1
|
Liu J, Gu H, Jia R, Li S, Chen Z, Zheng A, Chang W, Liu G. Effects of Lactobacillus acidophilus on production performance and immunity of broiler chickens and their mechanism. Front Vet Sci 2025; 12:1554502. [PMID: 40196813 PMCID: PMC11974341 DOI: 10.3389/fvets.2025.1554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Lactobacillus species have attracted more and more attention as a potential antibiotic substitute for human health and animal production due to their remarkable antibacterial effects. However, the underlying mechanism is unclear. This experiment's goal was to investigate the impacts of lactic acid bacteria (LAB) on the growth performance, carcass characteristics, immune function of broiler chickens and their mechanism. Methods One hundred and eighty 1-day-old AA broilers were used and randomly allocated into 3 treatment groups with 6 replicates of 10 chickens per replicate. The 3 treatment groups were control group (CK), L. acidophilus added group (LAB-E, 1.0 × 108 CFU/kg) for the first 7 days; L. acidophilus added group (LAB-A, 1.0 × 108 CFU/kg) for the whole experimental period. Broilers had free access to water and feed. Results The results showed that addition of L. acidophilus for the whole experimental period significantly decreased ADFI, FCR and the abdominal fat percentage of broilers (p < 0.05), tended to increase the levels of IgG in broiler serum (p = 0.093). The LAB-A group had higher HDL-C content and IL-2, IL-4 content, and lower level of LPS in broiler serum compared to the controls (p < 0.05). Discussion In conclusion, L. acidophilus improved feed efficiency and immune function of broilers by controlling nutrient metabolism and inflammation responses of broilers. L. acidophilus can be used as a potential substitute for antibiotics in broiler production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Hou L, Qiu H, Dong J, Liu H, Gao S, Chen F. Lactiplantibacillus plantarum ameliorated the negative effects of a low-protein diet on growth performance, antioxidant capacity, immune status, and gut microbiota of laying chicks. Front Microbiol 2025; 16:1507752. [PMID: 39973937 PMCID: PMC11835938 DOI: 10.3389/fmicb.2025.1507752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
This experiment was conducted to investigate the effects of adding Lactiplantibacillus plantarum to a low-protein diet on the growth performance, ability immune status, and intestinal microbiota of 0-21-day-old layer chickens. A total of 180 one-day-old healthy Hy-line brown laying chicks were randomly divided into three groups with three replicates each of 20 chicks. The control group was fed a basal diet containing 19% protein, the low-protein (LP) group was fed a diet containing 17% protein, and the probiotic (LPL) group was fed with the 17% protein diet supplemented with L. plantarum (1.0 × 109 CFU/kg). The growth performance, antioxidant capacity, immune status, and gut microbiota of laying chickens were detected. We found that L. plantarum supplementation increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and levels of immunoglobulin (Ig) A, IgG, and interleukin-10 (IL-10) in serum of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 19% protein group (control). Furthermore, L. plantarum supplementation increased the liver index, GSH-Px and T-AOC activity in serum, and changed the microflora structure, diversity, and polyketose unit bioanabolic metabolism of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 17% protein group (LP). In conclusion, L. plantarum supplementation could compensate for the adverse effects of low-protein diets in chicks, and the combination of a low-protein diet and L. plantarum is a feasible way to reduce protein in the diet.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiling Qiu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shansong Gao
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
4
|
Wang Y, Zhang J, Wang X, Wang R, Zhang H, Zhang R, Bao J. The inflammatory immunity and gut microbiota are associated with fear response differences in laying hens. Poult Sci 2024; 103:103816. [PMID: 38718537 PMCID: PMC11097073 DOI: 10.1016/j.psj.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
The fear response is a crucial adaptive mechanism for coping with environmental changes, and the individuals have different levels of fearfulness. The purpose of this study was to determine the status of the immune response and gut health in hens with different fear responses. A total of 80 healthy 75-wk-old native Lindian chickens were individually housed in conventional cages and categorized into high (TH) and low (TL) levels of fearfulness using the tonic immobility (TI) test. The immunological status and intestinal health of the laying hens were assessed, and the intestinal microbial community was sequenced using 16S rRNA testing. The results showed that the immune-related genes of interleukin (IL)-1β, IL-4, IL-6, and IgG were significantly upregulated in the spleen of TH hens compared with hens in the TL group (P < 0.01). The inflammatory immune-related genes Toll-like receptor (TLR)2, TLR4, nuclear factor (NF)-κB, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, IL-10, and IgG were significantly increased in the intestinal tract, whereas IL-4, IgA, and the intestinal barrier gene claudin-4 were significantly decreased in TH hens (P < 0.05). In addition, serum concentrations of IL-1β, IL-6, IL-10, interferon (IFN)-α and IgG were significantly higher in TH hens (P < 0.01). A high fear response also led to changes in gut microbial diversity, with a higher Simpson's index and lower β-diversity similarity than hens with a low-fear response (P < 0.05). The TH group showed an increase in 8 genera, including Bacillaceae and Coprococcus, whereas the genus Anaerorhabdus decreased (P < 0.05). The gut microbiota has also been associated with gut barrier genes, and inflammatory cytokines. Bartonella stimulates IL-1β and IgG secretion, whereas Lactobacillus inhibits IL-6 secretion, and Coprococcus and Subdoligranulum are associated with the maintenance of intestinal barrier function. The results of this study suggest that laying hens with high fear response levels have a more sensitive immune response and a more enriched gut microbiota, which may have positive effects on adapting to a complex environment.
Collapse
Affiliation(s)
- Ye Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Xiaoxu Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Rui Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, 161005 Qiqihar, China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China
| |
Collapse
|
5
|
Wu H, Ding C, Ma X, Gao Z, Liu S, Liu B, Song S. Microencapsulate Probiotics (MP) Promote Growth Performance and Inhibit Inflammatory Response in Broilers Challenged with Salmonella typhimurium. Probiotics Antimicrob Proteins 2024; 16:623-635. [PMID: 37043165 DOI: 10.1007/s12602-023-10074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
Antibiotic-resistant bacteria are prevalent in husbandry around the world due to the abuse of antibiotic growth promoters (AGPs); therefore, it is necessary to find alternatives to AGPs in animal feed. Among all the candidates, probiotics are promising alternatives to AGPs against Salmonella infection. The anti-Salmonella effects of three probiotic strains, namely, Lactobacillus crispatus 7-4, Lactobacillus johnsonii 3-1, and Pediococcus acidilactici 20-1, have been demonstrated in our previous study. In this study, we further obtained the alginate beads containing compound probiotics, namely, microencapsulate probiotics (MP), and evaluated its regulatory effect on the health of broilers. We incubated free and microencapsulate probiotics in simulated gastric and intestinal juice for 2 h, and the results showed that compared to free probiotics, encapsulation increased tolerance of compound probiotics in the simulated gastrointestinal condition. We observed that the application of probiotics, especially MP, conferred protective effects against Salmonella typhimurium (S.Tm) infection in broilers. Compared to the S.Tm group, the MP could promote the growth performance (p < 0.05) and reduce the S.Tm load in intestine and liver (p < 0.05). In detail, MP pretreatment could modulate the cecal microflora and upregulate the relative abundance of Lactobacillus and Enterobacteriaceae. Besides, MP could reduce the inflammation injury of the intestine and liver, reduce the pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) expression, and induce of anti-inflammatory cytokine (IL-10) expression. Furthermore, MP could inhibit NLRP3 pathway in ileum, thereby attenuating S.Tm-induced inflammation. In conclusion, MP could be a new feeding supplementation strategy to substitute AGPs in poultry feeding.
