1
|
Jurado-Martín I, Tomás-Cortázar J, Rezk N, Hou Y, Saínz-Mejías M, Bruce R, Startseva M, Ma C, McClean S. The novel antigen, lipopolysaccharide export protein LptH, protects mice against Pseudomonas aeruginosa acute pneumonia in monovalent and multivalent vaccines. Vaccine 2025; 56:127145. [PMID: 40262371 DOI: 10.1016/j.vaccine.2025.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is a leading cause of morbidity and mortality worldwide in susceptible patients, particularly in those with respiratory disorders. The rising prevalence of multidrug-resistant strains and the failure of previous P. aeruginosa vaccine candidates in clinical trials highlight the urgent need to investigate novel vaccine antigens. In this study, we evaluated the protective potential of two antigen candidates, LptH and OprM, previously identified based on their involvement in host-cell attachment in a murine acute pneumonia model. Recombinant Escherichia coli BL21 clones overexpressing these proteins showed 8.8- and 3.5-fold increased attachment to 16HBE14o- cells in vitro, confirming their role in host-cell attachment. Immunisation with rLptH significantly reduced bacterial burden in the lungs by 1.12 log10 CFU and improved animal welfare scores compared to adjuvant-only controls. Serological and immunophenotyping analyses revealed that the monovalent rLptH vaccine stimulated antigen-specific IgG1 and IgG2c isotype production, and enhanced IFN-γ and IL-17 recall responses in the spleen. Moreover, a trivalent vaccine comprising rLptH and two other P. aeruginosa antigens, rFtsZ, and rOpmH, achieved a 2.33 log10 CFU reduction in lung bacterial burden, and 1.85 log10 CFU reduction in dissemination. These encouraging findings support the potential of LptH as a promising antigen for the development of a protective multivalent vaccine against P. aeruginosa infections.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nouran Rezk
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Saínz-Mejías
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rhys Bruce
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maryna Startseva
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chaoying Ma
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Santamarina-Fernández R, Fuentes-Valverde V, Silva-Rodríguez A, García P, Moscoso M, Bou G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int J Mol Sci 2025; 26:2012. [PMID: 40076637 PMCID: PMC11900337 DOI: 10.3390/ijms26052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Rebeca Santamarina-Fernández
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Víctor Fuentes-Valverde
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Medicamentos Biológicos, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 28022 Madrid, Spain
| | - Alis Silva-Rodríguez
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Patricia García
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Moscoso
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Universidad de A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Hasan A, Ahmmed MT, Prapti BBR, Rahman A, Islam T, Chouhan CS, Rahman AKMA, Siddique MP. First report of MDR virulent Pseudomonas aeruginosa in apparently healthy Japanese quail (Coturnix japonica) in Bangladesh. PLoS One 2025; 20:e0316667. [PMID: 39854517 PMCID: PMC11761672 DOI: 10.1371/journal.pone.0316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/14/2024] [Indexed: 01/26/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential. This study aimed to isolate, identify, detect virulence genes, and profile multidrug resistance (MDR) of P. aeruginosa from Japanese quail. Oral and rectal swabs were collected from 110 apparently healthy quail birds across various districts in Bangladesh. Bacterial isolation and identification were performed using cultural, morphological, biochemical, and polymerase chain reaction (PCR) methods. Antibiotic susceptibility was assessed using the disc diffusion method, and virulence genes were detected through PCR. Multivariable logistic regression was used to identify risk factors for P. aeruginosa infection. Both conventional and PCR methods revealed that 25 (22.73%) of the quail birds were positive for P. aeruginosa. The results showed that quail birds in Narsingdi were five times more likely to harbor Pseudomonas species (OR: 5.02; 95% CI: 1.34-18.84) compared to those in Mymensingh Sadar. Additionally, quail birds younger than eight weeks had nearly six times higher odds (OR: 5.93; 95% CI: 1.96-17.91) of carrying Pseudomonas compared to older birds. Female quail birds had almost four times higher odds (OR: 3.77; 95% CI: 1.30-10.93) of harboring Pseudomonas species than males. All 25 P. aeruginosa isolates exhibited multi drug-resistance (MDR) patterns. Virulence gene analysis revealed the consistent presence of exoA and rhlR in all isolates, while exoS, exoY, rhlI, and rhlAB showed variable distribution. The high prevalence of MDR and virulent P. aeruginosa in apparently healthy quail birds particularly in Mymensingh and Dhaka divisions, highlights the urgent need for a comprehensive 'One Health' approach to proactively address and mitigate the potential risk this organism poses to both quail and human populations.
