1
|
Yue WYJ, Groves PJ. Age of challenge is important in Salmonella Enteritidis studies in pullets and hens: a systematic review. Avian Pathol 2025; 54:159-167. [PMID: 39392015 DOI: 10.1080/03079457.2024.2410873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Nontyphoidal serovars of Salmonella enterica subsp enterica frequently colonize the intestinal tracts of chickens, creating risks of contamination of meat and egg food products. These serovars seldom cause disease in chickens over 3 weeks of age. Colonization is generally transient but can continue to circulate in a flock for many months. Vaccination of breeders and layers is the most effective method of control of infections with serovars Enteritidis and Typhimurium, and the development of these vaccines or other preventative treatments requires challenge studies to demonstrate efficacy. However, establishing a successful challenge model where the control birds are colonized to a sufficient extent to be able to demonstrate a statistically significant reduction from the vaccine or treatment is problematic. A meta-analysis of published S. Enteritidis challenge studies was performed to pursue the best challenge model conditions that provide consistent control colonization outcomes. Challenge at sexual maturity was significantly more effective in achieving at least 80% colonization of control hens.RESEARCH HIGHLIGHTSSalmonella challenge chicken models do not always achieve high colonization levels in controls.The age of hen is important in achieving good caecal colonization.Challenge around sexual maturity provides the best control colonization outcome.A challenge dose rate of 105 CFU/ bird is adequate in birds under 30 weeks of age.
Collapse
Affiliation(s)
- Wing Y J Yue
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| | - Peter J Groves
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| |
Collapse
|
2
|
Nassar YM, Abd El-Ghany WA, Ibrahim AK, Hamouda AS, El-Bakery AM, Mekkawy AM. Ameliorating effects of antibiotic alternatives on the performance and pathological parameters of Salmonella Typhimurium infected broiler chickens. Microb Pathog 2025; 200:107305. [PMID: 39824261 DOI: 10.1016/j.micpath.2025.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope. Two hundred and forty broiler chicks were divided into six equal groups. Group 1 was given TO (1ml/4L of the drinking water). However, group 2 and group 3 were given CS-NPs and TO-loaded-CS-NPs in a 2 ml/chick dose by oral gavage. Group 4 was given a Cip (0.5 g/mL of drinking water). Treatments started on the 20th day of age and continued for 5 successive days. Each chicken in groups 1-5 was orally infected with 1 ml of 1 × 109 CFU/ml S. Typhimurium 14 days old. Chickens in group 6 were kept as blank control negative without treatment or infection. All groups were kept for 4 weeks post-infection to record clinical observations, performance parameters, the shedding rate of S. Typhimurium, and the histopathological parameters of different organs. Results showed that the infected untreated group had the lowest performance (BWT: 2164.60 ± 31.90), with the highest bacterial count (BC) (8.56 ± 0.14) and lesion scores. The best results were obtained in response to TO-loaded-CS-NPs (BWT: 2422.70 ± 51.15 and BC: 6.62 ± 0.32) and Cip (BWT: 2431.50 ± 40.01 and BC: 5.32 ± 0.16). Therefore, it is recommended to use TO-loaded-CS-NPs as an alternative antibacterial agent in controlling S. Typhimurium infection without taking the risk of developing resistant bacterial strains as with antibiotics.
Collapse
Affiliation(s)
- Yousra M Nassar
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel K Ibrahim
- Clinical Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Hamouda
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amal M El-Bakery
- Plant Pathology Research Institute, Agricultural Research Centre (ARC), Giza, 12211, Egypt
| | - Aya M Mekkawy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
3
|
Yin Y, Peng H, Bai H, Pei Z, Chen Z, Ma C, Zhu M, Li J, Li C, Gong Y, Wang L, Teng L, Qin Z, Zhou J, Wei T, Liao Y. Enhancing resistance to Salmonella typhimurium in yellow-feathered broilers: a study of a strain of Lactiplantibacillus plantarum as probiotic feed additives. Front Microbiol 2024; 15:1450690. [PMID: 39633802 PMCID: PMC11615061 DOI: 10.3389/fmicb.2024.1450690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Lactiplantibacillus plantarum strains are potentially rich sources of probiotics that could help avoid infections. In order to evaluate their efficacy in bolstering resistance to Salmonella typhimurium infection among chicks. In this study, L. plantarum and commercial probiotics were administered via the water supply at a dosage of 1×109 CFU per chicken from days 1 to 7 to establish a protective system for the chicks. On days 8 and 9, S. typhimurium was attacked to investigate the preventive effects and potential mechanisms of L. plantarum in comparison with commercial probiotics. Post-treatment, we took a broad range of measurements, including body weight, immune organ index changes, the viable count of S. typhimurium in the liver, spleen, and cecum, as well as pathological changes in the liver. Our findings demonstrated that both L. plantarum and the commercial probiotic could safeguard chicks from S. typhimurium infection. The data also suggested that probiotic medication could ease weight loss postinfection, lower the bacterial count in the liver, spleen, and cecum, and attenuate liver pathological damage among all treated participants. Subsequently, we did high-throughput sequencing of 16S rRNA to examine the fecal microbiota of the chicks 5 days post-infection. We discovered that both L. plantarum and the commercial probiotic could fend off the invasion of S. typhimurium by affecting the bacterial population of Anaerotruncus, Colidextribacter, and Lactobacillus. Generally speaking, the addition of L. plantarum as a feed additive protects yellow-feathered broilers from S. typhimurium illness, suggesting great potential for commercial uses in the poultry industry.
Collapse
Affiliation(s)
- Yangyan Yin
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Hao Peng
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Huili Bai
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhe Pei
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Zhongwei Chen
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Min Zhu
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Changting Li
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Yu Gong
- Guizhou Provincial Livestock and Poultry Genetic Resources Management Station, Guiyang, China
| | - Leping Wang
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Ling Teng
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhongsheng Qin
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Jianhui Zhou
- Guilin Animal Epidemic Disease Prevention and Control Center, Guilin, China
| | - Tianchao Wei
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
4
|
Wang J, Fenster DA, Vaddu S, Bhumanapalli S, Kataria J, Sidhu G, Leone C, Singh M, Dalloul RA, Thippareddi H. Colonization, spread and persistence of Salmonella (Typhimurium, Infantis and Reading) in internal organs of broilers. Poult Sci 2024; 103:103806. [PMID: 38749104 PMCID: PMC11108970 DOI: 10.1016/j.psj.2024.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Transfer of Salmonella to internal organs of broilers over a 35 d grow-out period was evaluated. A total of 360 one-day old chicks were placed in 18 floor pens of 3 groups with 6 replicate pens each. On d 0, broilers were orally challenged with a cocktail of Salmonella (equal population of marked serovars; nalidixic acid-resistant S. Typhimurium, rifampicin-resistant S. Infantis, and kanamycin-resistant S. Reading) to have 3 groups: L (low; ∼2 log CFU/bird); M (medium; ∼5 log CFU/bird); and H (High; ∼8 log CFU/bird). On d 2, 7 and 35, 4 birds/pen were euthanized and ceca, liver, and spleen samples were collected aseptically. Gizzard samples (4/pen) were collected on d 35. The concentration of Salmonella in liver and spleen were transformed to binary outcomes (positive and negative) and fitted in glm function of R using cecal Salmonella concentrations (log CFU/g) and inoculation doses (L, M, and H) as inputs. On d 2, H group showed greater (P ≤ 0.05) cecal colonization of all 3 serovars compared to L and M groups. However, M group showed greater (P ≤ 0.05) colonization of all 3 serovars in the liver and spleen compared to L group. Salmonella colonization increased linearly in the ceca and quadratically in the liver and spleen with increasing challenge dose (P ≤ 0.05). On d 35, L group had greater (P ≤ 0.05) S. Infantis colonization in the ceca and liver compared to M and H groups (P ≤ 0.05). Moreover, within each group on d 35, the concentration of S. Reading was greater than those of S. Typhimurium and S. Infantis for all 3 doses in the ceca and high dose in the liver and gizzard (P ≤ 0.05). Salmonella colonization diminished in the ceca, liver, and spleen during grow-out from d 0 to d 35 (P ≤ 0.05). On d 35, birds challenged with different doses of Salmonella cocktail showed a similar total Salmonella spp. population in the ceca (ca. 3.14 log CFU/g), liver (ca. 0.54 log CFU/g), spleen (ca. 0.31 log CFU/g), and gizzard (ca. 0.42 log CFU/g). Estimates from the fitted logistic model showed that one log CFU/g increase in cecal Salmonella concentration will result in an increase in relative risk of liver and spleen being Salmonella-positive by 4.02 and 3.40 times (P ≤ 0.01), respectively. Broilers from H or M group had a lower risk (28 and 23%) of being Salmonella-positive in the liver compared to the L group when the cecal Salmonella concentration is the same (P ≤ 0.05). Oral challenge of broilers with Salmonella spp. with various doses resulted in linear or quadratic increases in Salmonella colonization in the internal organs during early age and these populations decreased during grow-out (d 35). This research can provide guidance on practices to effectively mitigate the risk of Salmonella from chicken parts and enhance public health.