Collapse
Affiliation(s)
- Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujie Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Liu
- Management Office of Dafeng, Milu National Nature Reserve, Yancheng, 224136, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Akhmetzyanova AA, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Anti- Salmonella Defence and Intestinal Homeostatic Maintenance In Vitro of a Consortium Containing Limosilactobacillus fermentum 3872 and Ligilactobacillus salivarius 7247 Strains in Human, Porcine, and Chicken Enterocytes. Antibiotics (Basel) 2023; 13:30. [PMID: 38247590 PMCID: PMC10812507 DOI: 10.3390/antibiotics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1β, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia; (V.S.K.); (V.K.S.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
8
|
Huligere SS, Kumari V B C, Desai SM, Wong LS, Firdose N, Ramu R. Investigating the antidiabetic efficacy of dairy-derived Lacticaseibacillus paracasei probiotic strains: modulating α-amylase and α-glucosidase enzyme functions. Front Microbiol 2023; 14:1288487. [PMID: 38111646 PMCID: PMC10725979 DOI: 10.3389/fmicb.2023.1288487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
The current study aims to evaluate and characterize the probiotic andantidiabetic properties of lactic acid bacteria (LAB) obtained from milk and other dairy-based products. The strains were tested physiologically, biochemically, and molecularly. Based on biochemical tests and 16S rRNA gene amplification and sequencing, all three isolates RAMULAB18, RAMULAB19, and RAMULAB53 were identified as Lacticaseibacillus paracasei with homology similarity of more than 98%. The inhibitory potential of each isolate against carbohydrate hydrolysis enzymes (α-amylase and α-glucosidase) was assessed using three different preparations of RAMULAB (RL) isolates: the supernatant (RL-CS), intact cells (RL-IC), and cell-free extraction (RL-CE). Additionally, the isolate was evaluated for its antioxidant activity against free radicals (DPPH and ABTS). The strain's RL-CS, RL-CE, and RL-IC inhibited α-amylase (17.25 to 55.42%), α-glucosidase (15.08-59.55%), DPPH (56.42-87.45%), and ABTS (46.35-78.45%) enzymes differently. With the highest survival rate (>98%) toward tolerance to gastrointestinal conditions, hydrophobicity (>42.18%), aggregation (>74.21%), as well as attachment to an individual's colorectal cancer cell line (HT-29) (>64.98%), human buccal and chicken crop epithelial cells, all three isolates exhibited extensive results. All three isolates exhibited high resistance toward antibiotics (methicillin, kanamycin, cefixime, and vancomycin), and other assays such as antibacterial, DNase, hemolytic, and gelatinase were performed for safety assessment. Results suggest that the LAB described are valuable candidates for their significant health benefits and that they can also be utilized as a beginning or bio-preservative tradition in the food, agriculture, and pharmaceutical sectors. The LAB isolates are excellent in vitro probiotic applicants and yet additional in vivo testing is required.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayanand Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nagma Firdose
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
9
|
Lee MD, Pedroso AA, Lumpkins B, Cho Y, Maurer JJ. Pioneer colonizers: Bacteria that alter the chicken intestinal morphology and development of the microbiota. Front Physiol 2023; 14:1139321. [PMID: 37064908 PMCID: PMC10090334 DOI: 10.3389/fphys.2023.1139321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbes commonly administered to chickens facilitate development of a beneficial microbiome that improves gut function, feed conversion and reduces pathogen colonization. Competitive exclusion products, derived from the cecal contents of hens and shown to reduce Salmonella colonization in chicks, possess important pioneer-colonizing bacteria needed for proper intestinal development and animal growth. We hypothesized that inoculation of these pioneer-colonizing bacteria to day of hatch chicks would enhance the development of their intestinal anatomy and microbiome. A competitive exclusion product was administered to broiler chickens, in their drinking water, at day of hatch, and its impact on intestinal morphometrics, intestinal microbiome, and production parameters, was assessed relative to a control, no treatment group. 16S rRNA gene, terminal restriction fragment length polymorphism (T-RFLP) was used to assess ileal community composition. The competitive exclusion product, administered on day of hatch, increased villus height, villus height/width ratio and goblet cell production ∼1.25-fold and expression of enterocyte sugar transporters 1.25 to 1.5-fold in chickens at 3 days of age, compared to the control group. As a next step, chicks were inoculated with a defined formulation, containing Bacteroidia and Clostridia representing pioneer-colonizing bacteria of the two major bacterial phyla present in the competitive exclusion product. The defined formulation, containing both groups of bacteria, were shown, dependent on age, to improve villus height (jejunum: 1.14 to 1.46-fold; ileum: 1.17-fold), goblet cell numbers (ileum 1.32 to 2.51-fold), and feed efficiency (1.18-fold, day 1) while decreasing Lactobacillus ileal abundance by one-third to half in birds at 16 and 42 days of age, respectively; compared to the phosphate buffered saline treatment group. Therefore, specific probiotic formulations containing pioneer colonizing species can provide benefits in intestinal development, feed efficiency and body weight gain.
Collapse
Affiliation(s)
- Margie D. Lee
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Margie D. Lee,
| | - Adriana A. Pedroso
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Brett Lumpkins
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Youngjae Cho
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - John J. Maurer
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Shao Y, Zhen W, Guo F, Hu Z, Zhang K, Kong L, Guo Y, Wang Z. Pretreatment with probiotics Enterococcus faecium NCIMB 11181 attenuated Salmonella Typhimurium-induced gut injury through modulating intestinal microbiome and immune responses with barrier function in broiler chickens. J Anim Sci Biotechnol 2022; 13:130. [PMID: 36221113 PMCID: PMC9555120 DOI: 10.1186/s40104-022-00765-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Preventing Salmonella infection and colonization in young birds is key to improving poultry gut health and reducing Salmonella contamination of poultry products and decreasing salmonellosis for human consumption (poultry meat and eggs). Probiotics can improve poultry health. The present study was conducted to investigate the impact of a probiotics, Enterococcus faecium NCIMB 11181 (E. faecium NCIMB 11181) on the intestinal mucosal immune responses, microbiome and barrier function in the presence or absence of Salmonella Typhimurium (S. Typhimurium, ST) infection. Methods Two hundred and forty 1-day-old Salmonella-free male broiler chickens (Arbor Acres AA+) were randomly allocated to four groups with 6 replicate cages of 10 birds each. The four experimental groups were follows: (1) negative control (NC), (2) S. Typhimurium, challenged positive control (PC), (3) the E. faecium NCIMB 11181-treated group (EF), (4) the E. faecium NCIMB 11181-treated and S. Typhimurium-challenged group (PEF). Results Results indicated that, although continuous feeding E. faecium NCIMB 11181 did not obviously alleviate growth depression caused by S. Typhimurium challenge (P > 0.05), E. faecium NCIMB 11181 addition significantly blocked Salmonella intestinal colonization and translocation (P < 0.05). Moreover, supplemental E. faecium NCIMB 11181 to the infected chickens remarkably attenuated gut morphological structure damage and intestinal cell apoptosis induced by S. Typhimurium infection, as evidenced by increasing gut villous height and reducing intestinal TUNEL-positive cell numbers (P < 0.05). Also, E. faecium NCIMB 11181 administration notably promoting the production of anti-Salmonella antibodies in intestinal mucosa and serum of the infected birds (P < 0.05). Additionally, 16S rRNA sequencing analysis revealed that E. faecium NCIMB 11181 supplementation ameliorated S. Typhimurium infection-induced gut microbial dysbiosis by enriching Lachnospiracease and Alistipes levels, and suppressing Barnesiella abundance. Predicted function analysis indicated that the functional genes of cecal microbiome involved in C5-branched dibasic acid metabolism; valine, leucine and isoleucine biosynthesis; glycerolipid metabolism and lysine biosynthesis were enriched in the infected chickens given E. faecium NCIMB 11181. While alanine, asparate and glutamate metabolism; MAPK signal pathway-yeast; ubiquine and other terpenoid-quinore biosynthesis, protein processing in endoplasmic reticulum; as well as glutathione metabolism were suppressed by E. faecium NCIMB 11181 addition. Conclusion Collectively, our data suggested that dietary E. faecium NCIBM 11181 supplementation could ameliorate S. Typhimurium infection-induced gut injury in broiler chickens. Our findings also suggest that E. faecium NCIMB 11181 may serve as an effective non-antibiotic feed additive for improving gut health and controlling Salmonella infection in broiler chickens.