Collapse
Affiliation(s)
- Alamgir Hasan
- Department of Microbiology and Hygiene, Mymensingh, Bangladesh
| | | | | | - Aminur Rahman
- Department of Microbiology and Hygiene, Mymensingh, Bangladesh
| | - Tasnim Islam
- Department of Microbiology and Hygiene, Mymensingh, Bangladesh
| | | | | | | |
Collapse
|
4
|
Qiang G, Yajing L, Shiji Z, Jiayu T, Jingwen L. Immune efficacy of oprH chitosan nanoparticle DNA vaccine against Pseudomonas aeruginosa. IRANIAN JOURNAL OF VETERINARY RESEARCH 2025; 25:353-360. [PMID: 40386097 PMCID: PMC12085210 DOI: 10.22099/ijvr.2024.49964.7371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/19/2024] [Indexed: 05/20/2025]
Abstract
Background Pseudomonas aeruginosa is a zoonotic pathogen that poses a threat to human and animal health. However, no vaccine exists for controlling this bacterium. Aims This study aimed to evaluate the immune efficacy of a chitosan nanoparticle DNA vaccine of the oprH gene from P. aeruginosa. Methods The naked DNA vaccine based on the oprH gene of P. aeruginosa was constructed. Then, the chitosan nanoparticle DNA vaccine of the oprH gene was prepared and the shape, size, encapsulation efficiency, stability, and ability of anti-DNA enzyme degradation were detected. Chickens were divided into five groups, namely the naked DNA vaccine group (poprH group), chitosan nanoparticle DNA vaccine group (CpoprH group), outer membrane protein vaccine group (OMP group), inactive vaccine group, and PBS group. After being vaccinated with corresponding vaccines, the levels of serum antibodies, lymphocyte proliferation assays, interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-4 (IL-4) concentrations were detected. Groups of chickens were challenged with live virulent P. aeruginosa 2 weeks after the last vaccination and the survival numbers were counted until day 15 post challenge. Then, the protective rates were calculated. Results The particle size of the chitosan nanoparticle DNA vaccine was approximately 200 nm and close to spherical; the encapsulation efficiency was 95.88%, and it could effectively resist degradation by DNase. Following vaccination, serum antibodies, stimulation index (SI) value, and concentrations of IFN-γ, IL-2, and IL-4 in chickens immunized with the chitosan nanoparticle DNA vaccine were significantly higher than those that were vaccinated with the naked DNA vaccine (P<0.05). The protective rates of poprH, CoprH, OMP vaccine, and inactive vaccine groups were 55%, 75%, 75%, and 90%, respectively. Conclusion Chitosan could significantly enhance the immune response and protection provided by the naked DNA vaccine of the oprH gene.
Collapse
Affiliation(s)
- G. Qiang
- Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - L. Yajing
- MSc Student in Microbiology, Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Z. Shiji
- MSc Student in Microbiology, Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - T. Jiayu
- MSc Student in Microbiology, Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - L. Jingwen
- MSc Student in Food Microbiology, Henan Engineering Research Center of Food Microbiology, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Kambouris AR, Brammer JA, Roussey H, Chen C, Cross AS. A combination of burn wound injury and Pseudomonas infection elicits unique gene expression that enhances bacterial pathogenicity. mBio 2023; 14:e0245423. [PMID: 37929965 PMCID: PMC10746159 DOI: 10.1128/mbio.02454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The interaction between an underlying disease process and a specific pathogen may lead to the unique expression of genes that affect bacterial pathogenesis. These genes may not be observed during infection in the absence of, or with a different underlying process or infection during the underlying process with a different pathogen. To test this hypothesis, we used Nanostring technology to compare gene transcription in a murine-burned wound infected with P. aeruginosa. The Nanostring probeset allowed the simultaneous direct comparison of immune response gene expression in both multiple host tissues and P. aeruginosa in conditions of burn alone, infection alone, and burn with infection. While RNA-Seq is used to discover novel transcripts, NanoString could be a technique to monitor specific changes in transcriptomes between samples and bypass the additional adjustments for multispecies sample processing or the need for the additional steps of alignment and assembly required for RNASeq. Using Nanostring, we identified arginine and IL-10 as important contributors to the lethal outcome of burned mice infected with P. aeruginosa. While other examples of altered gene transcription are in the literature, our study suggests that a more systematic comparison of gene expression in various underlying diseases during infection with specific bacterial pathogens may lead to the identification of unique host-pathogen interactions and result in more precise therapeutic interventions.