Collapse
Affiliation(s)
- Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Davis A Fenster
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sasikala Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Jasmine Kataria
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Gaganpreet Sidhu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Cortney Leone
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
5
|
Ibrahim MM, Jusoh MB, Rose FZC, Azami MM, Roslee R. Salmonella serovars trend in poultry Malaysia from 2011 to 2020. Vet Res Commun 2024; 48:1791-1802. [PMID: 38238509 DOI: 10.1007/s11259-024-10303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 06/04/2024]
Abstract
Data and geographical trend of Salmonella serovars infecting poultry in Malaysia is limited. In this study, the trend of Salmonella serovars infection was presented for the past ten years from 2011 to 2020 and the predominant serovars were mapped based on geographical distribution. Analysis of passive surveillance data demonstrated a shift of Salmonella serovars that infected poultry in Malaysia. The Salmonella serovars varied within ten years of registered cases with the Veterinary Research Institute, Ipoh, Malaysia involving samples from live and dead birds. Total number of cases found from the year 2011 to 2020 were 391 cases, involving 73 Salmonella serovars with an additional one group of unclassified serovars known as Salmonella spp. Further analysis revealed that eight serovars were found predominant throughout the ten-year period. These included S. Albany, S. Braenderup, S. Brancaster, S. Corvallis, S. Enteritidis, S. Kentucky, S. Typhimurium and S. Weltevreden. Salmonella spp. (Salmonella that is incapable to be identified based on serotyping) were also one of the major groups observed throughout the years. This study could help the authorities to improvise policies for better disease control programs through the establishment of diagnostic tools for rapid Salmonella screening in poultry.
Collapse
Affiliation(s)
| | - Mohammad Bohari Jusoh
- Veterinary Research Institute, 59, Jalan Sultan Azlan Shah, Ipoh, Perak, 31400, Malaysia
| | - Farid Zamani Che Rose
- Department of Mathematics and Statistics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Mohammad Masrin Azami
- Veterinary Research Institute, 59, Jalan Sultan Azlan Shah, Ipoh, Perak, 31400, Malaysia
| | - Roseliza Roslee
- Veterinary Research Institute, 59, Jalan Sultan Azlan Shah, Ipoh, Perak, 31400, Malaysia
| |
Collapse
|
6
|
Fan Y, Zhou W, Li G, Liu X, Zhong P, Liu K, Liu Y, Wang D. Protective effects of sodium humate and its zinc and selenium chelate on the oxidative stress, inflammatory, and intestinal barrier damage of Salmonella Typhimurium-challenged broiler chickens. Poult Sci 2024; 103:103541. [PMID: 38471228 PMCID: PMC11067757 DOI: 10.1016/j.psj.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this study was to investigate the protective effects and mechanisms of dietary administration of sodium humate (HNa) and its zinc and selenium chelate (Zn/Se-HNa) in mitigating Salmonella Typhimurium (S. Typhi) induced intestinal injury in broiler chickens. Following the gavage of 109 CFU S. Typhi to 240 broilers from 21-d to 23-d aged, various growth performance parameters such as body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed ratio (FCR) were measured before and after infection. Intestinal morphology was assessed to determine the villus height, crypt depth, and chorionic cryptologic ratio. To evaluate intestinal barrier integrity, levels of serum diamine oxidase (DAO), D-lactic acid, tight junction proteins, and the related genes were measured in each group of broilers. An analysis was conducted on inflammatory-related cytokines, oxidase activity, and Nuclear Factor Kappa B (NF-κB) and Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related proteins and mRNA expression. The results revealed a significant decrease in BW, ADG, and FCR in S. typhi-infected broilers. HNa tended to increase FCR (P = 0.056) while the supplementation of Zn/Se-HNa significantly restored BW and ADG (P < 0.05). HNa and Zn/Se-HNa exhibit favorable and comparable effects in enhancing the levels of serum DAO, D-lactate, and mRNA and protein expression of jejunum and ileal tight junction. In comparison to HNa, Zn/Se-HNa demonstrates a greater reduction in S. Typhi shedding in feces, as well as superior efficacy in enhancing the intestinal morphology, increasing serum catalase (CAT) activity, inhibiting pro-inflammatory cytokines, and suppressing the activation of the NF-κB pathway. Collectively, Zn/Se-HNa was a more effective treatment than HNa to alleviate adverse impact of S. Typhi infection in broiler chickens.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Wenzhu Zhou
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Guili Li
- Qiqihar Center for Disease Control and Prevention Qiqihar, China
| | - Xuesong Liu
- Laboratory of Veterinary Pharmacology, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Peng Zhong
- Laboratory of Veterinary Pharmacology, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kexin Liu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China
| | - Yun Liu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China.
| | - Dong Wang
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, Heilongjiang, China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
7
|
Guan L, Hu A, Ma S, Liu J, Yao X, Ye T, Han M, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum postbiotic protects against Salmonella infection in broilers via modulating NLRP3 inflammasome and gut microbiota. Poult Sci 2024; 103:103483. [PMID: 38354474 PMCID: PMC10875300 DOI: 10.1016/j.psj.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1β, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lβ, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.
Collapse
Affiliation(s)
- Leqi Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xianci Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Meng Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China.
| |
Collapse
|
8
|
Ma W, Zou X, Sun X, Wang W, Liu K, He Y, Liu Y, Wang D. Protective effects of sodium humate on the intestinal barrier damage of Salmonella Typhimurium-challenged broilers. Anim Sci J 2024; 95:e14004. [PMID: 39327865 DOI: 10.1111/asj.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Salmonella Typhimurium (S. Typhimurium) infections can lead to severe intestinal damage and reduce growth performance in broilers. Thus, this study examined the potential mitigating impact of sodium humate (HNa) on intestinal barrier damage resulting from S. Typhimurium infection in broilers. A total of 320 1-day-old Arbor Acres broilers were randomly assigned into 5 treatments with 8 replicates. On d 22-24, broilers in the CON group were challenged with 1 ml of PBS, while broilers in the other groups were challenged with 1 ml of 3 × 109 CFU/ml S. Typhimurium, daily. Dietary administration with 4 g/kg of HNa increased (P < 0.05) the final body weight, jejunal secretory immunoglobulin A (sIgA), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) levels as compared with the MOD group broilers. Furthermore, HNa alleviated intestinal barrier damage by increasing villus height (VH), upregulating protein expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1), inhibiting toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway activation, and decreasing the secretion of inflammatory cytokines (P < 0.05). Collectively, the present study showed that HNa mitigated intestinal barrier damage induced by S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Weiming Ma
- College of Veterinary Medicine, Shandong, P. R. China
| | - Xing Zou
- College of Veterinary Medicine, Shandong, P. R. China
| | - Xinyu Sun
- College of Veterinary Medicine, Shandong, P. R. China
| | - Wenzhe Wang
- College of Veterinary Medicine, Shandong, P. R. China
| | - Kexin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yanjun He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Wang
- College of Veterinary Medicine, Shandong, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
9
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
10
|
Erinle TJ, Boulianne M, Adewole DI. Red osier dogwood extract versus Trimethoprim-sulfadiazine (Part 1). Effects on the growth performance, blood parameters, gut histomorphometry, and Salmonella excretion of broiler chickens orally challenged with Salmonella Enteritidis. Poult Sci 2023; 102:102723. [PMID: 37406598 PMCID: PMC10404697 DOI: 10.1016/j.psj.2023.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023] Open
Abstract
The poultry industry has not been spared from the prevalent incidence of diseases caused by invasive pathogens, especially Salmonella. Due to the pressing need to identify a suitable antibiotic alternative for use in poultry production, this study investigated the efficacy of red osier dogwood (ROD) extract on the growth, blood parameters, gut morphology, and Salmonella excretion in broiler chickens orally challenged with Salmonella Enteritidis (SE). A 4 × 2 factorial experiment was conducted based on 2 main factors, namely dietary treatments, and SE challenge. A total of 404, one-day-old male Ross broiler chicks were randomly assigned to 4 dietary treatments; 1) Negative control (NC), 2) NC + 0.075 ppm of Trimethoprim-sulfadiazine (TMP/SDZ)/kg of diet, 3) NC + 0.3% ROD extract, and 4) NC + 0.5% ROD extract. The absence of SE in the fecal samples obtained from chick delivery boxes was confirmed on d 0. On d 1, half of the birds were orally gavaged with 0.5 mL of phosphate-buffered saline each (noninfected group) and the remaining with 0.5 mL of 3.1 × 105 CFU/mL SE (infected group) in all treatment groups. Dietary treatments were randomly assigned to 8 replicate cages at 6 birds/cage. On 1-, 5-, 12-, and 18-day postinfection (DPI), cloacal fecal samples were collected on the 6 birds/cage to assess SE excretion. Average weight gain (AWG), average feed intake (AFI), feed conversion ratio (FCR), and mortality were determined weekly. On d 21, 10 chickens/treatment were euthanized to perform hematology, gut histomorphometry, serum immunoglobulins G and M (IgG and IgM), and superoxide dismutase measurements. Both ROD extract levels did not affect (P > 0.05) growth performance; however, the SE-infected birds showed increased (P < 0.05) AFI and FCR throughout the experimental period. Regardless of the SE-infection, both ROD extract levels improved (P < 0.05) duodenal villus height: crypt depth compared to other treatments. 0.5% ROD extract improved (P < 0.05) ileal villus width (VW) of noninfected birds and ileal crypt depth of infected birds, but it decreased (P < 0.05) the ileal VW of infected birds, compared to other treatments. The SE-infected birds showed lower (P < 0.05) lymphocytes (L) but increased (P < 0.05) heterophils (H), H:L, and monocytes (MON). Both ROD extract levels did not affect (P > 0.05) white blood cell differential, while dietary 0.3% ROD extract increased (P < 0.05) MON of the birds, regardless of infection model. Regardless of infection model, both TMP/SDZ and 0.5% ROD extract reduced the concentration of IgM in the serum, compared to the control and 0.3% ROD (P = 0.006). Conclusively, both ROD extract levels improved duodenal histomorphology and body defense against SE infection in broiler chickens; however, the 0.3% ROD extract was better.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