Collapse
Affiliation(s)
- Yujing Shao
- College of Biology, China Agricultural University, Beijing, China
| | - Wenrui Zhen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Province of Henan, Luoyang, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Linhua Kong
- Tengzhou Heyi Food Co. Ltd, Zaozhuang, Shandong Province, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Wu Y, Nie C, Xu C, Luo R, Chen H, Niu J, Bai X, Zhang W. Effects of dietary supplementation with multispecies probiotics on intestinal epithelial development and growth performance of neonatal calves challenged with Escherichia coli K99. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4373-4383. [PMID: 35066866 PMCID: PMC9303730 DOI: 10.1002/jsfa.11791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Probiotics exhibit antibiotic properties and are capable of treating certain bacterial infections, including diarrhea. Therefore, the aim of this study is to investigate the effects of dietary supplementation with multispecies probiotic (MSP) on diarrhea, average daily gain (ADG) and intestinal development of neonatal calves challenged with Escherichia coli K99. RESULTS Thirty-six neonatal Holstein calves were randomly assigned to three treatment groups. After E. coli K99 challenge, calves in the control (C) and MSP treatment groups had significantly higher ADG and feed efficiency, and significantly lower fecal scores than those of calves in the diarrhea (D) group. The mean time of diarrhea resolution was 4.5 and 3.1 days for calves in the D and MSP treatment groups, respectively. Furthermore, the structures of the various segments (duodenum, jejunum and ileum) of the small intestine of the calves, activities of several small intestinal enzymes, and expression of several energy metabolism-related genes in the small intestine segments were significantly affected by MSP treatments. CONCLUSION Dietary supplementation of MSP had a positive effect in treating calf diarrhea; it improved ADG and feed efficiency and promoted development of the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan‐yan Wu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Cun‐xi Nie
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Chunsheng Xu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Rui‐qing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Hong‐li Chen
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Jun‐li Niu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Xue Bai
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Wenju Zhang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
12
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|
13
|
Yaqoob MU, Wang G, Wang M. An updated review on probiotics as an alternative of antibiotics in poultry - A review. Anim Biosci 2022; 35:1109-1120. [PMID: 35073660 PMCID: PMC9262730 DOI: 10.5713/ab.21.0485] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Antibiotics used to be supplemented to animal feeds as growth promoter and as an effective strategy to reduce the burden of pathogenic bacteria present in the gastro-intestinal tract. However, in-feed antibiotics also kill bacteria that may be beneficial to the animal. Secondly, unrestricted use of antibiotics enhanced the antibiotic resistance in pathogenic bacteria. To overcome above problems, scientists are taking a great deal of measures to develop alternatives of antibiotics. There is convincing evidence that probiotics could replace in-feed antibiotics in poultry production. Because they have beneficial effects on growth performance, meat quality, bone health and eggshell quality in poultry. Better immune responses, healthier intestinal microflora and morphology which help the birds to resist against disease attack were also identified with the supplementation of probiotics. Probiotics establish cross-feeding between different bacterial strains of gut ecosystem and reduce the blood cholesterol level via bile salt hydrolase activity. The action mode of probiotics was also updated according to recently published literatures, i.e antimicrobial substances generation or toxin reduction. This comprehensive review of probiotics is aimed to highlight the beneficial effects of probiotics as a potential alternative strategy to replace the antibiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Umar Yaqoob
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| | - Geng Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
14
|
Cytoprotective Effects of Lactobacilli on Mouse Epithelial Cells during Salmonella Infection. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of common pathogens, such as Salmonella species, Escherichia coli, Staphylococcus aureus, etc., is a big challenge for a practitioner. Antibiotics’ side effects during their application for the treatment of infectious diseases should not be underestimated as they have many issues, such as the transfer of antibiotics-resistant genes, dysbiosis, and antibiotic-resistant strains, which is the main hurdle in the eradication of diseases. To avoid these antibiotics complications, in modern countries, the interest of using probiotics in feed supplementation to promote health and prevent or treat intestinal infectious diseases has been increasing. The purpose of the present study was to evaluate the probiotic potential of three Lactobacilli strains isolated from clinically healthy dogs for their further utilization as a dietary supplement for dogs to avoid pathogenic and antibiotic complication. After 16SrRNA sequencing, in vitro tests were conducted to assess the survival potential of Lactobacilli under simulated gastrointestinal conditions and adhesion ability to the MODE-K cell line, effects on epithelial barrier function, anti-inflammatory activities, effects on host defensin peptides (beta-defensin 3), and inhibitory effects on common pathogens. Lactobacilli showed considerable potential to survive in simulated gastrointestinal environmental conditions, low pH, and high bile salt concentrations along with good adhesion properties with MODE-K cells. Pathogenic bacterial growth and their adhesion to MODE-K cells were significantly inhibited by Lactobacilli. Real-time PCR analyses further demonstrated that the L. acidophilus strain AR1 and AR3 inhibit Salmonella-induced proinflammatory cytokine (IL-6, IL-8, IL-1β) production and reinforce the expression of tight junction protein (occludin). None of the strains induce mRNA expression of beta-defensin 3 in MODE-K cells. Based on the in vitro results, the L. acidophilus strain AR1 has the potential to be supplemented in canine feed. However, further in vivo studies investigating health-promoting effects are awaited.
Collapse
|
15
|
Meijerink N, de Oliveira JE, van Haarlem DA, Lamot DM, Velkers FC, Smidt H, Stegeman JA, Rutten VPMG, Jansen CA. Long-chain glucomannan supplementation modulates immune responsiveness, as well as intestinal microbiota, and impacts infection of broiler chickens with Salmonella enterica serotype Enteritidis. Vet Res 2022; 53:9. [PMID: 35120583 PMCID: PMC8817541 DOI: 10.1186/s13567-022-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
The zoonotic pathogen Salmonella enterica serotype Enteritidis (SE) causes severe disease in young chickens. Restriction on antibiotic use requires alternative SE control strategies such as nutritional solutions to improve the resistance of chickens. In this study, chickens were fed long-chain glucomannan (GM) or standard diet and challenged with SE at seven days of age. During 21 days post-infection (dpi), we determined numbers and responsiveness of natural killer (NK) and T cells in ileum and spleen, and SE-specific antibody titers in serum. Microbiota compositions in ileum and caeca were determined, as well as correlations of these with numbers and function of immune cells. Some of the samples in the control group had numerically higher CFUs than the GM-treated group. In addition, the relative abundance of SE based on DNA assessment was significantly lower at 21 dpi upon GM supplementation. At 3 dpi, numbers of intraepithelial NK cells were significantly higher, while activation of intraepithelial NK cells (7 dpi), numbers of intraepithelial cytotoxic CD8+ T cells (14 dpi) and SE-specific antibodies (14 dpi) were numerically higher. Furthermore, relative abundance of the commensal lactic acid bacteria (LAB) significantly increased with GM supplementation post-infection. Higher relative abundance of streptococci was associated with reduced SE in ileal and caecal contents at 21 dpi. Relative abundance of streptococci negatively correlated with SE counts and positively correlated with NK cell activation and SE-specific antibodies, which suggests involvement of the commensal LAB in NK cell responsiveness. These results indicate that GM supplementation modulates the immune system, intestinal microbiota and impacts SE infection of young chickens.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Daphne A van Haarlem
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David M Lamot
- Cargill Animal Nutrition and Health Innovation Center, Velddriel, The Netherlands
| | - Francisca C Velkers
- Department of Population Health Sciences, Division of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - J Arjan Stegeman
- Department of Population Health Sciences, Division of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Raheem A, Wang M, Zhang J, Liang L, Liang R, Yin Y, Zhu Y, Yang W, Wang L, Lv X, Jia Y, Qin T, Zhang G. The probiotic potential of Lactobacillus plantarum strain RW1 isolated from canine faeces. J Appl Microbiol 2021; 132:2306-2322. [PMID: 34709709 DOI: 10.1111/jam.15341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/05/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022]
Abstract
AIM To evaluation the probiotic potential of Lactobacillus plantarum strain RW1 isolated from healthy dogs for its further utilization as a dietary supplement for dogs. METHODS AND RESULTS This study aimed to evaluate the probiotic potential of L. plantarum strain RW1 isolated from canine faeces. After confirming by conventional and then by 16S rRNA sequencing, the identified strain RW1 was in vitro screened for its survivability in simulated gastrointestinal conditions, low pH, bile salts and adhesion to gut epithelial tissues, growth inhibitory effects on common pathogens and anti-inflammatory potential by measuring the mRNA expression level of IL-6, IL-8, IL-1ꞵ in Salmonella-infected MODE-K cells. Furthermore, the effects on epithelial barrier function and host defensin peptide (beta-defensin 3) was studied by measuring the mRNA expression level of tight junction protein (occludin) and beta-defensin 3 in MODE-K cells. The strain RW1 showed a considerable potential to survive in simulated gastrointestinal environmental conditions, low pH and high bile salt concentrations along with good adhesion to MODE-K cell line. Pathogenic bacterial growth and their adhesion to MODE-K cell line were significantly inhibited by the strain RW1. Real-time PCR analyses demonstrated that the strain RW1 inhibited Salmonella-induced pro-inflammatory cytokines (IL-6, IL-8 and IL-1ꞵ) production and reinforced the expression of tight junction protein (occludin). The strain RW1 did not induce mRNA expression of beta-defensin 3. CONCLUSION Based on in vitro results, the strain RW1 has the potential to be used as a probiotic supplement in dogs. However, further study involving in vivo health effects is needed. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotics have many side effects and nowadays the probiotics are considered as a potential alternative to antibiotics. This study evaluates the probiotic potential of dog isolated L. plantarum strain RW1 to use it as a dietary supplement in dogs feeding to control infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Yajie Yin
- College of Veterinary Medicine, Hebei Agricultural University, Hebei, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
18
|
Pei L, Liu J, Huang Z, Iqbal M, Shen Y. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model. Probiotics Antimicrob Proteins 2021; 15:469-478. [PMID: 34651283 DOI: 10.1007/s12602-021-09841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antibacterial potential of lactic acid bacteria (Weissella confuse, Pediococcus acidilactici, and Ligilactobacillus equi) isolated from healthy equine in Wuhan against Salmonella Typhimurium CVCC542-induced mice model on intestinal microflora. In previous studies, these isolated strains showed good probiotic potentials in vitro. In this study, fifty healthy mice were randomly divided into five groups, the blank control group, the control group, the Pediococcus acidilactici group (1 × 108 CFU/day), the Ligilactobacillus equi group (1 × 108 CFU/day), and the Weissella confuse group (1 × 108 CFU/day). The body weight in control group and Weissella confuse group showed significant decreased (P < 0.05, P < 0.01), while Pediococcus acidilactici group and Ligilactobacillus equi group showed good recovering after treatments. The lowest diarrhea rate was shown in Ligilactobacillus equi group after treatment. In histopathology, Ligilactobacillus equi group showed the least structural damage in duodenum, and all probiotic treatment groups showed less damage in cecum. The sequence data and optical transform unit showed that Pediococcus acidilactici group and Ligilactobacillus equi group had higher number than control group, while the diversity data showed that the control group and Weissella confuse group had lower diversity in cecum. Microbial community analysis showed increased abundance of Firmicutes, Bacteroidetes, uncultured_bacterium_f_Muribaculaceae, and Lactobacillus in treatment groups, while potential microbes that can induce intestinal diseases such as Verrucomicrobia, Akkermansia, and Lachnospiraceae_NK4A136_group decreased in the treatment groups. In conclusion, lactic acid bacteria isolated from the healthy horses could alleviate the infection of Salmonella and regulate intestinal flora.