Collapse
Affiliation(s)
- Adrienne R. Kambouris
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerod A. Brammer
- US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Houston, Texas, USA
| | - Holly Roussey
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan S. Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
TIAN J, GONG Q, ZHU S, LI Y. Extracellular polysaccharide of Lactobacillus plantarum enhance immune efficacy of oprH gene recombinant subunit vaccine from Pseudomonas aeruginosa. J Vet Med Sci 2023; 85:1210-1215. [PMID: 37779090 PMCID: PMC10686767 DOI: 10.1292/jvms.23-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
To evaluate the immune enhancement effect of the extracellular polysaccharide of Lactobacillus plantarum on oprH recombinant subunit vaccine from Pseudomonas aeruginosa, a recombinant subunit vaccine of oprH (rOprH vaccine) was developed. The EP-rOprH vaccine was prepared with the extracellular polysaccharide of L. plantarum as an adjuvant. Mice were vaccinated with the rOprH and EP-rOprH vaccines, and the outer membrane protein (OMP) and inactivated vaccines were used as controls. The levels of serum antibody, interferon-γ (IFN-γ), interleukin (IL-2), and IL-4 were determined after vaccination. Finally, the protective efficacy of the vaccine was evaluated after challenge with virulent P. aeruginosa. Following vaccination, the serum antibody levels were significantly higher in mice vaccinated with the EP-rOprH vaccine than in those vaccinated with the rOprH vaccine (P<0.05). Moreover, the serum antibody levels detected in the EP-rOprH vaccine group were similar to those detected in the OMP vaccine group when P. aeruginosa suspension was used as the coating antigen. However, the levels in the EP-rOprH vaccine group were higher than those in the OMP vaccine and inactivated vaccine groups when the purified rOprH protein was used as the coating antigen (P<0.05). The level of IFN-γ, IL-2, and IL-4 in mice vaccinated with the EP-rOprH vaccine was significantly higher than that in mice vaccinated with the rOprH vaccine (P<0.05) and comparable to that in mice vaccinated with the OMP vaccine. The protective rates were 65%, 80%, 80%, and 95% with the rOprH, EP-rOprH, OMP, and inactivated vaccines, respectively. Thus, the extracellular polysaccharide of L. plantarum significantly enhanced the immune response and protection provided by the recombinant subunit vaccine of oprH.
Collapse
Affiliation(s)
- Jiayu TIAN
- Henan University of Science and Technology, Luoyang, PR China
| | - Qiang GONG
- Henan University of Science and Technology, Luoyang, PR China
| | - Shiji ZHU
- Henan University of Science and Technology, Luoyang, PR China
| | - Yajing LI
- Henan University of Science and Technology, Luoyang, PR China
| |
Collapse
|
8
|
Algammal AM, Eidaroos NH, Alfifi KJ, Alatawy M, Al-Harbi AI, Alanazi YF, Ghobashy MOI, khafagy AR, Esawy AM, El-Sadda SS, Hetta HF, El-Tarabili RM. oprL Gene Sequencing, Resistance Patterns, Virulence Genes, Quorum Sensing and Antibiotic Resistance Genes of XDR Pseudomonas aeruginosa Isolated from Broiler Chickens. Infect Drug Resist 2023; 16:853-867. [PMID: 36818807 PMCID: PMC9937075 DOI: 10.2147/idr.s401473] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Background Pseudomonas aeruginosa is incriminated in septicemia, significant economic losses in the poultry production sector, and severe respiratory infections in humans. This study aimed to investigate the occurrence, oprL sequencing, antimicrobial resistance patterns, virulence-determinant, Quorum sensing, and antibiotic resistance genes of P. aeruginosa retrieved from broiler chickens. Methods Two hundred samples were collected from 120 broiler chickens from broiler farms at Ismailia Governorate, Egypt. Consequently, the bacteriological examination was conducted and the obtained P. aeruginosa strains were tested for oprL gene sequencing, antibiogram, and PCR screening of virulence, Quorum sensing, and antibiotic resistance genes. Results The overall prevalence of P. aeruginosa in the examined birds was 28.3%. The oprL gene sequence analysis underlined that the tested strain expressed a notable genetic identity with various P. aeruginosa strains isolated from different geographical areas in the USA, India, China, Chile, and Ghana. PCR evidenced that the obtained P. aeruginosa strains, carrying virulence-related genes: oprL, toxA, aprA, phzM, and exoS in a prevalence of 100%, 100%, 42.5%, 33.3%, and 25.9%, respectively. Moreover, the recovered P. aeruginosa strains possessed the Quorum sensing genes: lasI, lasR, rhlI, and rhlR in a prevalence of 85.2%, 85.2%, 81.5%, and 81.5%, respectively. Furthermore, 40.7% of the isolated P. aeruginosa were XDR to seven antimicrobial classes, possessing sul1, bla TEM, tetA, bla CTX-M, bla OXA-1, and aadA1 genes. Conclusion As we can tell, this is the first report emphasizing the evolution of XDR P. aeruginosa strains from broiler chicken in Egypt, which is supposed to be a serious threat to public health. The emerging XDR P. aeruginosa in poultry frequently harbored the oprL, toxA, and aprA virulence genes, the lasI, lasR, rhlI, and rhlR Quorum sensing genes, and the sul1, bla TEM, tetA, bla CTXM, bla OXA-1, and aadA1 resistance genes.