11
|
Liu K, Zhen W, Bai D, Tan H, He X, Li Y, Liu Y, Zhang Y, Ito K, Zhang B, Ma Y. Lipopolysaccharide-induced immune stress negatively regulates broiler chicken growth via the COX-2-PGE 2-EP4 signaling pathway. Front Immunol 2023; 14:1193798. [PMID: 37207231 PMCID: PMC10189118 DOI: 10.3389/fimmu.2023.1193798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Aims Immune stress in broiler chickens is characterized by the development of persistent pro-inflammatory responses that contribute to degradation of production performance. However, the underlying mechanisms that cause growth inhibition of broilers with immune stress are not well defined. Methods A total of 252 1-day-old Arbor Acres(AA) broilers were randomly allocated to three groups with six replicates per group and 14 broilers per replicate. The three groups comprised a saline control group, an Lipopolysaccharide (LPS) (immune stress) group, and an LPS and celecoxib group corresponding to an immune stress group treated with a selective COX-2 inhibitor. Birds in LPS group and saline group were intraperitoneally injected with the same amount of LPS or saline from 14d of age for 3 consecutive days. And birds in the LPS and celecoxib group were given a single intraperitoneal injection of celecoxib 15 min prior to LPS injection at 14 d of age. Results The feed intake and body weight gain of broilers were suppressed in response to immune stress induced by LPS which is an intrinsic component of the outer membrane of Gram-negative bacteria. Cyclooxygenase-2 (COX-2), a key enzyme that mediates prostaglandin synthesis, was up-regulated through MAPK-NF-κB pathways in activated microglia cells in broilers exposed to LPS. Subsequently, the binding of prostaglandin E2 (PGE2) to the EP4 receptor maintained the activation of microglia and promoted the secretion of cytokines interleukin-1β and interleukin-8, and chemokines CX3CL1 and CCL4. In addition, the expression of appetite suppressor proopiomelanocortin protein was increased and the levels of growth hormone-releasing hormone were reduced in the hypothalamus. These effects resulted in decreased expression of insulin-like growth factor in the serum of stressed broilers. In contrast, inhibition of COX-2 normalized pro-inflammatory cytokine levels and promoted the expression of Neuropeptide Y and growth hormone-releasing hormone in the hypothalamus which improved the growth performance of stressed broilers. Transcriptomic analysis of the hypothalamus of stressed broilers showed that inhibition of COX-2 activity significantly down-regulated the expression of the TLR1B, IRF7, LY96, MAP3K8, CX3CL1, and CCL4 genes in the MAPK-NF-κB signaling pathway. Conclusion This study provides new evidence that immune stress mediates growth suppression in broilers by activating the COX-2-PGE2-EP4 signaling axis. Moreover, growth inhibition is reversed by inhibiting the activity of COX-2 under stressed conditions. These observations suggest new approaches for promoting the health of broiler chickens reared in intensive conditions.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haiqiu Tan
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xianglong He
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuqian Li
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanhao Liu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Yanbo Ma,
| |
Collapse
|
12
|
Shao Y, Zhen W, Guo F, Hu Z, Zhang K, Kong L, Guo Y, Wang Z. Pretreatment with probiotics Enterococcus faecium NCIMB 11181 attenuated Salmonella Typhimurium-induced gut injury through modulating intestinal microbiome and immune responses with barrier function in broiler chickens. J Anim Sci Biotechnol 2022; 13:130. [PMID: 36221113 PMCID: PMC9555120 DOI: 10.1186/s40104-022-00765-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Preventing Salmonella infection and colonization in young birds is key to improving poultry gut health and reducing Salmonella contamination of poultry products and decreasing salmonellosis for human consumption (poultry meat and eggs). Probiotics can improve poultry health. The present study was conducted to investigate the impact of a probiotics, Enterococcus faecium NCIMB 11181 (E. faecium NCIMB 11181) on the intestinal mucosal immune responses, microbiome and barrier function in the presence or absence of Salmonella Typhimurium (S. Typhimurium, ST) infection. Methods Two hundred and forty 1-day-old Salmonella-free male broiler chickens (Arbor Acres AA+) were randomly allocated to four groups with 6 replicate cages of 10 birds each. The four experimental groups were follows: (1) negative control (NC), (2) S. Typhimurium, challenged positive control (PC), (3) the E. faecium NCIMB 11181-treated group (EF), (4) the E. faecium NCIMB 11181-treated and S. Typhimurium-challenged group (PEF). Results Results indicated that, although continuous feeding E. faecium NCIMB 11181 did not obviously alleviate growth depression caused by S. Typhimurium challenge (P > 0.05), E. faecium NCIMB 11181 addition significantly blocked Salmonella intestinal colonization and translocation (P < 0.05). Moreover, supplemental E. faecium NCIMB 11181 to the infected chickens remarkably attenuated gut morphological structure damage and intestinal cell apoptosis induced by S. Typhimurium infection, as evidenced by increasing gut villous height and reducing intestinal TUNEL-positive cell numbers (P < 0.05). Also, E. faecium NCIMB 11181 administration notably promoting the production of anti-Salmonella antibodies in intestinal mucosa and serum of the infected birds (P < 0.05). Additionally, 16S rRNA sequencing analysis revealed that E. faecium NCIMB 11181 supplementation ameliorated S. Typhimurium infection-induced gut microbial dysbiosis by enriching Lachnospiracease and Alistipes levels, and suppressing Barnesiella abundance. Predicted function analysis indicated that the functional genes of cecal microbiome involved in C5-branched dibasic acid metabolism; valine, leucine and isoleucine biosynthesis; glycerolipid metabolism and lysine biosynthesis were enriched in the infected chickens given E. faecium NCIMB 11181. While alanine, asparate and glutamate metabolism; MAPK signal pathway-yeast; ubiquine and other terpenoid-quinore biosynthesis, protein processing in endoplasmic reticulum; as well as glutathione metabolism were suppressed by E. faecium NCIMB 11181 addition. Conclusion Collectively, our data suggested that dietary E. faecium NCIBM 11181 supplementation could ameliorate S. Typhimurium infection-induced gut injury in broiler chickens. Our findings also suggest that E. faecium NCIMB 11181 may serve as an effective non-antibiotic feed additive for improving gut health and controlling Salmonella infection in broiler chickens.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Province of Henan, Luoyang, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Snyder AM, Riley SP, Robison CI, Karcher DM, Wickware CL, Johnson TA, Weimer SL. Behavior and Immune Response of Conventional and Slow-Growing Broilers to Salmonella Typhimurium. Front Physiol 2022; 13:890848. [PMID: 35586720 PMCID: PMC9108930 DOI: 10.3389/fphys.2022.890848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fast growth rate in broiler chickens comes with welfare concerns and the contribution of growth rate to pathogen resistance and sickness behavior is relatively unknown. The objective of this study was to evaluate physiological and behavioral responses of conventional (CONV) and slow-growing (SG) male broilers challenged with Salmonella Typhimurium. CONV (n = 156) and SG (n = 156) chicks were raised in a pen with wood litter shavings until day 7 of age, when birds were transferred to 24 isolators (n = 11 chicks/isolator). On day 14 of age, half of the birds (n = 12 isolators) were challenged with S. Typhimurium (ST) and the other half (n = 12 isolators) received a control (C). On days 7, 13, 17, 21, and 24, body weight was recorded, and blood, jejunum and ileum sections were collected from 2 birds/isolator (n = 48 birds/sampling) to measure plasma IgA and IgG and intestinal histomorphology, respectively. On days 12, 16, 21, and 23, video was recorded to evaluate bird postures (sitting, standing, or locomoting) and behaviors (eating, drinking, preening, stretching, sham foraging, allopreening, and aggression). CONV birds were 70 g heavier (p = 0.03) on day 21 and 140 g heavier (p = 0.007) on day 24 than SG. On day 7, CONV jejunum villus height and crypt depth were 22 and 7 μm greater (p ≤ 0.001), respectively, than SG. On day 24, ST ileum villus height was 95 μm shorter (p = 0.009) than C. IgA increased after day 17 for all birds and at day 21, CONV IgA was greater (p = 0.01) than SG. Although SG IgG was 344 μg/ml greater (p = 0.05) than CONV on day 7, CONV IgG increased with age (p < 0.0001) to greater (p ≤ 0.03) concentrations than SG on day 21 and day 24 by 689 μg/ml and 1,474 μg/ml, respectively, while SG IgG remained at similar concentrations after day 13. Generally, a greater proportion of birds sham foraged as they aged (p < 0.0001). A greater proportion of CONV tended to sit (p = 0.09) and fewer locomoted (p < 0.0001) than SG as they aged. The results illustrate conventional and slow-growing broilers differ in their behavior, immunity, and response to Salmonella.
