and rodents, but it seems to be neglected in poultry. This review discusses the impact of age on development of goblet cells and their mucus production with relevance for the functional characteristics of mucus layer and its protective mechanism in the chicken’s intestine. Dietary factors directly and indirectly (through modification of the gut bacteria and their metabolic activities) affect goblet cell proliferation and differentiation and can be used to manipulate mucosal integrity and dynamic. However, the mode of action and mechanisms behind these effects need to be studied further. As mucins resist to digestion processes, the sloughed mucins can be utilized by bacteria in the lower part of the gut and are considered as endogenous loss of protein and energy to animal. Hydrothermal processing of poultry feed may reduce this loss by reduction in mucus shedding into the lumen. Given the significance of this loss and the lack of precise data, this matter needs to be carefully investigated in the future and the nutritional strategies reducing this loss have to be defined better.
Collapse
Affiliation(s)
- Yada Duangnumsawang
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Faculty of Veterinary Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Phung C, Wilson TB, Quinteros JA, Scott PC, Moore RJ, Van TTH. Enhancement of Campylobacter hepaticus culturing to facilitate downstream applications. Sci Rep 2021; 11:20802. [PMID: 34675257 PMCID: PMC8531295 DOI: 10.1038/s41598-021-00277-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter hepaticus causes Spotty Liver Disease (SLD) in chickens. C. hepaticus is fastidious and slow-growing, presenting difficulties when growing this bacterium for the preparation of bacterin vaccines and experimental disease challenge trials. This study applied genomic analysis and in vitro experiments to develop an enhanced C. hepaticus liquid culture method. In silico analysis of the anabolic pathways encoded by C. hepaticus revealed that the bacterium is unable to biosynthesise L-cysteine, L-lysine and L-arginine. It was found that L-cysteine added to Brucella broth, significantly enhanced the growth of C. hepaticus, but L-lysine or L-arginine addition did not enhance growth. Brucella broth supplemented with L-cysteine (0.4 mM), L-glutamine (4 mM), and sodium pyruvate (10 mM) gave high-density growth of C. hepaticus and resulted in an almost tenfold increase in culture density compared to the growth in Brucella broth alone (log10 = 9.3 vs 8.4 CFU/mL). The type of culture flask used also significantly affected C. hepaticus culture density. An SLD challenge trial demonstrated that C. hepaticus grown in the enhanced culture conditions retained full virulence. The enhanced liquid culture method developed in this study enables the efficient production of bacterial biomass and therefore facilitates further studies of SLD biology and vaccine development.
Collapse
Affiliation(s)
- Canh Phung
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | | | | | | | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Quantitative trait loci and transcriptome signatures associated with avian heritable resistance to Campylobacter. Sci Rep 2021; 11:1623. [PMID: 33436657 PMCID: PMC7804197 DOI: 10.1038/s41598-020-79005-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter. We associated high-density genome-wide genotypes (600K single nucleotide polymorphisms) of 3000 commercial broilers with Campylobacter load in their caeca. Trait heritability was modest but significant (h2 = 0.11 ± 0.03). Results confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified in inbred chicken lines, and detected two additional QTLs on chromosomes 19 and 26. RNA-Seq analysis of broilers at the extremes of colonisation phenotype identified differentially transcribed genes within the QTL on chromosome 16 and proximal to the major histocompatibility complex (MHC) locus. We identified strong cis-QTLs located within MHC suggesting the presence of cis-acting variation in MHC class I and II and BG genes. Pathway and network analyses implicated cooperative functional pathways and networks in colonisation, including those related to antigen presentation, innate and adaptive immune responses, calcium, and renin–angiotensin signalling. While co-selection for enhanced resistance and other breeding goals is feasible, the frequency of resistance-associated alleles was high in the population studied and non-genetic factors significantly influenced Campylobacter colonisation.
Collapse
|
9
|
Abstract
Food safety remains a significant public health issue for the poultry industry. Foodborne pathogens can be in contact at all phases of poultry production, from initial hatch to processing and ultimately to retail and meal preparation. Salmonella and Campylobacter have been considered the primary foodborne pathogens associated with poultry. Both organisms are major causative agents of human foodborne illness. Limiting these pathogens in poultry production requires identifying their sources and routes of transmission. This involves the ability to isolate and precisely identify them using methodologies capable of discernment at the genome level. Interventions to reduce their occurrence in poultry production employ two basic strategies: prevention of establishment and elimination of already-established pathogens. This review provides an overview of current findings and prospects for further research on poultry food safety issues.