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Correspondence: Abdelazeem M Algammal, Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt, Email
| | - Nada H Eidaroos
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Khyreyah J Alfifi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Yasmene F Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Madeha O I Ghobashy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia,Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed R khafagy
- Department of Microbiology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Baik H, Cho J. Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells. Anim Biosci 2023; 36:315-321. [PMID: 35798038 PMCID: PMC9834725 DOI: 10.5713/ab.22.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. METHODS The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25°C, 37°C, and 55°C) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. RESULTS The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55°C. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. CONCLUSION Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.
Collapse
Affiliation(s)
- Heyeon Baik
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea,Corresponding Author: Jaiesoon Cho, Tel: +82-2-450-3375, Fax:+82-2-455-1044, E-mail:
| |
Collapse
|
10
|
Gong Q, Li Y, Zhai W, Niu M. Immune responses and protective efficacy of a trivalent combination DNA vaccine based on oprL, oprF and flgE genes of Pseudomonas aeruginosa. VET MED-CZECH 2022; 67:611-619. [PMID: 38845784 PMCID: PMC11154874 DOI: 10.17221/86/2021-vetmed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/29/2022] [Indexed: 06/09/2024] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogenic bacteria infecting many different species of animals. Currently, it lacks a commercial vaccine. In this study, three monovalent DNA vaccines (poprL, poprF, and pflgE), three bivalent combination DNA vaccines (poprL+poprF, poprL+pflgE, poprF+pflgE), and a trivalent DNA vaccine (poprL+poprF+pflgE) were constructed. Consequently, we immunised chickens with these DNA vaccines and used inactivated vaccines as the positive controls. Then, the immune efficacy was evaluated through serum antibody detection, a lymphocyte proliferation assay, and cytokine concentration determination. Lastly, we assessed the protection rate through a challenge experiment. Following vaccination, the serum antibody levels induced using these DNA vaccines were different due to the different coating antigens. In the trivalent combination DNA vaccine group, we established that the lymphocyte proliferation (SI values), IFN-γ, IL-2, and IL-4 levels were significantly higher than those of the other six DNA vaccine groups and the inactivated vaccine group. However, the protection provided was slightly lower than that of the inactivated vaccine and higher than those of other DNA vaccines. The protection rate of poprL, poprF, pflgE, poprL+poprF, poprL+pflgE, poprF+pflgE, poprL+poprF+pflgE, and the inactivated vaccine were 50, 45, 60, 75, 80, 80, 90, and 95%, respectively. The results of this study indicated the trivalent DNA vaccine based on oprL, oprF and flgE genes represents a promising approach for the prevention of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Qiang Gong
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Yajing Li
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Wenhan Zhai
- Henan University of Science and Technology, Luoyang, P.R. China
| | - Mingfu Niu
- Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|
11
|
Scientometric Evaluation of 100-year history of Poultry Science (1921-2020). Poult Sci 2022; 101:102134. [PMID: 36116350 PMCID: PMC9485213 DOI: 10.1016/j.psj.2022.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