Collapse
Affiliation(s)
- Ashlyn M. Snyder
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, MD, United States
- Virginia-Maryland College of Veterinary Medicine, College Park, MD, United States
| | - Cara I. Robison
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Darrin M. Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Carmen L. Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Shawna L. Weimer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Shawna L. Weimer,
| |
Collapse
|
14
|
Zheng A, Zhang A, Chen Z, Pirzado SA, Chang W, Cai H, Bryden WL, Liu G. Molecular mechanisms of growth depression in broiler chickens (Gallus Gallus domesticus) mediated by immune stress: a hepatic proteome study. J Anim Sci Biotechnol 2021; 12:90. [PMID: 34253261 PMCID: PMC8276383 DOI: 10.1186/s40104-021-00591-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). Results Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. Conclusion The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.
Collapse
Affiliation(s)
- Aijuan Zheng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Anrong Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Zhimin Chen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Shoaib Ahmed Pirzado
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Wenhuan Chang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Huiyi Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China.
| |
Collapse
|
15
|
Li X, Liu S, Wang J, Yi J, Yuan Z, Wu J, Wen L, Li R. Effects of ND vaccination combined LPS on growth performance, antioxidant performance and lipid metabolism of broiler. Res Vet Sci 2021; 135:317-323. [PMID: 33097279 DOI: 10.1016/j.rvsc.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Newcastle Disease Virus (NDV) is the important pathogen of Newcastle Disease (ND) attacking chicken, turkey and other birds. Therefore, the purpose of this study was to assess the effects of immune stress induced by ND vaccination and lipopolysaccharide (LPS) on growth performance, antioxidant ability, and lipid metabolism of broilers. In total, 128 one-day-old broilers were randomly assigned to the following four groups and were treated as indicated: normal control (NC); vaccinated with live LaSota ND vaccine (CV); administered ND vaccine and 0.25 mg/kg body weight (BW) LPS (L-LPS); and administered ND vaccine and 0.5 mg/kg BW LPS (H-LPS). The results demonstrated that broiler feed conversion ratio (FCR) was increased in the groups CV, L-LPS and H-LPS from d 0 to 42 days compared with the group NC. The antioxidant function of broilers was decreased as indicated by the malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels in the serum of the treated groups. ND vaccination combined LPS increased the concentration of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), but decreased the concentration of high-density lipoprotein cholesterol (HDLC) compared with the group NC. The reverse transcription (RT)-PCR results revealed that the mRNA expression of acetyl-CoA carboxylase gene (ACC) and 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) in the liver were downregulated, whereas the mRNA expression of carnitine palmitoyltransferase-1 (CPT-1) and peroxisome proliferator-activated receptor (PPAR)-α were upregulated compared with the group NC. These results suggest that ND vaccination combined LPS reduced broiler growth performance and antioxidant ability, whereas it activated AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Shuiping Liu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Jine Yi
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Zhihang Yuan
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Jing Wu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Lixin Wen
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China.
| | - Rongfang Li
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China; Hunan Collaborative Innovation Center of Animal Production Safety, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China.
| |
Collapse
|
16
|
Leyva-Diaz AA, Hernandez-Patlan D, Solis-Cruz B, Adhikari B, Kwon YM, Latorre JD, Hernandez-Velasco X, Fuente-Martinez B, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens. J Anim Sci Biotechnol 2021; 12:23. [PMID: 33541441 PMCID: PMC7863265 DOI: 10.1186/s40104-021-00545-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.
Collapse
Affiliation(s)
- Anaisa A. Leyva-Diaz
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bishnu Adhikari
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Young Min Kwon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Juan D. Latorre
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Benjamin Fuente-Martinez
- Centro de Ensenanza, Investigacion y Extension en Produccion Avicola, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico, Mexico
| | - Billy M. Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| |
Collapse
|
17
|
Rebollada-Merino A, Ugarte-Ruiz M, Hernández M, Miguela-Villoldo P, Abad D, Rodríguez-Lázaro D, de Juan L, Domínguez L, Rodríguez-Bertos A. Reduction of Salmonella Typhimurium Cecal Colonisation and Improvement of Intestinal Health in Broilers Supplemented with Fermented Defatted 'Alperujo', an Olive Oil By-Product. Animals (Basel) 2020; 10:E1931. [PMID: 33096645 PMCID: PMC7589156 DOI: 10.3390/ani10101931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Salmonella spp. contaminates egg and poultry meat leading to foodborne infections in humans. The emergence of antimicrobial-resistant strains has limited the use of antimicrobials. We aimed to determine the effects of the food supplement, fermented defatted 'alperujo' (FDA), a modified olive oil by-product, on Salmonella Typhimurium colonisation in broilers. One hundred and twenty 1-day-old broilers were divided into four experimental groups-two control groups and two treated groups, and challenged with S. Typhimurium at day 7 or 21. On days 7, 14, 21, 28, 35, and 42 of life, duodenum and cecum tissue samples were collected for histopathological and histomorphometric studies. Additionally, cecum content was collected for Salmonella spp. detection by culture and qPCR, and for metagenomic analysis. Our results showed a significant reduction of Salmonella spp. in the cecum of 42-day-old broilers, suggesting that fermented defatted 'alperujo' limits Salmonella Typhimurium colonization in that cecum and may contribute to diminishing the risk of carcass contamination at the time of slaughter. The improvement of the mucosal integrity, observed histologically and morphometrically, may contribute to enhancing intestinal health and to limiting Salmonella spp. colonisation in the host, mitigating production losses. These results could provide evidence that FDA would contribute to prophylactic and therapeutic measures to reduce salmonellosis prevalence in poultry farms.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain; (M.H.); (D.A.); (D.R.-L.)
- Área de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Pedro Miguela-Villoldo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Abad
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain; (M.H.); (D.A.); (D.R.-L.)
| | - David Rodríguez-Lázaro
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain; (M.H.); (D.A.); (D.R.-L.)
- Área de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (A.R.-M.); (P.M.-V.); (L.d.J.); (L.D.); (A.R.-B.)