Collapse
Affiliation(s)
- Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghao Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Choeisoongnern T, Sirilun S, Waditee-Sirisattha R, Pintha K, Peerajan S, Chaiyasut C. Potential Probiotic Enterococcus faecium OV3-6 and Its Bioactive Peptide as Alternative Bio-Preservation. Foods 2021; 10:foods10102264. [PMID: 34681312 PMCID: PMC8534580 DOI: 10.3390/foods10102264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic Enterococcus faecium OV3-6 and its secreted active peptide were characterized and investigated. The strain survived in simulated gastric and small intestinal conditions at 88.16% and 94.33%, respectively. The safety assessment revealed that the strain was shown α-hemolysis and susceptible to most clinically relevant antibiotics, but intermediate sensitivity to erythromycin and kanamycin was found. It does not harbor any virulence genes except for the efaAfm gene. Both of its living cells and the cell-free supernatants (CFS) of the strain significantly reduced the adhesion of E. coli and S. Typhi on Caco-2 cells. The strain can regulate the secretion of pro and inflammatory cytokines, IL-6 and IL-12 and induce the secretion of anti-inflammatory IL-10 of the Caco-2 cell. The strain can prevent the growth of Gram-positive strains belonging to the genera Bacillus, Carnobacterium, Listeria, and Staphylococcus. It also presented the entP gene that involves the production of bacteriocin named enterocin P. The antimicrobial peptide was matched 40% with 50S ribosomal proteins L29 (7.325 kDa), as revealed by LC-MS/MS. This active peptide exhibits heat stability, is stable over a wide pH range of 2−10, and maintains its activity at −20 and 4 °C for 12 weeks of storage. Altogether, E. faecium OV3-6 thus has potential for consideration as a probiotic and bio-preservative for applied use as a fermented food starter culture and in functional food or feed industries.
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| | | | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| |
Collapse
|
20
|
A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals (Basel) 2021; 11:ani11071941. [PMID: 34209794 PMCID: PMC8300232 DOI: 10.3390/ani11071941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Spore-forming probiotics are widely used in the poultry industry for their beneficial impact on host health. The main feature that separates spore-forming probiotics from the more common lactic acid probiotics is their high resistance to external and internal factors, resulting in higher viability in the host and correspondingly, greater efficiency. Their most important effect is the ability to confront pathogens, which makes them a perfect substitute for antibiotics. In this review, we cover and discuss the interactions of spore-forming probiotic bacteria with poultry as the host, their health promotion effects and mechanisms of action, impact on poultry productivity parameters, and ways to manufacture the probiotic formulation. The key focus of this review is the lack of reproducibility in poultry research studies on the evaluation of probiotics’ effects, which should be solved by developing and publishing a set of standard protocols in the professional community for conducting probiotic trials in poultry. Abstract One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
Collapse
|
21
|
Trukhachev VI, Chmykhalo VK, Belanova AA, Beseda DK, Chikindas ML, Bren AB, Ermakov AM, Donnik IM, Belousova MM, Zolotukhin PV. Probiotic biomarkers and models upside down: From humans to animals. Vet Microbiol 2021; 261:109156. [PMID: 34388682 DOI: 10.1016/j.vetmic.2021.109156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.
Collapse
Affiliation(s)
- Vladimir I Trukhachev
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya st., 49, Moscow, 127550, Russia.
| | - Victor K Chmykhalo
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA; I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Str., 19с1, Moscow, 119146, Russia.
| | - Anzhelika B Bren
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia; Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Gagarin Square 1, Rostov-on-Don, 344000, Russia.
| | - Irina M Donnik
- Russian Academy of Sciences, Leninskii Ave., 14, Moscow, 119991, Russia.
| | - Marya M Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Zorge Str., Rostov-on-Don, 344090, Russia.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave., 194/1, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
22
|
Sabry Abd Elraheam Elsayed M, Shehata AA, Mohamed Ammar A, Allam TS, Ali AS, Ahmed RH, Abeer Mohammed A, Tarabees R. The beneficial effects of a multistrain potential probiotic, formic, and lactic acids with different vaccination regimens on broiler chickens challenged with multidrug-resistant Escherichia coli and Salmonella. Saudi J Biol Sci 2021; 28:2850-2857. [PMID: 34012326 PMCID: PMC8116971 DOI: 10.1016/j.sjbs.2021.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of a multistrain potential probiotic (Protexin®), acids, and a bacterin from multidrug-resistant E. coli O26, O78, S. Enteritidis (1,9,12 g.m1,7), and S. Typhimurium (1,4,5,12.i.1,2) on the immune response, haematological parameters, cytokines, and growth parameters of broiler chickens challenged with bacterin live serotypes were investigated. Two experiments were designed using 300 one-day-old chicks (Arbor Acres) randomly assigned to 15 groups. The first experiment comprised 9 groups, including positive and negative control groups and other groups received Protexin®, acids, and the bacterin (0.2 ml/SC), either alone or in combination, on the 1st day. The second experiment contained 6 groups, including positive and negative control groups and other groups received a combination of Protexin®, acids, and the bacterin (0.5 ml/SC) on the 8th day. All the groups except the negative control groups were challenged on the 8th and 16th days in both experiments, respectively, with mixed live bacterin serotypes. The groups that received Protexin®, acids, and the bacterin either alone or in combination revealed significant improvements in the immune response to the bacterin (p ≤ 0.05). The groups in the 1st experiment and most the 2nd experiment groups showed a reduced mortality rate and decreased levels IFN-γ, IL-4, and IL-12 cytokines (p ≤ 0.05). Moreover, these groups demonstrated increases in haematological parameters and reduced rates of infection-caused anaemia. These groups showed significant increases in growth performance parameters, such as body weight, weight gain, and the feed conversion ratio (FCR) (p ≤ 0.05). There was a beneficial effect on 1-day-old chickens produced by combining Protexin®, acids, and the bacterin (0.2 ml/SC).