To have a better contribution to the poultry production community, the Poultry Science Association founded journals including Poultry Science (PS) at 1921. Now, after 100 yr of publishing, PS ranks between the top 10 journals in the category of “agriculture, dairy, and animal science”. One hundred years after publishing the first paper in PS, the poultry industry has been completely revolutionized. Hence, it will be interesting to establish scientometrics study of the PS development during the last century. Therefore, based on findings of the current study, among countries/authors’ collaborations, future research fronts, and possibility of hot topics in the coming years may be predictable. Accordingly, a total of 22,451 articles were retrieved. For content analyses, according to the PS categorization for subject areas, 14 different subject areas were developed, including “behavior, breeding and quantitative genetics, education and extension, health and welfare, immunology, management and environment, metabolism and nutrition, microbiology and virology, modeling, molecular biology, physiology and anatomy, production, products, processing and marketing, and reproduction”. Considering the 100-yr of PS, the most frequent subject area was “nutrition and metabolism” (14,109 articles), and “modeling” (1,114 articles) attracted less scholarly attention. However, considering the last decade (2011–2020), the most important subject area was “molecular biology” (1,420 of 2,466 articles; 57.58%), followed by “modeling” (544 of 1,144 articles; 48.88%). Moreover, the most frequent poultry species/strains were broilers (retrieved in 6,156 articles), followed by laying hens, turkeys, and quail. Considering collaboration of countries and researchers, it can be said that a total number of 108 countries contributed to PS, with the most prolific country being United States (with 9,421 articles; 43.16%), followed by China, Canada, the Netherlands, and Japan. Among the authors, Harms RH (287 articles), and Siegel PB (208) were the most prolific authors, and Siegel PB and Dunnington EA (71 articles) had more collaborations. To study keyword trends, including 3 time periods broilers was the central co-occurrent keyword, while the importance of chickens and turkeys declined during the time. Salmonella spp. was a constant representative of poultry microbiology during 100 yr. While “nutrition and metabolism” was the most important subject area, nutrition-related keywords (major items) were not concentrated and co-occurred with a variety of keywords from different subject areas. While “molecular biology” ranked first over the past decade, the importance of “nutrition and metabolism” should not be ignored. In fact, in recent years, molecular basis of the nutrition has been studied. In big-data era and due to developing the molecular biology technologies, it seems that using mathematical modeling and computational methodologies will increase and probably remains as one of the most attractive research areas for scientists at least in the upcoming future decades.
Collapse
|
12
|
Gong Q, Ruan M, Niu M, Qin C. Immune Efficacy of different immunization doses of divalent combination DNA vaccine pOPRL+pOPRF of Pseudomonas aeruginosa. J Vet Med Sci 2021; 83:1959-1964. [PMID: 34759080 PMCID: PMC8762422 DOI: 10.1292/jvms.21-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At present, there is no vaccine available against Pseudomonas
aeruginosa, a common zoonotic pathogenic bacterium. In a previous study, the
authors prepared a divalent combination DNA vaccine, pOPRL+pOPRF, which exhibited good
protective efficacy. To explore the optimal immunization dose of this divalent combination
DNA vaccine, in the present study, chickens were vaccinated with 25, 50, 100, and 200 µg
doses. The levels of serum antibody, interferon-γ (IFN-γ), and interleukin-2 (IL-2) were
determined, and lymphocyte proliferation assays were performed. After challenge with
virulent P. aeruginosa, the protective efficacy was evaluated. Following
vaccination, the serum antibodies, stimulation index values, and concentrations of IFN-γ
and IL-2 were significantly higher in chickens vaccinated with 100 and 200 µg vaccines
than in those vaccinated with 25 and 50 µg doses (P<0.05). IFN-γ and
IL-2 concentrations in chickens immunized with 100 µg vaccine were slightly higher than
those in chickens immunized with 200 µg vaccine, although the difference was not
statistically significant. The protective rates were 55%, 65%, 85%, and 85% with 25, 50,
100, and 200 µg of the pOPRL+pOPRF DNA vaccine, respectively. Thus, the immune efficacy of
the pOPRL+pOPRF DNA vaccine increased with an increase in immunization dose, but this does
not imply that a higher dose necessarily achieves a better outcome. The optimal
immunization dose of pOPRL+pOPRF DNA vaccine in chickens was 100 µg.