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Zanu HK, Kheravii SK, Bedford MR, Swick RA. Dietary calcium and meat and bone meal as potential precursors for the onset of necrotic enteritis. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1831419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- H. K. Zanu
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - S. K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | | | - R. A. Swick
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
19
|
Aljumaah MR, Suliman GM, Abdullatif AA, Abudabos AM. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult Sci 2020; 99:5744-5751. [PMID: 33142492 PMCID: PMC7647753 DOI: 10.1016/j.psj.2020.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
Because of concerns over the use of antibiotics in poultry feed, this study was designed to determine the effectiveness of phytobiotic supplementation as an alternative to antibiotic use based on growth performance and meat characteristics of broilers exposed to Salmonella typhimurium. The effects of an antibiotic and 3 phytobiotic feed additives (PFA), Mix-Oil Mint (MOmint), Mix-Oil Liquid (MOliq), and Sangrovit Extra (Sangext), were compared. At day of age, 280 Ross chicks were randomly allocated into 6 treatments. At 15 d, all chicks except negative control were exposed to S. typhimurium. The offered 6 diets were as follows: T1, negative control; T2, infected with S. typhimurium; T3, infected + avilamycin (0.1 g/kg); T4, infected + MOmint (0.2 g/kg); T5, infected + plant extract in liquid form MOliq (0.25 mL/L); and T6, infected + Sangext (0.15 g/kg). During the cumulative starter period, PFA improved performance over that of the control, and the food conversion ratio (FCR) was lower for T3 and T5 compared with T1 (P < 0.05). During the cumulative finisher period (15–35 d), a lower body weight gain (P < 0.01) was observed in T2. T1 had the best FCR and production efficiency factor, but they were not significantly different from those of T3, T4, and T6 (P < 0.001). At 35 d, T1 and T4 had a higher breast percentage as compared with those of T2 (P < 0.05). Blood glucose decreased significantly (P > 0.05) in T2 and T5 compared with that in T1 and T4. Alanine transaminase concentration decreased significantly (P < 0.01) in T4 and T5 compared with that in T1, T2, and T3. Treatments had significant effects on breast temperature and pH (P < 0.001). A significant decrease in the myofibril fragmentation index occurred in T1 and T6. Hardness and chewiness were influenced by treatments (P < 0.05). In conclusion, dietary supplementation with PFA could effectively compare with that of antibiotic avilamycin in the maintenance of growth performance and improvement in meat characteristics of broilers challenged with S. typhimurium.
Collapse
Affiliation(s)
- Mashael R Aljumaah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A Abdullatif
- Department of Animal Production, Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alaeldein M Abudabos
- Department of Animal Production, Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
20
|
Aljumaah MR, Alkhulaifi MM, Abudabos AM, Alabdullatifb A, El-Mubarak AH, Al Suliman AR, Stanley D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella enterica serovar Typhimurium challenged broilers. PLoS One 2020; 15:e0232831. [PMID: 32497096 PMCID: PMC7272039 DOI: 10.1371/journal.pone.0232831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.
Collapse
Affiliation(s)
- Mashael R Aljumaah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alabdullatifb
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aarif H El-Mubarak
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Gezira, Medani, Sudan
| | - Ali R Al Suliman
- King Abulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
21
|
Zhang H, Pan S, Zhang K, Michiels J, Zeng Q, Ding X, Wang J, Peng H, Bai J, Xuan Y, Su Z, Bai S. Impact of Dietary Manganese on Intestinal Barrier and Inflammatory Response in Broilers Challenged with Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8050757. [PMID: 32443502 PMCID: PMC7285304 DOI: 10.3390/microorganisms8050757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
Growing concern for public health and food safety has prompted a special interest in developing nutritional strategies for removing waterborne and foodborne pathogens, including Salmonella. Strong links between manganese (Mn) and intestinal barrier or immune function hint that dietary Mn supplementation is likely to be a promising approach to limit the loads of pathogens in broilers. Here, we provide evidence that Salmonella Typhimurium (S. Typhimurium, 4 × 108 CFUs) challenge-induced intestinal injury along with systemic Mn redistribution in broilers. Further examining of the effect of dietary Mn treatments (a basal diet plus additional 0, 40, or 100 mg Mn/kg for corresponding to Mn-deficient, control, or Mn-surfeit diet, respectively) on intestinal barrier and inflammation status of broilers infected with S. Typhimurium revealed that birds fed the control and Mn-surfeit diets exhibited improved intestinal tight junctions and microbiota composition. Even without Salmonella infection, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In addition, when fed the control and Mn-surfeit diets, birds showed decreased Salmonella burdens in cecal content and spleen, with a concomitant increase in inflammatory cytokine levels in spleen. Furthermore, the dietary Mn-supplementation-mediated induction of cytokine production was probably associated with the nuclear factor kappa-B (NF-κB)/hydrogen peroxide (H2O2) pathway, as judged by the enhanced manganese superoxide dismutase activity and the increased H2O2 level in mitochondria, together with the increased mRNA level of NF-κB in spleen. Ingenuity-pathway analysis indicated that acute-phase response pathways, T helper type 1 pathway, and dendritic cell maturation were significantly activated by the dietary Mn supplementation. Our data suggest that dietary Mn supplementation could enhance intestinal barrier and splenic inflammatory response to fight against Salmonella infection in broilers.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Shuqin Pan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium;
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Jie Bai
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Zhuowei Su
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
- Correspondence: ; Tel.: +86-028-86290922
| |
Collapse
|
22
|
Wu YT, Yang WY, Samuel Wu YH, Chen JW, Chen YC. Modulations of growth performance, gut microbiota, and inflammatory cytokines by trehalose on Salmonella Typhimurium-challenged broilers. Poult Sci 2020; 99:4034-4043. [PMID: 32731991 PMCID: PMC7597916 DOI: 10.1016/j.psj.2020.03.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Salmonellosis in broilers is not merely a significant disease with high economic costs in the poultry industry but also the foodborne disease with the impact on public health by cross-contamination. This study was to investigate the prebiotic ability of trehalose supplementing in diets (0, 1, 3, and 5%, w/w) against Salmonella by using S. Typhimurium (ST)-inoculated broilers. The improvements (P < 0.05) of feed conversion ratio (FCR) were observed with 5% trehalose supplementation in ST-inoculated broilers' diets. An addition of 3 or 5% trehalose in diets increased (P < 0.05) the abundance of lactobacilli in the duodenum and jejunum but decreased (P < 0.05) the growth of ST in the cecum. The adverse effects on serum levels of aspartate aminotransferase, triglyceride, and albumin and globulin ratio in ST-inoculated broilers were noticed and counteracted by supplementing 3 or 5% trehalose in diets (P < 0.05). Besides, the inclusion of trehalose in diets alleviated the intestinal damages and maintained the integrity of cecal epithelial cells after ST challenge under an haematoxylin and eosin-staining observation. Supplementing trehalose further showed the inhibitions of toll-like receptor 4-mediated nuclear factor-kappa-B pathway, including the downregulation (P < 0.05) of proinflammatory cytokine genes, such as interleukin 1 beta and lipopolysaccharide-induced tumor necrosis factor-alpha factor and the upregulation (P < 0.05) of interleukin 10 and interferon-alpha in ST-inoculated broilers. Overall, supplementing trehalose alleviated the adverse effects from ST challenge on FCR, serum biochemistry, the damage, and inflammation in the liver and cecum. Those improvements on ST challenged broilers also contributed to the overgrowth of lactobacilli, the decrement of ST, and anti-inflammatory effects in affected broilers. Trehalose, therefore, could be a promising prebiotic against salmonellosis to benefit broiler production and promote food safety in the poultry industry.
Collapse
Affiliation(s)
- Yi-Tei Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei City 100, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
23
|
Zhou C, Liang J, Jiang W, He X, Liu S, Wei P. The effect of a selected yeast fraction on the prevention of pullorum disease and fowl typhoid in commercial breeder chickens. Poult Sci 2020; 99:101-110. [PMID: 32416790 PMCID: PMC7587735 DOI: 10.3382/ps/pez567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022] Open
Abstract
A selected yeast fraction (SYF) was tested for the purpose of preventing pullorum disease and fowl typhoid in breeder chickens. In a challenge-protection experiment, commercial Three-Yellow breeder chicks were initially divided into groups A, B (challenged, treated), C (challenged, untreated), and D (unchallenged, untreated). The group A diet was supplemented with SYF and group B was supplemented with Acidipure via drinking water. At 7 D, birds of groups A, B, and C were divided into 2 equal subgroups (A1-A2, B1-B2, and C1-C2). Subgroups A1, B1, and C1 were challenged with Salmonella pullorum (SP), while subgroups A2, B2, and C2 were challenged with Salmonella gallinarum (SG). Clinical signs and mortality were recorded daily. At intervals, antibodies against SP and SG were detected by a plate agglutinate test (PAT). At 42 D, all birds were weighed and necropsied, lesions were recorded and challenge pathogens were isolated. Results showed that SP and SG isolation positive rates of groups A1-A2 were significantly lower (P < 0.05) than those of B1-B2 and C1-C2, respectively. The average body weight (BW) of groups A1-A2 was significantly higher (P < 0.05) than that of B1-B2 and C1-C2, respectively. In the field trial, chicks were randomly divided into 3 groups. Group 1 birds were fed a diet supplemented with SYF, group 2 diet was supplemented with Acidipure via drinking water, and group 3 was fed the same but un-supplemented diet as the control group. Antibodies against SP and SG were detected by PAT at 120 D. The antibodies positive rate of group 1 was significantly lower (P < 0.05) than those of groups 2 and 3, while no significant difference (P > 0.05) was found between groups 2 and 3. The results demonstrated that SYF supplementation could significantly decrease SP and SG infection rates, improve the BW of birds challenged with SP and SG, and was more effective than Acidipure via drinking water.