Collapse
Affiliation(s)
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Mohamed Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Tamer S. Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Abdallah S. Ali
- Microbiology Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Rasha H. Ahmed
- Microbiology Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - A.B. Abeer Mohammed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt
| | - Reda Tarabees
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
23
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
24
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
25
|
Azizi MN, Loh TC, Foo HL, Teik Chung EL. Is Palm Kernel Cake a Suitable Alternative Feed Ingredient for Poultry? Animals (Basel) 2021; 11:338. [PMID: 33572711 PMCID: PMC7911022 DOI: 10.3390/ani11020338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Palm kernel cake (PKC), a by-product of oil extracted from palm nuts through expeller press or solvent extraction procedures is one of the highest quantities of locally available and potentially inexpensive agricultural product. PKC provides approximately 14-18% of crude protein (CP), 12-20% crude fiber (CF), 3-9% ether extract (EE), and different amounts of various minerals that feasible to be used as a partial substitute of soybean meal (SBM) and corn in poultry nutrition. Poultry's digestibility is reported to be compromised due to the indigestion of the high fiber content, making PKC potentially low for poultry feeding. Nevertheless, solid-state fermentation (SSF) can be applied to improve the nutritional quality of PKC by improving the CP and reducing CF content. PKC also contains β-mannan polysaccharide, which works as a prebiotic. However, there is a wide variation for the inclusion level of PKC in the broiler diet. These variations may be due to the quality of PKC, its sources, processing methods and value-added treatment. It has been documented that 10-15% of treated PKC could be included in the broiler's diets. The inclusion levels will not contribute to a negative impact on the growth performances and carcass yield. Furthermore, it will not compromise intestinal microflora, morphology, nutrient digestibility, and immune system. PKC with a proper SSF process (FPKC) can be offered up to 10-15% in the diets without affecting broilers' production performance.
Collapse
Affiliation(s)
- Mohammad Naeem Azizi
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.A.); (E.L.T.C.)
- Department of Pre-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.A.); (E.L.T.C.)
- Institutes of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.N.A.); (E.L.T.C.)
- Institutes of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
26
|
Helmy Q, Kardena E, Gustiani S. Probiotics and Bioremediation. Microorganisms 2020. [DOI: 10.5772/intechopen.90093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
27
|
Khan S, Moore RJ, Stanley D, Chousalkar KK. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics To Enhance Gut Health and Food Safety. Appl Environ Microbiol 2020; 86:e00600-20. [PMID: 32332137 PMCID: PMC7301851 DOI: 10.1128/aem.00600-20] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The microbiota plays a vital role in maintaining gut health and influences the overall performance of chickens. Most gut microbiota-related studies have been performed in broilers, which have different microbial communities compared to those of layers. The normal gut microbiota of laying chickens is dominated by Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria at the phylum level. The composition of the gut microbiota changes with chicken age, genotype, and production system. The metabolites of gut microbiota, such as short-chain fatty acids, indole, tryptamine, vitamins, and bacteriocins, are involved in host-microbiota cross talk, maintenance of barrier function, and immune homeostasis. Resident gut microbiota members also limit and control the colonization of foodborne pathogens. In-feed supplementations of prebiotics and probiotics strengthen the gut microbiota for improved host performance and colonization resistance to gut pathogens, such as Salmonella and Campylobacter The mechanisms of action of prebiotics and probiotics come through the production of organic acids, activation of the host immune system, and production of antimicrobial agents. Probiotic candidates, including Lactobacillus, Bifidobacterium, Bacillus, Saccharomyces, and Faecalibacterium isolates, have shown promising results toward enhancing food safety and gut health. Additionally, a range of complex carbohydrates, including mannose oligosaccharides, fructo-oligosaccharides, and galacto-oligosaccharides, and inulin are promising candidates for improving gut health. Here, we review the potential roles of prebiotics and probiotics in the reshaping of the gut microbiota of layer chickens to enhance gut health and food safety.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Robert J Moore
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Dragana Stanley
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
28
|
Protective Effect of Potential Probiotic Strains from Fermented Ethiopian Food against Salmonella Typhimurium DT104 in Mice. Int J Microbiol 2020; 2020:7523629. [PMID: 32351574 PMCID: PMC7178517 DOI: 10.1155/2020/7523629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
Salmonella is one of the most harmful pathogens responsible for foodborne outbreaks, illnesses and deaths. The aim of this study was to evaluate the effect of potentially probiotic strains against Salmonella Typhimurium DT104 in mice. The compatibility test among the selected potential probiotic strains (Lactobacillus plantarum K132, Lactobacillus paracasei K114 and Lactococcus lactis E124) using the cross-streaking method showed the absence of antagonism. The anti-Salmonella activities of coculture of the isolated potential probiotics in the form of mixed or single culture showed a remarkable anti-Salmonella activity with 96.50 to 100% growth inhibition. The combination of strains, which showed the highest growth inhibition rates against Salmonella Typhimurium DT104, was used to test their effect on the colonization of mice by Salmonella Typhimurium DT104. White albino male mice were pretreated with the mixed potential probiotics for 7 days and infected with Salmonella Typhimurium DT104 for 1 day. A total of 3 treatments were applied, during which the negative control group was treated with phosphate-buffered saline (PBS); a positive control group (typ) was challenged with Salmonella Typhimurium DT104 alone. The treated group (pro-typ) was pretreated with mixed potential probiotic culture and then infected with Salmonella Typhimurium DT104. The survival rate of mice and counts of Salmonella in feces were recorded. The survival rate of mice on day 21 after the oral challenge with Salmonella Typhimurium DT104 was significantly (p < 0.05) higher in the experimental pro-typ group (100% survival) compared with the positive control group (20% survival). The counts (colony-forming unit per ml) of Salmonella in feces were significantly lower (p < 0.05) for the pro-typ group compared to the typ group. The combination of potential probiotic strains was able to protect mice against Salmonella Typhimurium DT104 infection that demonstrates their potential to be used as probiotic cultures for the production of functional fermented products.
Collapse
|
29
|
Burkholder KM, Fletcher DH, Gileau L, Kandolo A. Lactic acid bacteria decrease Salmonella enterica Javiana virulence and modulate host inflammation during infection of an intestinal epithelial cell line. Pathog Dis 2020; 77:5480463. [PMID: 31065694 DOI: 10.1093/femspd/ftz025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica Javiana is a leading cause of severe foodborne Salmonellosis. Despite its emergence as a major foodborne pathogen, little is known of how S. Javiana interacts with intestinal epithelial cells, or of potential methods for ameliorating the bacterial-host interaction. Using cell-based adhesion, invasion and lactate dehydrogenase release assays, we observed an invasive and cytotoxic effect of S. Javiana on intestinal epithelial cells. We assessed the effect of probiotic species of lactic acid bacteria (LAB) on the S. Javiana-host cell interaction, and hypothesized that LAB would reduce S. Javiana infectivity. Salmonella enterica Javiana invasion was significantly impaired in host cells pre-treated with live Lactobacillus acidophilus and Lactobacillus rhamnosus. In addition, pre-exposure of host cells to live L. acidophilus, L. rhamnosus and L. casei reduced S. Javiana-induced cytotoxicity, while heat-killed LAB cultures had no effect on S. Javiana invasion or cytotoxicity. qRT-PCR analysis revealed that S. Javiana exposed to L. acidophilus and L. rhamnosus exhibited reduced virulence gene expression. Moreover, pre-treating host cells with LAB prior to S. Javiana infection reduced host cell production of inflammatory cytokines. Data suggest a potential protective effect of L. acidophilus, L. rhamnosus and L. casei against intestinal epithelial infection and pathogen-induced damage caused by S. Javiana.
Collapse
Affiliation(s)
- Kristin M Burkholder
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Dylan H Fletcher
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Lauren Gileau
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Arnold Kandolo
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| |
Collapse
|
30
|
Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob Proteins 2019; 12:896-905. [DOI: 10.1007/s12602-019-09593-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Chang CH, Teng PY, Lee TT, Yu B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1797-1808. [PMID: 32054193 PMCID: PMC7649073 DOI: 10.5713/ajas.19.0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Objective This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
32
|
Jazi V, Mohebodini H, Ashayerizadeh A, Shabani A, Barekatain R. Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poult Sci 2019; 98:5648-5660. [PMID: 31247644 DOI: 10.3382/ps/pez338] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to investigate the effectiveness of dietary fermented soybean meal (FSBM) in comparison with prebiotic (Xylooligosaccharide; XOS) and probiotic (Lactic acid bacteria-based probiotic; LAC) for prevention of Salmonella Typhimurium (ST) infection in young broiler chickens from 1 to 24 d. The in vitro study revealed that soybean meal (SBM) fermentation increased the number of lactic acid bacteria (LAB) and lactic acid content and inhibited the growth of enterobacteria such as coliforms in SBM. A total of 450 day-old Ross 308 broiler chicks were placed in 30 pens (15 birds/pen) and allocated to 5 experimental treatments that consisted an un-supplemented basal diet and not infected (NC) or infected with ST (IC); IC plus 2 g XOS/kg; IC plus 0.2 g LAC/kg; and IC containing a complete replacement of SBM with FSBM. All birds (except NC) were orally administered with 0.5 mL of the ST solution (1 × 106 CFU/mL) at d 3 post-hatch. The ST challenge decreased body weight gain and feed intake (P < 0.05). The impairment of feed conversion ratio was alleviated by the addition of XOS, LAC, and FSBM in broiler diets compared with IC birds (P < 0.05). The ST infection reduced duodenum and jejunum villus height and increased Salmonella colonization throughout the gut as well as internal organ invasion compared with NC birds (P < 0.05). However, ST-infected broilers fed the XOS, LAC, and FSBM-containing diets showed a significant decrease in gut Salmonella colonization, and internal organ invasion, an increase in LAB counts, and improvement in intestinal mucosa morphology (P < 0.05). The tested feed additives or FSBM reduced heterophil to lymphocyte ratio compared with the IC group (P < 0.05). The results suggest that XOS, LAC, and FSBM improve growth performance, lower Salmonella colonization, and improve intestinal characteristics and immune response in ST-challenged broiler chicks. Therefore, fermented feeds due to having functional ingredients can be considered as an effective strategy to lessen the colonization of gut pathogens in broiler chickens.