Collapse
Affiliation(s)
- Qiang Gong
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Mengdie Ruan
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Mingfu Niu
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| | - Cuili Qin
- Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang, 471023, PR China
| |
Collapse
|
13
|
Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet World 2021; 14:2155-2159. [PMID: 34566334 PMCID: PMC8448624 DOI: 10.14202/vetworld.2021.2155-2159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Zoonotic diseases are diseases that are transmitted from animals to humans and vice versa. Pseudomonas aeruginosa (P. aeruginosa) is a pathogen with zoonotic nature. Commercial poultry could be infected with P. aeruginosa, especially at young ages with great losses. Infection of embryos with P. aeruginosa induced death in the shell, while infection of chicks led to septicemia, respiratory and enteric infections, and high mortality. Humans are also highly susceptible to P. aeruginosa infection, and the disease is associated with severe lung damage, especially in immunocompromised patients. Chicken carcass and related poultry retail products play an important role in the transmission of P. aeruginosa to humans, especially after processing in abattoirs. Treatment of P. aeruginosa infection is extremely difficult due to continuous development of antibiotic resistance. The transfer of antibiotic-resistant genes from poultry products to humans creates an additional public health problem. Accordingly, this study focused on avian pseudomonad, especially P. aeruginosa, with respect to infection of poultry, transmission to humans, and treatment and antibiotic resistance.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
14
|
Wang L, Ye C, Guo L, Chen C, Kong X, Chen Y, Shu L, Wang P, Yu X, Fang J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9221-9230. [PMID: 34138551 DOI: 10.1021/acs.est.1c00645] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UV irradiation and chlorination have been widely used for water disinfection. However, there are some limitations, such as the risk of generating viable but nonculturable bacteria and bacteria reactivation when using UV irradiation or chlorination alone. This study comprehensively evaluated the feasibility of the UV/chlorine process in drinking water disinfection, and Pseudomonas aeruginosa was selected as the target microorganism. The number of culturable cells was effectively reduced by more than 5 orders of magnitude (5-log10) after UV, chlorine, and UV/chlorine treatments. However, intact and VBNC cells were detected at 103 to 104 cells/mL after UV and chlorine treatments, whereas they were undetectable after UV/chlorine treatment due to the primary contribution of reactive chlorine species (Cl•, Cl2•-, and ClO•). After UV/chlorine treatment, the metabolic activity determined using single cell Raman spectroscopy was much lower than that after UV. The level of toxic opr gene in P. aeruginosa decreased by more than 99% after UV/chlorine treatment. Importantly, bacterial dark reactivation was completely suppressed by UV/chlorine treatment but not UV or chlorination. This study suggests that the UV/chlorine treatment can completely damage bacteria and is promising for pathogen inactivation to overcome the limitations of UV and chlorine treatments alone.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoqing Chen
- School of Public Health, Shenzhen, Sun Yat-Sen University, Shenzhen 510000, P. R. China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, P.R. China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
15
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
16
|
Sabzehali F, Rahimi H, Goudarzi H, Goudarzi M, Yoosefi Izad MH, Salimi Chirani A, Jalali SA, Faghihloo E. Functional engineering of OprF-OprI-PopB as a chimeric immunogen and its cross-protective evaluation with GM-CSF against Pseudomonas aeruginosa: A comprehensive immunoinformatics evaluation. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
18
|
The Landscape of Pseudomonas aeruginosa Membrane-Associated Proteins. Cells 2020; 9:cells9112421. [PMID: 33167383 PMCID: PMC7694347 DOI: 10.3390/cells9112421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. Methods: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. Results: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. Conclusion: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.