Collapse
Affiliation(s)
- Chenyu Zhou
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, China
| | - Jingzhen Liang
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, China
| | - Weiwei Jiang
- Guangxi Hongguang Agricultural and Animal Husbandry Ltd, Rongxian 537500, Guangxi, China
| | - Xushao He
- Guangxi Hongguang Agricultural and Animal Husbandry Ltd, Rongxian 537500, Guangxi, China
| | - Shuhong Liu
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
24
|
Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob Proteins 2019; 12:896-905. [DOI: 10.1007/s12602-019-09593-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Khan S, Chousalkar KK. Short-term feeding of probiotics and synbiotics modulates caecal microbiota during Salmonella Typhimurium infection but does not reduce shedding and invasion in chickens. Appl Microbiol Biotechnol 2019; 104:319-334. [PMID: 31758235 DOI: 10.1007/s00253-019-10220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Positive modulation of gut microbiota in laying chickens may offer a strategy for reduction of Salmonella Typhimurium shedding and production of safer poultry products. In the current study, the caecal luminal microbiota of laying chicks was studied using 16S rRNA amplicon sequencing on DNA obtained from the chicks that were offered supplementation with commercial probiotics, synbiotics and/or Salmonella Typhimurium challenge. The load of Salmonella Typhimurium in various organs was quantified. Irrespective of the probiotics and synbiotics supplementation and Salmonella Typhimurium challenge, caecal microbiota was dominated by 22 distinct bacterial genera and 14 families that clustered into Actinobacteria, Proteobacteria and Firmicutes at phylum level. Taken together, probiotics and synbiotics supplementation increased (false discovery rate; FDR < 0.05) the abundance of Ruminococcus, Trabulsiella, Bifidobacterium, Holdemania and Oscillospira, indicating their role in maintaining gut health through lowering luminal pH and digestion of complex polysaccharides. Salmonella Typhimurium challenge decreased the abundance of Trabulsiella, Oscillospira, Holdemania, Coprococcus, Bifidobacterium and Lactobacillus and increased Klebsiella and Escherichia, indicating its role in caecal dysbiosis. Although probiotics and synbiotics supplementation positively modulated the caecal microbiota, they were not effective in significantly (P > 0.05) reducing Salmonella Typhimurium load in caecal tissue and invasion into vital organs such as liver and spleen. The early colonisation of laying chick caeca by probiotics and synbiotics had the potential to positively influence luminal microbiota; however, the microbial abundance and diversity were not sufficient to significantly reduce the shedding of Salmonella Typhimurium in faeces or invasion into internal organs during this study.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
26
|
A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Nakphaichit M, Sobanbua S, Siemuang S, Vongsangnak W, Nakayama J, Nitisinprasert S. Protective effect of Lactobacillus reuteri KUB-AC5 against Salmonella Enteritidis challenge in chickens. Benef Microbes 2018; 10:43-54. [PMID: 30406695 DOI: 10.3920/bm2018.0034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Poultry is an important high-quality food and protein source for humans. However, chicken is considered a primary source of foodborne diseases, especially Salmonella Enteritidis infection. Reducing Salmonella contamination in live poultry will thus lower the risk to consumers. Our previous studies reported that Lactobacillus reuteri KUB-AC5 can produce a substance with antimicrobial activity against pathogenic bacteria, especially Salmonella. In vivo testing revealed that this strain greatly influenced the ileal microbiota by improving chicken gastrointestinal health and inhibiting certain pathogenic bacteria. However, its activity against Salmonella in chicken is unknown. This study investigated the effects of the probiotic L. reuteri KUB-AC5 at various concentrations against Salmonella and the microbiota status in the gastrointestinal tract of broiler chickens. Four treatments groups were used: negative-control group (no Salmonella challenge), positive-control group (Salmonella challenge), and 5 or 7 log cfu probiotic supplementation to Salmonella-challenged chickens. The resultant microbial diversities at the growing and finisher stages were not significantly different among the groups (P>0.05). However, a high dosage of KUB-AC5 maintained similar microbial diversity in Salmonella-challenged chickens as observed in the non-challenged group in the early stage. The exposure Salmonella can affect the microbial diversity that consequently contributes to the disease progression in chicken. Low and high dosages of KUB-AC5 eliminated S. Enteritidis from the ileum and caecum at 14, 21 and 35 days of age. A high-dose of KUB-AC5 also enhanced Lactobacillaceae levels in the growing stage in both the ileum and caecum and suppressed Enterobacteriaceae levels in the finisher stage on day 35, whereas these effects were not observed in the low dose of KUB-AC5 or control groups. These results support the potential value of high-dose L. reuteri KUB-AC5 supplementation for three days after hatching in preventing Salmonella infection in chickens.
Collapse
Affiliation(s)
- M Nakphaichit
- 1 Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - S Sobanbua
- 1 Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - S Siemuang
- 2 Research and development center, Betagro group, 136 Moo 9, Klong Nueng, Klong Luang Pathumthani 12120, Thailand
| | - W Vongsangnak
- 3 Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,4 Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - J Nakayama
- 5 Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - S Nitisinprasert
- 1 Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
28
|
Jazi V, Foroozandeh AD, Toghyani M, Dastar B, Rezaie Koochaksaraie R, Toghyani M. Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poult Sci 2018. [PMID: 29514269 DOI: 10.3382/ps/pey035] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study compared the efficacy of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid, and their combination on growth performance and intestinal health in broiler chickens challenged with S. Typhimurium. Ross 308 male broilers (n = 420) were randomly assigned to one of the 6 treatments, resulting in 5 replicate pens of 14 chicks per treatment. The treatments included a negative control [(NC), no additive, not challenged]; positive control [(PC), no additive, but challenged with S. Typhimurium at d 3 posthatch], and 4 groups whereby birds were challenged with S. Typhimurium at d 3 posthatch and fed diets supplemented with either probiotic [0.1 g/kg Pediococcus acidilactici (PA)], prebiotic [2 g/kg mannan-oligosaccharides (MOS)], organic acid [0.5 g/kg butyric acid (BA)], or a combination of the 3 additives (MA). The S. Typhimurium challenge decreased feed intake, body weight gain and increased feed conversion ratio and reduced jejunum villus height (VH) and VH to crypt depth (CD) ratio (P < 0.05). Birds on the MA treatment exhibited similar performance to birds on the NC treatment (P > 0.05) and had a lower population of Salmonella in the ceca compared with birds on the PC treatment, at d 14 and 21 post-challenge (P < 0.05). The lowest heterophil to lymphocyte ratio was observed in birds on the MA and NC treatments (P < 0.05). Birds fed diets supplemented with MA or PA had greater VH and VH: CD ratio than birds on the PC treatment at d 7, 14 and 21 d post-challenge (P < 0.05). Suppressed amylase and protease activity was observed as a result of the S. Typhimurium challenge; the enzyme levels were restored in birds fed the additive-supplemented diets, when compared to the birds on the PC treatment, particularly at d 21 post-challenge (P < 0.05). These results indicate that dietary supplementation with a combination of PA, BA, and MOS in broiler chickens could be used as an effective tool for controlling S. Typhimurium and promoting growth performance.
Collapse
Affiliation(s)
- V Jazi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - A D Foroozandeh
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - M Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - B Dastar
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Rezaie Koochaksaraie
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - M Toghyani
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
29
|
Cooper C, Moore SC, Moore RJ, Chandry PS, Fegan N. Salmonella enterica subsp. salamae serovar Sofia, a prevalent serovar in Australian broiler chickens, is also capable of transient colonisation in layers. Br Poult Sci 2018; 59:270-277. [PMID: 29493264 DOI: 10.1080/00071668.2018.1447083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Salmonella enterica subsp. salamae serovar sofia (S. sofia) is a prevalent strain of Salmonella in Australian broilers and has been isolated from broiler chickens, litter, dust, as well as pre- and post-processing carcasses, and retail chicken portions but has never been reported in commercial Australian layers or eggs. 2. To investigate whether a S. sofia isolate from a broiler could colonise layers, one-month-old Hyline brown layers were orally inoculated with S. sofia and colonisation was monitored for 2-4 weeks. 3. Overall, 30-40% of the chickens shed S. sofia from the cloaca between 6 and 14 d post-inoculation which then declined to 10% by d 21. Necropsy at 2 weeks post-inoculation revealed 80% of birds harboured S. sofia in the caecum, whilst, by 4 weeks post-infection, no chickens were colonised with S. sofia in the gastrointestinal tract, liver or spleen. Additionally, no aerosol 'bird to bird' transfer was evident. 4. This study demonstrated that laying hens can be colonised by broiler-derived S. sofia; however, this colonisation was transient, reaching a peak at 14 d post-inoculation, and was completely cleared by 28 d post-inoculation. The transience of colonisation of S. sofia in layers could be a factor explaining why S. sofia has never been detected when screening for Salmonella serotypes found in Australian laying hens or eggs.