Collapse
Affiliation(s)
- V Jazi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-4364, Iran
| | - H Mohebodini
- Department of Animal Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - A Ashayerizadeh
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-4364, Iran
| | - A Shabani
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-4364, Iran
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
33
|
Chang CH, Teng PY, Lee TT, Yu B. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica. Anim Sci J 2019; 90:737-746. [PMID: 30983065 DOI: 10.1111/asj.13205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
This study assessed the effect of probiotics on cecal microbiota, cecal short-chain fatty acids (SCFAs), and the gene expression of cytokines in young specific-pathogen-free (SPF) chickens infected with S. enterica subsp. enterica. One-day-old SPF chickens (n = 105) were randomly assigned to one of the three treatment groups: control (Cont) group, Salmonella-infected (Sal) group, and a Salmonella-infected group treated with multi-strain probiotics (ProSal group). All chickens except those in the Cont group were challenged orally with 1 × 108 cfu/ml of Salmonella 4 days after hatching. Chickens in the Sal group exhibited more abundance of Proteobacteria than those in the Cont and ProSal groups. At the genus level, chickens in ProSal group exhibited increased numbers of Lactobacillus and Oscillospira compared with those in the other groups. Chickens in the ProSal group exhibited a significant increase of cecal SCFAs compared with chickens in the Sal group. Chickens in the ProSal group exhibited increased gene expression of anti-inflammatory cytokines, IL-10 and TGF-β4, and decreased expression of the proinflammatory cytokine, IFN-γ, in the cecal tonsil compared with those in the Sal group. The results of this study indicated that the administration of probiotics can modulate microbiota, SCFAs, and immunomodulatory activity in SPF chickens.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
34
|
Adhikari P, Lee CH, Cosby DE, Cox NA, Kim WK. Effect of probiotics on fecal excretion, colonization in internal organs and immune gene expression in the ileum of laying hens challenged with Salmonella Enteritidis. Poult Sci 2019; 98:1235-1242. [PMID: 30265331 DOI: 10.3382/ps/pey443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 01/27/2023] Open
Abstract
A study was conducted to evaluate the supplementation of probiotics on Salmonella colonization in the ceca and various internal organs as well as immune response in laying hens challenged with Salmonella enterica serovar Enteritidis (SE). Thirty-two 46-wk-old White Leghorns (W-36) were housed individually in wired laying cages under 16L:8D lighting schedule. Hens were challenged individually with nalidixic acid resistant Salmonella Enteritidis (SENAR) after which time they were grouped into four treatments: T1 = SENAR unchallenged control, T2 = SENAR challenged control, T3 = SENAR challenged + 0.05% probiotics (Lactobacillus plantarum), and T4 = SENAR challenged + 0.1% probiotics. All hens, including T1, were euthanized and sampled for the liver with gall bladder (L/GB), ileum, ovary, spleen, and ceca on 7-days post-infection (dpi). Fecal screening was performed on individual hens at both 3 and 6 dpi. No difference was detected between the treatments in cecal SENAR enumeration, and the mean log 10 cfu/gm of SENAR in the ceca was 3.7 for all three treatments. The prevalence of SENAR was lowest for ovary in all treatments and was highest in the spleen. However, there were no significant differences among the treatments in the internal organs. There was no significant difference in the fecal shedding among the treatments on either 3 or 6 dpi, with incidence of positive feces higher at 3 dpi compared to 6 dpi (100 vs. 70% to 80%). SENAR challenge resulted in significant upregulation (P < 0.05) of interleukin (IL)-1β, 6, 10, interferon gamma (IFN-γ), and toll-like receptor (TLR)-4 mRNA expression. Highest level of probiotics resulted in a significant decrease in IFN-γ and elevation of IL-6 and IL-10 gene expression in the ileum. However, IL-1B and TLR-4 gene expression were not different from the SENAR challenge control. This study reveals that there was important regulation of immune genes by probiotics supplementation.
Collapse
Affiliation(s)
- P Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, United States of America
| | - C H Lee
- Genebiotech Co., Ltd., Seoul, Republic of Korea
| | - D E Cosby
- USDA, ARS, The U.S. National Poultry Research Center, Athens, Georgia 30605, United States of America
| | - N A Cox
- USDA, ARS, The U.S. National Poultry Research Center, Athens, Georgia 30605, United States of America
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, Georgia 30602, United States of America
| |
Collapse
|
35
|
Abhisingha M, Dumnil J, Pitaksutheepong C. Selection of Potential Probiotic Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. Probiotics Antimicrob Proteins 2019; 10:218-227. [PMID: 28712023 DOI: 10.1007/s12602-017-9304-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.
Collapse
Affiliation(s)
- Mattika Abhisingha
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jureeporn Dumnil
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chetsadaporn Pitaksutheepong
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
36
|
Xylanase and Fermented Polysaccharide of Hericium caputmedusae Reduce Pathogenic Infection of Broilers by Improving Antioxidant and Anti-Inflammatory Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4296985. [PMID: 30693063 PMCID: PMC6332932 DOI: 10.1155/2018/4296985] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Background Pathogenic infection in broilers has become an important issue in the development of poultry industry. Xylooligosaccharides released from xylan via xylanase and fermented polysaccharide of Hericium caputmedusae (FPHC) have antimicrobial potential against many pathogens. Objective We aimed to explore the effects of xylanase and FPHC on pathogenic infection in the broilers (Gallus gallus domesticus). Methods Three hundred and thirty 21-day male broilers were assigned into four groups: control group (CG, basic diet), xylanase group (XG, basic diet + xylanase), FPHC group (HG, basic diet + FPHC), and XHG group (basic diet + xylanase + FPHC). Average daily feed intake (ADFI) and daily gain (ADG) were measured. Microflora from broiler feces was analyzed using 16S rRNA sequencing. Serum tumor necrosis factor- (TNF-) α, interleukin-1β (IL-1β), IL-1 receptor antagonist (IL-1ra), IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents were detected using kits. The variables were compared using the Student t-test between two groups. Results Microbiological investigations showed that 75% of broilers were affected by bacterial pathogens in the CG group, most notably by coagulase-negative staphylococci. Comparatively, 15%, 26%, and 5% of broilers were affected by bacterial pathogens in the XG, HG, and XHG groups, respectively. Xylanase and FPHC treatment increased the ratio of ADG to ADFI and antioxidant capacity by increasing the levels of T-AOC, SOD, and GSH-Px and reducing the levels of MDA (P < 0.05). Xylanase and FPHC treatment improved anti-inflammatory capacity by increasing serum levels of IL-1ra and IL-10 and reducing the levels of IL-1β and TNF-α. On the other hand, the treatment increased probiotic concentration of Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum (P < 0.05), which were also proved in cell culture. Conclusions Xylanase and FPHC ameliorate pathogen infection by increasing antioxidant and anti-inflammatory activities of broilers via the increase of probiotics.