Collapse
|
19
|
Li M, Wei X, Li Y, Feng T, Jiang L, Zhu H, Yu X, Tang J, Chen G, Zhang J, Zhang X. PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway. J Vet Sci 2020; 21:e46. [PMID: 32476320 PMCID: PMC7263920 DOI: 10.4142/jvs.2020.21.e46] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background High concentrations of particulate matter less than 2.5 µm in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Meng Li
- College of Life Science, Ludong University, Yantai 264000, China.,Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Xiuli Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Tao Feng
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jinxiu Tang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| |
Collapse
|
20
|
Research Note: Tracing pathways of entry and persistence of facultative pathogenic and antibiotic-resistant bacteria in a commercial broiler farm with substantial health problems. Poult Sci 2020; 99:5481-5486. [PMID: 33142465 PMCID: PMC7647923 DOI: 10.1016/j.psj.2020.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/28/2020] [Accepted: 08/16/2020] [Indexed: 11/23/2022] Open
Abstract
On a commercial broiler farm with substantial health problems, shown by a reported loss rate of approx. 10% and regular antibiotic use, samples were taken at different locations in 2 barns, with the aim of analyzing possible entry routes and persistence of pathogens and antibiotic-resistant bacteria as well as revealing weak points in sanitation. Therefore, swab samples for biofilm and water samples from animal drinking water lines and the spray cooling system were taken twice immediately before restocking. In addition, swab samples from drain holes and air samples were collected. At restocking, hatchlings that died during transportation and chick paper were sampled. All samples were analyzed for the occurrence of Pseudomonas aeruginosa, total coliform count, and antibiotic-resistant bacteria, namely, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella spp., Citrobacter spp., Enterobacter spp., Acinetobacter baumannii, P. aeruginosa, and vancomycin-resistant Enterococci (VRE). No MRSA or VRE were detectable. In all samples from drinking water and sprinkler system pipes, P. aeruginosa was detectable; in most cases, antibiotic-resistant P. aeruginosa was also detected, with varying resistance profiles. Samples from the hatchlings and chick paper were contaminated with antibiotic-resistant Enterobacter spp., with resistance to piperacillin, fosfomycin, and the third-generation cephalosporins cefotaxime and ceftazidime. Therefore, the initial entry of antibiotic-resistant Enterobacteriaceae likely occurred via exposure at the hatchery, resulting in colonization of the chicks. Animals on the fattening farm were treated with colistin, amoxicillin, and lincomycin in the 3 production cycles before sampling. Owing to the frequent administration of several antibiotic classes during the fattening period via piped water in both barns, resistance of isolates from water pipes accumulated, showing additional resistance to chloramphenicol and frequently to ciprofloxacin and levofloxacin. To prevent the development of secondary diseases caused by the facultative pathogen P. aeruginosa in chicks with a weak immune status, the hygiene management for drinking water lines and the spray cooling system was changed. These changes resulted in an improvement in water line sanitation, shown by the absence of antibiotic-resistant bacteria and rare detection of P. aeruginosa.
Collapse
|
21
|
Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect Drug Resist 2020; 13:1651-1661. [PMID: 32606816 PMCID: PMC7294051 DOI: 10.2147/idr.s244081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185–350–OprI22–83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model. Methodology Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice. Results Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone. Conclusion The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
22
|
Gong Q, Peng YG, Niu MF, Qin CL. Research Note: The immune enhancement ability of inulin on ptfA gene DNA vaccine of avian Pasteurella multocida. Poult Sci 2020; 99:3015-3019. [PMID: 32475437 PMCID: PMC7597738 DOI: 10.1016/j.psj.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
To evaluate the ability of inulin to enhance the immune response of a ptfA gene DNA vaccine for avian Pasteurella multocida, inulin was added as an adjuvant to the ptfA-DNA vaccine, obtaining an inulin-adjuvant DNA vaccine. The DNA vaccine was administered to chickens; a fimbria protein vaccine and an attenuated live vaccine were used as positive controls. The levels of the serum antibody and concentrations of interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-4 (IL-4) were determined, and a lymphocyte proliferation assay was performed. After being challenged with virulent P. multocida, the protective efficacy was evaluated. The results showed that the serum antibodies induced by the ptfA-DNA vaccine were not enhanced by inulin. The stimulation index values and the concentrations of IL-2 and IFN-γ in chickens vaccinated with inulin-adjuvant DNA vaccine were significantly higher than those in chickens vaccinated with the DNA vaccine, those with the fimbria protein vaccine, and the chickens gavaged with inulin. The concentrations of IL-4 in the inulin-adjuvant DNA vaccine group and the fimbria protein vaccine group were higher than those in the DNA vaccine group and the inulin-gavage group. The protective efficacy rates of the attenuated live vaccine group, the fimbria protein vaccine group, the DNA vaccine group, the inulin-adjuvant DNA vaccine group, and the inulin-gavage group were 90, 70, 55, 65, and 55%, respectively.
Collapse
Affiliation(s)
- Q Gong
- Henan University of Science and Technology, Luoyang 471023, P.R. China.
| | - Y G Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research, Institute Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - M F Niu
- Henan University of Science and Technology, Luoyang 471023, P.R. China
| | - C L Qin
- Henan University of Science and Technology, Luoyang 471023, P.R. China
| |
Collapse
|
23
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|