Collapse
Affiliation(s)
| | - Sean C Moore
- b CSIRO Agriculture & Food , Werribee , Australia
| | - Robert J Moore
- c School of Science , RMIT University , Bundoora , Australia
| | | | | |
Collapse
|
30
|
Effect of Dietary Bacillus Subtilis C14 and RX7 Strains on Growth Performance, Blood Parameter, and Intestinal Microbiota in Broiler Chickens Challenged with Salmonella Gallinarum. J Poult Sci 2017; 54:236-241. [PMID: 32908431 PMCID: PMC7477215 DOI: 10.2141/jpsa.0160078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Sixty broilers (initially 1.6 kg and 35 d-old) were used to determine the effect of Bacillus subtilis C14 and RX7 strains on growth performance, blood parameter, and intestinal microbiota in response to experimental challenge with Salmonell gallinarum. Broilers were distributed to 4 treatment groups include: C1 (control group; no challenge, no B. subtilis), C2 (Salmonella-challenged group; S. gallinarum 108 cfu/bird), T1 (C2+supplemented with of B. subtilis C14 (1.0×109 cfu/g) at 0.1% in diet) and T2 (C2+supplemented with of B. subtilis RX7 (1.0×109 cfu/g) at 0.1% in diet). Results indicated that inclusion of B. subtilis (T1, T2) in the diet increased (P<0.05) the weight gain and feed intake, and improved feed conversion of challenged broilers compared with no B. subtilis supplementation diet (C2). Improvements (P<0.05) in the immunoglobulin A concentration were observed by the addition of B. subtilis compared with C2 treatment, whereas tumor necrosis factor-α was decreased (P<0.05). Latobacillus number in small and large intestines was higher (P<0.05) by B. subtilis additon than C2 treatment but Salmonella numbers were lower (P<0.05). The results suggested that dietary supplementation of B. subtilis C14 and RX7 improved the growth performance, and affected the blood profiles and intestinal microbiota of broilers against S. gallinarum infection. Therefore, B. subtilis C14 and RX7 may have beneficial effects, in relieving the stress of broilers infected with S. gallinarum.
Collapse
|
31
|
Rajani J, Dastar B, Samadi F, Karimi Torshizi MA, Abdulkhani A, Esfandyarpour S. Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Br Poult Sci 2016; 57:682-692. [PMID: 27419477 DOI: 10.1080/00071668.2016.1200013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An in vitro and in vivo study was conducted to evaluate the fermentability of isolated galactoglucomannan oligosaccharides (GGMs) and the influence of their feeding on shedding and colonisation of Salmonella typhimurium, growth performance and intestinal morphology in broiler chicks. The in vitro data demonstrated that three probiotic lactic acid bacteria namely Lactobacillus casei, L. plantarum and Enterococcus faecium were able to ferment the extracted oligosaccharides and other tested sugars on a basal de Man Rogosa Sharpe media free from carbohydrate. For the in vivo experiment, 144 one-d-old male Ross 308 broiler chicks were divided into 6 experimental treatments (with 4 replicates) including two positive and negative controls which received a basal maize-soybean diet without any additives, supplementation of three levels of isolated GGMs (0.1%, 0.2% and 0.3%) and a commercial mannanoligosaccharide (MOS) at 0.2% to the basal diet. All birds except those in the negative control group were challenged orally with 1 × 108 cfu of S. typhimurium at 3-d post-hatch. The results revealed that challenge with S. typhimurium resulted in a significant reduction in body weight gain, feed intake, villus height, villus height to crypt depth ratio and villus surface area in all of infected chicks. Birds that were given GGMs or MOS showed better growth performance, increased villus height and villus surface area and decreased S. typhimurium colonisation than the positive control birds. GGM at 0.2% level was more effective than the other treatments in improving growth rate as well as gut health of broiler chicks.
Collapse
Affiliation(s)
- J Rajani
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - B Dastar
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - F Samadi
- b Department of Animal and Poultry Physiology, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - M A Karimi Torshizi
- c Department of Poultry Science, Faculty of Agriculture , Tarbiat Modares University , Tehran , Iran
| | - A Abdulkhani
- d Department of Wood and Paper Science and Technology, College of Agriculture and Natural Resources , University of Tehran , Karaj , Iran
| | - S Esfandyarpour
- a Department of Animal and Poultry Nutrition, Faculty of Animal Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| |
Collapse
|
32
|
Al-Owaimer AN, Suliman GM, Alyemni AH, Abudabos AM. Effect of Different Probiotics on Breast Quality Characteristics of Broilers UnderSalmonellaChallenge. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Shao Y, Wang Z, Tian X, Guo Y, Zhang H. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. Int J Biol Macromol 2016; 85:573-84. [PMID: 26794312 DOI: 10.1016/j.ijbiomac.2016.01.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate the effects of yeast β-d-glucans (YG) on gene expression of endogenous β-defensins (AvBDs), cathelicidins (Cath) and liver-expressed antimicrobial peptide-2 (LEAP-2) in broilers challenged with Salmonella enteritidis (SE). 240 day-old Cobb male broilers were randomly assigned to 2×2 factorial arrangements of treatments with two levels of dietary YG (0 or 200mg/kg in diet) and two levels of SE challenge (0 or 1×10(9) SE at 7-9 days of age). The results showed SE infection reduced growth performance,and increased salmonella cecal colonization and internal organs invasion, increased concentration of intestinal specific IgA and serum specific IgG antibody, as compared to uninfected birds. SE challenge differentially regulated AvBDs, Caths and LEAP-2 gene expression in the jejunum and spleen of broiler chickens during the infection period. However, YG supplementation inhibited the growth depression by SE challenge, and further increased level of serum specific IgG and intestinal specific IgA antibody. Higher level of salmonella colonization and internal organs invasion in the SE-infected birds were reduced by YG. SE-induced differentially expression patterns of AMPs genes was inhibited or changed by YG. Results indicated YG enhance chicken's resistance to salmonella infection.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Xiangyu Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haibo Zhang
- Angel Yeast Co., Ltd., Yichang City, Hubei, China
| |
Collapse
|
34
|
Donato TC, Baptista AAS, Garcia KCOD, Smaniotto BD, Okamoto AS, Sequeira JL, Andreatti Filho RL. Effects of 5-hydroxytryptophan and m-hydroxybenzylhydrazine associated to Lactobacillus spp. on the humoral response of broilers challenged with Salmonella Enteritidis. Poult Sci 2015. [PMID: 26195810 DOI: 10.3382/ps/pev206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study investigates the effects of different doses of serotonin, its precursor 5-hydroxytry-ptophan (5HTP), and m-hydroxybenzylhydrazine inhibitor (NSD1015), administered via intraperitoneal for 5 consecutive days, on behavior and average body weight of broilers. We also measured the humoral immune response and quantification of Salmonella Enteritidis in broilers chickens that received the drugs evaluated and a Lactobacillus pool. The study was divided into 3 experiments: Experiment 1--administration of pharmaceuticals with choice of dosage; Experiment 2--administration of pharmaceuticals and a Lactobacillus pool in birds that were not challenged with S. Enteritidis, and Experiment 3--administration of pharmaceuticals and a Lactobacillus pool in birds challenged with S. Enteritidis. The ELISA was used to scan dosages of intestinal IgA and serum IgY. We used colony-forming units to quantify S. Enteritidis. The concentrations of IgA and IgY did not show significant differences (P>0.05) in Experiment 2. In Experiment 3, NSD1015 associated with Lactobacillus determined higher IgA concentrations, promoting greater stimulus to the immune system than 5HTP. Regarding quantification of S. Enteritidis in the cecal content of birds, 5HTP associated to Lactobacillus determined the smallest number of bacteria, showing possible interaction of 5-hydroxytryptophan and Lactobacillus spp. with the immune system of broiler chickens.