Collapse
|
37
|
Li X, Wu S, Li X, Yan T, Duan Y, Yang X, Duan Y, Sun Q, Yang X. Simultaneous Supplementation of Bacillus subtilis and Antibiotic Growth Promoters by Stages Improved Intestinal Function of Pullets by Altering Gut Microbiota. Front Microbiol 2018; 9:2328. [PMID: 30369910 PMCID: PMC6194165 DOI: 10.3389/fmicb.2018.02328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Early nutrition of pullets could determine the overall development and the performance of laying hens. With the aim to reduce the use of antibiotic growth promoters (AGPs) and to maintain the growth and development of pullets, the effect of simultaneous short-termed supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) and Bacillus subtilis (B. subtilis) DSM17299 probiotic, as well as the effect of supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) during the whole period (0~16 weeks) on the overall growth and development, intestinal health, and caecal microbiota of pullets were evaluated. In the present study, a total of 630 one-day-old Hy-Line Brown layers were randomly distributed into five equal groups: including the AGPs group (supplemented with AGPs based on basal diets for 16 weeks), the BA3 group (supplemented with AGPs and B. subtilis based on basal diets for 3 weeks), the BA6 group (for 6 weeks), the BA12 group (for 12 weeks), and the BA16 group (for 16 weeks). When compared with the AGPs group, the supplementation of AGPs + B. subtilis for the first 3 weeks could maintain overall growth performance, including the average body weight, average feed intake, average daily weight gain, and feed conversion ratio of pullets at 3, 6, 12, and 16 weeks of age (P > 0.05). Meanwhile, the characteristic growth indexes in different periods were separately measured. At 3 weeks of age, the amylase activity in ileum was elevated (P = 0.028), and the length of tibia was up to the standard in the BA3 group. At 12 weeks of age, the increased villus height (P = 0.046) of jejunum, increased villus height (P = 0.023) and ratio of villus height to crypt depth (P = 0.012) of ileum, decreased crypt depth (P = 0.002) of ileum, and elevated mRNA levels of sucrase in jejunum (P < 0.05) were all identified in the BA3 group. At 16 weeks of age, the secreted immunoglobulin A (sIgA) content in the jejunum mucosa of the BA3 group was greater than the other groups (P < 0.001). Furthermore, altered intestinal microbiota was found in the BA3 group. Specifically, decreased amounts of Alistipes, Bacteroides, Odoribacter, Dehalobacterium, and Sutterella and increased amounts of Lactobacillus, Dorea, Ruminococcus, and Oscillospira were determined (P < 0.05) in the BA3 group at week 6. Meanwhile, decreased amounts of B. fragilis and C. leptum (P < 0.05) were identified in the BA3 group at week 12, which were found to be relevant for the improvement of intestinal morphology (P < 0.05) by Pearson analysis. In conclusion, simultaneous supplementation of AGP and B. subtilis for 0~3 weeks increased the relative abundance of beneficial microbiota in caecum in 0~6 weeks, then improved the intestinal morphology by elevating populations of B. fragilis and C. leptum in 7~16 weeks, and further upregulated sucrase expression and increased sIgA content in the intestinal mucosa in 13~16 weeks.
Collapse
Affiliation(s)
- Xueyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulan Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Abstract
Abstract
The use of probiotics as alternatives to antibiotics for farm animals is gaining more and more interest during recent years. Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts. The bacterial strains most frequently used as probiotic agents are Bacillus, lactic acid bacteria, Enterococcus and Saccharomyces cerevisiae. It has been suggested that multi-strain probiotics might be more effective than mono-strain probiotics due to the additive and synergistic effects, and many previous studies demonstrated that dietary complex probiotics supplementation had growth promoting effects on pigs. However, the effect of complex probiotics in practice is not always consistent, the effect of probiotic could be affected by strain composition, dosage, feed formula, and the age of animals. In this review, we will give an overview on the current use of complex probiotics for weaning, growing and finishing pigs and sows.
Collapse
|
39
|
Effect of Postpartum Endocrine Function, Metabolism, and Mastitis on Fertility in High-Yielding Cows – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Decreasing fertility in dairy cows, especially in the highest yielders, may be due to excessive metabolic burdens placed on their bodies. Many authors attribute decreasing reproductive efficiency in high-yielding cows to energy deficiencies in early lactation and to associated metabolic and hormonal disorders. The complexity of the issues involved in the efficient reproductive management of cows and the scientifically and practically important understanding of factors affecting fertility in high-producing cows mandate continuous updating of existing knowledge. The aim of this study was to present the effect of postpartum endocrine function, metabolism, and mastitis on fertility in high-yielding cows. Gaining insight into these mechanisms and their relationships with factors such as nutrition and milk yield appears to be crucial for improving dairy cow fertility.
Collapse
|
40
|
Cesare AD, Palma F, Lucchi A, Pasquali F, Manfreda G. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing. Ital J Food Saf 2018; 7:6923. [PMID: 29732327 PMCID: PMC5913701 DOI: 10.4081/ijfs.2018.6923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/14/2023] Open
Abstract
In the last few years metagenomic and 16S rRNA sequencing have completly changed the microbiological investigations of food products. In this preliminary study, the microbiological profile of chicken carcasses collected from animals fed with different diets were tested by using shotgun metagenomic sequencing. A total of 15 carcasses have been collected at the slaughetrhouse at the end of the refrigeration tunnel from chickens reared for 35 days and fed with a control diet (n=5), a diet supplemented with 1500 FTU/kg of commercial phytase (n=5) and a diet supplemented with 1500 FTU/kg of commercial phytase and 3g/kg of inositol (n=5). Ten grams of neck and breast skin were obtained from each carcass and submited to total DNA extraction by using the DNeasy Blood & Tissue Kit (Qiagen). Sequencing libraries have been prepared by using the Nextera XT DNA Library Preparation Kit (Illumina) and sequenced in a HiScanSQ (Illumina) at 100 bp in paired ends. A number of sequences ranging between 5 and 9 million was obtained for each sample. Sequence analysis showed that Proteobacteria and Firmicutes represented more than 98% of whole bacterial populations associated to carcass skin in all groups but their abundances were different between groups. Moraxellaceae and other degradative bacteria showed a significantly higher abundance in the control compared to the treated groups. Furthermore, Clostridium perfringens showed a relative frequency of abundance significantly higher in the group fed with phytase and Salmonella enterica in the group fed with phytase plus inositol. The results of this preliminary study showed that metagenome sequencing is suitable to investigate and monitor carcass microbiota in order to detect specific pathogenic and/or degradative populations.
Collapse
Affiliation(s)
- Alessandra De Cesare
- Department of Agriculture and Food Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Federica Palma
- Department of Agriculture and Food Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Alex Lucchi
- Department of Agriculture and Food Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Frederique Pasquali
- Department of Agriculture and Food Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Gerardo Manfreda
- Department of Agriculture and Food Sciences, Alma Mater Studiorum University of Bologna, Italy
| |
Collapse
|
41
|
Hayashi RM, Lourenço MC, Kraieski AL, Araujo RB, Gonzalez-Esquerra R, Leonardecz E, da Cunha AF, Carazzolle MF, Monzani PS, Santin E. Effect of Feeding Bacillus subtilis Spores to Broilers Challenged with Salmonella enterica serovar Heidelberg Brazilian Strain UFPR1 on Performance, Immune Response, and Gut Health. Front Vet Sci 2018; 5:13. [PMID: 29487856 PMCID: PMC5816941 DOI: 10.3389/fvets.2018.00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a poultry industry and public health concern worldwide. Recently, Salmonella enterica serovar Heidelberg (SH) has been reported in broilers in Brazil. The effect of feeding a blend of three strains of Bacillus subtilis (PRO) was studied in broilers orally challenged (107 CFU/chick) or not with a SH isolated in south of Brazil (UFPR1 strain). Twelve male Cobb 500 broilers per pen were randomly assigned to six treatments in a 3 × 2 factorial experiment where PRO was added at 0, 250, or 500 g/ton of broiler feed and fed to either SH-challenged (SH Control, SH + PRO 250, and SH + PRO 500) or non-challenged birds (Control, PRO 250, and PRO 500). Broiler performance, histologic alterations in intestinal morphology, Salmonella quantification and immune cells counts in liver (macrophages, T CD4+ and T CD8+) were analyzed. Changes in the intestinal microbiota of broilers were also studied by metagenomics for Control, SH Control, SH + PRO 250, and SH + PRO 500 only. Feeding PRO at 250 or 500 g/ton reduced SH counts and incidence in liver and cecum at 21 days of age. It was observed that PRO groups increased the macrophage mobilization to the liver in SH-challenged birds (P < 0.05) but reduced these cells in the liver of non-challenged birds, showing an interesting immune cell dynamics effect. PRO at 250 g/ton did not affect gut histology, but improved animal performance (P < 0.05) while PRO at 500/ton did not affect animal performance but increased histologic alteration related to activation of the defense response in the ileum in SH challenged birds compared to control birds (P < 0.05). SH + PRO 500 group presented a more diverse cecal microbiota (Shannon–Wiener index; P < 0.05) compared to Control and SH Control groups; while SH + PRO 250 had greater ileal richness (JackkNife index) compared to Control (P < 0.05). PRO was effective in reducing Salmonella colonization in liver and cecum when fed at 250 or 500 g/ton to broilers inoculated with SH strain UFPR1. PRO promotes positive alterations in performance (at 250 g/ton), immune modulatory effect in the gastrointestinal tract, SH reduction, and intestinal microbiota modulation.