Collapse
Affiliation(s)
- Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
10
|
Hankel J, Jung K, Kuder H, Keller B, Keller C, Galvez E, Strowig T, Visscher C. Caecal Microbiota of Experimentally Campylobacter jejuni-Infected Chickens at Different Ages. Front Microbiol 2019; 10:2303. [PMID: 31649644 PMCID: PMC6796544 DOI: 10.3389/fmicb.2019.02303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
Campylobacter jejuni is the most common bacterial cause of foodborne zoonosis in the European Union. Infections are often linked to the consumption and handling of poultry meat. The aim of the present study was to investigate the caecal microbiota of birds infected with C. jejuni at different ages. Therefore, a total of 180 birds of the laying hybrid Lohmann Brown-Classic were housed in 12 subgroups of 15 animals each in three performed repetitions. Three birds per subgroup were experimentally infected with C. jejuni at an age of about 21 days and about 78 days (4.46 ± 0.35 log10 CFU/bird). Twenty-one days after experimental infection, microbiome studies were performed on 72 caecal samples of dissected birds (three primary infected and three further birds/subgroup). Amplification within the hypervariable region V 4 of the 16S rRNA gene was performed and sequenced with the Illumina MiSeq platform. Statistical analyses were performed using SAS® Enterprise Guide® (version 7.1) and R (version 3.5.2). Both factors, the experimental replication (p < 0.001) and the chickens' age at infection (p < 0.001) contributed significantly to the differences in microbial composition of the caecal samples. The factor experimental replication explained 24% of the sample's variability, whereas the factor age at infection explained 14% thereof. Twelve of 32 families showed a significantly different count profile between the two age groups, whereby strongest differences were seen for seven families, among them the family Campylobacteraceae (adjusted p = 0.003). The strongest difference between age groups was seen for a bacterial species that is assigned to the genus Turicibacter which in turn belongs to the family Erysipelotrichaceae (adjusted p < 0.0001). Correlation analyses revealed a common relationship in both chicken ages at infection between the absolute abundance of Campylobacteraceae and Alcaligenaceae, which consists of the genus Parasutterella. In general, concentrations of particular volatile fatty acids (VFA) demonstrated a negative correlation to absolute abundance of Campylobacteraceae, whereby the strongest link was seen for n-butyrate (-0.51141; p < 0.0001). Despite performing consecutive repetitions, the factor experimental replication contributed more to the differences of microbial composition in comparison to the factor age at infection.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Henrike Kuder
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Birgit Keller
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christoph Keller
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hanover, Germany
| | - Eric Galvez
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
11
|
Lourenco JM, Rothrock MJ, Sanad YM, Callaway TR. The Effects of Feeding a Soybean-Based or a Soy-Free Diet on the Gut Microbiome of Pasture-Raised Chickens Throughout Their Lifecycle. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Visscher C, Klingenberg L, Hankel J, Brehm R, Langeheine M, Helmbrecht A. Feed Choice Led to Higher Protein Intake in Broiler Chickens Experimentally Infected With Campylobacter jejuni. Front Nutr 2018; 5:79. [PMID: 30234123 PMCID: PMC6134014 DOI: 10.3389/fnut.2018.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
In 2016, Campylobacter was the most commonly reported gastrointestinal bacterial pathogen in humans in the European Union with 246,307 reported cases. Of these cases, 83.6% were Campylobacter jejuni. The objective of the present study was to investigate to what extent an infection with C. jejuni alters the feed intake behavior of broiler chicks in terms of protein intake. This was done to see if, conversely, measures of control could be derived. In total, 300 commercial broilers of the Ross 308 line were allocated to four different groups, including five replications of 15 chickens each. In two groups, a conventional diet [216 g CP/kg dry matter (DM)] and in the two choice diet groups, diets with different levels of crude protein (286 and 109 g CP/kg DM, respectively) were fed between day 14 and day 42. An intake of both choice diets at a ratio of 3:2 resulted in a composition of consumed feed identical to that of the control concerning composition, energy and nutrient content. One group of each feeding concept was infected artificially with C. jejuni at day 21 by applying an oral C. jejuni-suspension containing 5.26 ± 0.08 log10 colony forming units of C. jejuni to three out of 15 chickens. No significant differences concerning C. jejuni prevalence and excretion could be seen. Broilers infected with C. jejuni chose a higher amount of the high protein choice diet in comparison to C. jejuni negative broilers. This resulted in a significantly (p < 0.0001) higher content of crude protein in the consumed diet (198 ± 3.09 g CP/kg DM and 208 ± 8.57 g CP/kg DM, respectively). Due to C. jejuni infection, a significant increase in crude mucin in excreta at day 42 was seen in experimentally infected groups (62.6 ± 4.62 g/kg DM vs. 59.6 ± 6.21 g/kg DM, respectively; p = 0.0396). There were significantly deeper crypts in infected birds (256 ± 71.6 vs. 234 ± 61.3 μm). In summary, C. jejuni infections significantly alter the feed intake behavior of broiler chickens regarding higher protein intake. Therefore, targeted manipulation of protein supply could be tested for limiting the spread of infection.
Collapse
Affiliation(s)
- Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Linus Klingenberg
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | |
Collapse
|