Collapse
Affiliation(s)
- T C Donato
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - A A S Baptista
- Londrina State University (UEL), Department of Preventive Veterinary Medicine, Laboratory of Avian Medicine, Londrina, PR, Brazil
| | - K C O D Garcia
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - B D Smaniotto
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - A S Okamoto
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - J L Sequeira
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - R L Andreatti Filho
- Sao Paulo State University (UNESP), College of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
35
|
Machado P, Beirão B, Filho TF, Lourenço M, Joineau M, Santin E, Caron L. Use of blends of organic acids and oregano extracts in feed and water of broiler chickens to controlSalmonella Enteritidis persistence in the crop and ceca of experimentally infected birds. J APPL POULTRY RES 2014. [DOI: 10.3382/japr.2014-00979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J Microbiol 2014; 52:1002-11. [DOI: 10.1007/s12275-014-4347-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/24/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
37
|
Park JH, Kim IH. The effects of the supplementation of Bacillus subtilis RX7 and B2A strains on the performance, blood profiles, intestinal Salmonella concentration, noxious gas emission, organ weight and breast meat quality of broiler challenged with Salmonella typhimurium. J Anim Physiol Anim Nutr (Berl) 2014; 99:326-34. [PMID: 25244020 DOI: 10.1111/jpn.12248] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/16/2014] [Indexed: 11/28/2022]
Abstract
An experiment was conducted to evaluate the effects of B. subtilis RX7 and B. subtilis B2A on growth performance, blood profiles, intestinal Salmonella population, noxious gas emission, organ weight and breast meat quality of broilers under S. typhimurium challenge. A total of 120, one-day-old Ross 308 male broiler chicks were assigned to four dietary treatments, composed of six replications, with five birds per replication, for 10 day. The dietary treatment groups were negative control (NC; no antibiotic, no B. subtilis), positive control (PC; NC + 0.1% virginiamycin), B. subtilis RX7 (NC + 0.1% B. subtilis RX7 1.0 × 10(9) cfu/g) and B. subtilis B2A (NC + 0.1% B. subtilis 1.0 × 10(9) cfu/g). All birds were orally challenged with 2 ml suspension, containing 10(4) cfu/ml of S. typhimurium KCCM 40253. Results indicated that the body weight gain, feed intake and feed conversion did not differ, among all comparative treatments. Serum haptoglobin concentration was lower in Bacillus treatments (RX7 + B2A) than the NC treatment (p < 0.05). Intestinal and excreta Salmonella number, and excreta ammonia gas emission in the PC treatment or Bacillus treatments, was lower than the NC treatment (p < 0.05). Breast pH, colour and water-holding capacity were not affected by supplementation of B. subtilis RX7 and B2A. However, drip loss at 1 day post-slaughter from birds fed with B. subtilis RX7 and B2A decreased, compared with the positive control birds (p < 0.05). Relative gizzard weights of birds fed B. subtilis RX7 and B2A were significantly higher than the NC birds under S. typhimurium challenge. It is concluded from the results that B. subtilis RX7 and B2A increased the gizzard weight and decreased the intestinal and excreta Salmonella population and excreta ammonia gas, and drip loss of breast meat after being stored for 1 day, under stress caused by the S. typhimurium challenge.
Collapse
Affiliation(s)
- J H Park
- Department of Animal Resource and Science, Dankook University, Cheonan, Korea
| | | |
Collapse
|
38
|
Si W, Yu S, Chen L, Wang X, Zhang W, Liu S, Li G. Passive protection against Salmonella enterica serovar Enteritidis infection from maternally derived antibodies of hens vaccinated with a ghost vaccine. Res Vet Sci 2014; 97:191-3. [PMID: 25200368 DOI: 10.1016/j.rvsc.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
Abstract
This study evaluated maternal immunity against Salmonella enterica serovar Enteritidis acquired through the egg yolk. Two-hundred 19-week-old specific pathogen free (SPF) broiler breeders which were randomly divided into two groups of equal size were injected with S. Enteritidis ghosts (5 × 10(9) colony forming units in 0.1 ml per hen) and phosphate-buffered saline (PBS, 0.01 mol ⋅ l(-1), pH 7.4) twice, respectively, with an interval of 2 weeks. An indirect enzyme-linked immunosorbent assay (ELISA) was applied to detect specific antibodies against S. Enteritidis. S. Enteritidis-specific antibody levels in the vaccinated group increased over time and were significantly higher than those of the control group on days 28 (P < 0.001) and 35 (P < 0.001) post-vaccination. Ten 7-day-old chicks from hens that were vaccinated with a S. Enteritidis ghost vaccine were challenged at 14 days of age with 5 × 10(9) CFU of S. Enteritidis DH091 (homologous to the vaccine strain), 8/10 (80%) chicks from vaccinated hens survived, whereas 3/10 (30%) chicks from unvaccinated hens survived. The chicks acquired high levels of serum antibodies against S. Enteritidis. These results reveal that maternal antibodies in chicks acquired from vaccinated hens through eggs can confer a significant protection against S. Enteritidis infection.
Collapse
Affiliation(s)
- Wei Si
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shenye Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiumei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
39
|
Remus A, Hauschild L, Andretta I, Kipper M, Lehnen C, Sakomura N. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult Sci 2014; 93:1149-58. [DOI: 10.3382/ps.2013-03540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Shao Y, Guo Y, Wang Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult Sci 2013; 92:1764-73. [PMID: 23776263 DOI: 10.3382/ps.2013-03029] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at 14 dpi in the jejunum of the Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.
Collapse
Affiliation(s)
- Yujing Shao
- College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | | | | |
Collapse
|
41
|
Faber T, Dilger R, Iakiviak M, Hopkins A, Price N, Fahey G. Ingestion of a novel galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex affected growth performance and fermentative and immunological characteristics of broiler chicks challenged with Salmonella typhimurium. Poult Sci 2012; 91:2241-54. [DOI: 10.3382/ps.2012-02189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Wang L, Zhang T, Wen C, Jiang Z, Wang T, Zhou Y. Protective effects of zinc-bearing clinoptilolite on broilers challenged withSalmonella pullorum. Poult Sci 2012; 91:1838-45. [DOI: 10.3382/ps.2012-02284] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Amerah AM, Mathis G, Hofacre CL. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult Sci 2012; 91:943-7. [PMID: 22399734 DOI: 10.3382/ps.2011-01922] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present experiment examined the influence of xylanase supplementation and a blend of essential oils (EO; cinnamaldehyde and thymol) on performance and Salmonella horizontal transmission in broiler chickens challenged with Salmonella. Two thousand 1-d-old broiler chicks were randomly assigned to 5 dietary treatments (8 pens/treatment of 50 male broilers each). Four dietary treatments were challenged with Salmonella: 1) control, 2) basal diets supplemented with EO, 3) basal diet supplemented with xylanase (2,000 U/kg of feed), and 4) basal diet supplemented with a combination of EO and xylanase (2,000 U/kg of feed). One treatment served as an unchallenged control and was not supplemented with either additive. Broiler starter and finisher diets, based on wheat and soybean meal, were formulated, pelleted, and fed ad libitum. At d 1, before placement, half of the birds from each pen were tagged and dosed with Salmonella enterica serovar Heidelberg (5 × 10(5) cfu/mL). On d 42, 5 random untagged birds from each pen were killed and their ceca removed and tested for Salmonella. Performance data were analyzed as a completely randomized design using GLM. The frequency of positive Salmonella in the untagged birds was compared between treatments by using a chi-squared test of homogeneity. Challenging the birds with Salmonella had no effect (P > 0.05) on any of the measured performance parameters. Xylanase and EO supplementation improved (P < 0.05) the 42-d BW gain and feed efficiency, with no effect (P > 0.05) on feed intake, compared with that of the control treatment. Xylanase supplementation improved (P < 0.05) BW gain and feed efficiency compared with the results of EO supplementation. The combination treatment of xylanase and EO numerically improved BW gain and feed efficiency compared with the xylanase treatment. Xylanase and EO supplementation reduced (P < 0.05) the incidence of horizontal transmission of Salmonella infection between birds by 61 and 77%, respectively, compared with the control. The results of the current study suggested that dietary addition of EO and xylanase could improve broiler performance and contribute to food safety by lowering the incidence of horizontal transmission of Salmonella infection.
Collapse
Affiliation(s)
- A M Amerah
- Danisco Animal Nutrition, Marlborough, SN8 1XN UK.
| | | | | |
Collapse
|
44
|
Yang X, Li W, Feng Y, Yao J. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poult Sci 2011; 90:2740-6. [DOI: 10.3382/ps.2011-01591] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|