Collapse
Affiliation(s)
- Ricardo Mitsuo Hayashi
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mariana Camargo Lourenço
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | - Eduardo Leonardecz
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson Ferreira da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Paulo Sérgio Monzani
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Elizabeth Santin
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
42
|
Adhikari P, Cosby DE, Cox NA, Kim WK. Effect of dietary supplementation of nitrocompounds on Salmonella colonization and ileal immune gene expression in laying hens challenged with Salmonella Enteritidis. Poult Sci 2017; 96:4280-4286. [DOI: 10.3382/ps/pex221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022] Open
|
43
|
Macdonald SE, Nolan MJ, Harman K, Boulton K, Hume DA, Tomley FM, Stabler RA, Blake DP. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS One 2017; 12:e0184890. [PMID: 28934262 PMCID: PMC5608234 DOI: 10.1371/journal.pone.0184890] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While the direct impact of coccidiosis on animal health and welfare is clear, its influence on the enteric microbiota and by-stander effects on chicken health and production remains largely unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This study evaluated the composition and structure of the caecal microbiome in the presence or absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using 16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens was quantified by caecal lesion scoring and microbial changes associated with different lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal microbiome remained largely stable. However, infection induced significant changes in the abundance of some microbial taxa. The greatest changes were detected in birds displaying severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased, while taxa from Bacillales and Lactobacillales were decreased with the changes correlated with lesion severity. Significantly different profiles were also detected in infected birds which remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales were identified, with some increasing and others decreasing in abundance in Eimeria-infected animals. The results support the view that caecal microbiome dysbiosis associated with Eimeria infection contributes to disease pathology, and could be a target for intervention to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights that E. tenella infection has a significant impact on the abundance of some caecal bacteria with notable differences detected between lesion score categories emphasising the importance of accounting for differences in caecal lesions when investigating the relationship between E. tenella and the poultry intestinal microbiome.
Collapse
Affiliation(s)
- Sarah E. Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Richard A. Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| |
Collapse
|
44
|
Foltz K, Ritzi M, Barrett N, Evans N, Collins D, Sriranganathan N, Mahsoub H, Dalloul R, Sewell J, Persia M. Efficacy of Lactobacillus plantarum supplementation in broilers challenged with avian pathogenic Escherichia coli and Salmonella Typhimurium. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfw074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Zhao X, Yang J, Wang L, Lin H, Sun S. Protection Mechanism of Clostridium butyricum against Salmonella Enteritidis Infection in Broilers. Front Microbiol 2017; 8:1523. [PMID: 28848530 PMCID: PMC5552664 DOI: 10.3389/fmicb.2017.01523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
This study was designed to evaluate the protection mechanism of oral administration of Clostridium butyricum against Salmonella enteritidis (SE) colonization in broilers. In the current study, 180 one-day-old healthy Arbor Acres (AA) broilers were meanly grouped into three, with three replicates of 20 birds each. An negative control group was fed basal diet without SE challenge and a positive control (PC) group was fed the basal diet and challenged with SE [106 colony forming unit (CFU)/0.2 mL]. An experimental (EXP) group was fed the basal diet, orally administered with C. butyricum (106 CFU/mL) and challenged with SE (106 CFU/0.2 mL). The results showed that compared to the PC group, the SE loads in livers, spleens, and cecal contents of chickens in EXP group were significantly reduced (P < 0.05) except in spleens at the 2-day post-infection; the production of interferon-γ, interleukin (IL)-1β, IL-8, and tumor necrosis factor-α in the livers, spleens, and cecal tissues of chickens in EXP group were decreased to different extents. The results of quantitative real-time polymerase chain reaction further revealed that the inflammation of chickens in EXP group was alleviated by C. butyricum via down-regulating TLR4, MyD88, and NF-κB-dependent pathways. Collectively, these findings indicated that oral administration of C. butyricum could be a suitable alternative for preventing SE infection in broilers.
Collapse
Affiliation(s)
- Xiaonan Zhao
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Jie Yang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Lili Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
46
|
De Cesare A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, Meluzzi A. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS One 2017; 12:e0176309. [PMID: 28472118 PMCID: PMC5417446 DOI: 10.1371/journal.pone.0176309] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
This study examines the effects of the dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) (LA) on productive performances, incidence of foot pad dermatitis and caecum microbioma in broiler chickens. A total of 1,100 one-day old male Ross 308 chicks were divided into 2 groups of 16 replicates with 25 birds each and reared from 1–41 d. One group was fed a basal diet (CON) and the other group the same diet supplemented with LA. Caecum contents were collected from 4 selected birds at day one and 5 selected birds at the end of the rearing period. Then, they were submitted to DNA extraction and whole DNA shotgun metagenomic sequencing. Overall, the LA supplementation produced a significant beneficial effect on body weight gain between 15–28 d and improved feed conversion rate in the overall period. On the contrary, litter moisture, pH and incidence of the foot pad lesions were not affected by LA. Birds treated with LA showed a lower occurrence of pasty vent at both 14 and 28 d. At the end of the rearing period, Lachanospiraceae were significantly higher in LA birds in comparison to CON (17.07 vs 14.39%; P = 0.036). Moreover, Ruminococcus obeum, Clostridium clostridioforme, Roseburia intestinalis, Lachnospiraceae bacterium 14-2T and Coprococcus eutactus were significantly higher in LA birds in comparison to CON. The relative abundance of Lactobacillus acidophilus was comparable between LA and CON groups. However, a positive effect was observed in relation to the metabolic functions in the treated group, with particular reference to the higher abundance of β-glucosidase. In conclusion, the LA supplementation improved broiler productive performances and metabolic functions promoting animal health.
Collapse
Affiliation(s)
- Alessandra De Cesare
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
- * E-mail:
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Paola Moniaci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| |
Collapse
|
47
|
Li HL, Li ZJ, Wei ZS, Liu T, Zou XZ, Liao Y, Luo Y. Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers. J Zhejiang Univ Sci B 2016; 16:1019-26. [PMID: 26642185 DOI: 10.1631/jzus.b1500160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigates the long-term effects of oral tea polyphenols (TPs) and Lactobacillus brevis M8 (LB) on biochemical parameters, digestive enzymes, and cytokines expression in broilers. In experiment 1, 240 broiler chickens were selected to investigate the effects of 0.06 g/kg body weight (BW) TP and 1.0 ml/kg BW LB on broilers; in experiment 2, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of TP (0.03, 0.06, and 0.09 g/kg BW) combined with 1.0 ml/kg BW LB on broilers; in experiment 3, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of LB (0.5, 1.0, and 1.5 ml/kg BW) combined with 0.06 g/kg BW TP on broilers. The results showed that TP and LB affected serum biochemical parameters, and TP reduced serum cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) abundances in a dosage-dependent manner (P<0.05) on Day 84. Meanwhile, broilers fed a diet supplemented with TP or LB had a lower intestinal lipase activity on Day 84 compared with the control group (P<0.05). Middle and high dosages of TP increased pancreatic lipase and proventriculus pepsin activities (P<0.05). Also middle and high dosages of LB significantly enhanced pancreatic lipase activity (P<0.05), while high LB supplementation inhibited intestinal trypsase (P<0.05) on Day 84. Furthermore, both TP and LB reduced intestinal cytokine expression and nuclear factor-κ B (NF-κB) mRNA level on Days 56 and 84. In conclusion, long-term treatment of TP and LB improved lipid metabolism and digestive enzymes activities, and affected intestinal inflammatory status, which may be associated with the NF-κB signal.
Collapse
Affiliation(s)
- Hua-li Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zong-jun Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zhong-shan Wei
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Ting Liu
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-zuo Zou
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yong Liao
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yu Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| |
Collapse
|
48
|
Feng J, Wang L, Zhou L, Yang X, Zhao X. Using In Vitro Immunomodulatory Properties of Lactic Acid Bacteria for Selection of Probiotics against Salmonella Infection in Broiler Chicks. PLoS One 2016; 11:e0147630. [PMID: 26799658 PMCID: PMC4723249 DOI: 10.1371/journal.pone.0147630] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
Poultry is known to be a major reservoir of Salmonella. The use of lactic acid bacteria has become one of successful strategies to control Salmonella in poultry. The purpose of this study was to select lactic acid bacteria strains by their in vitro immunomodulatory properties for potential use as probiotics against Salmonella infection in broiler chicks. Among 101 isolated lactic acid bacteria strains, 13 strains effectively survived under acidic (pH 2.5) and bile salt (ranging from 0.1% to 1.0%) conditions, effectively inhibited growth of 6 pathogens, and adhered to Caco-2 cells. However, their in vitro immunomodulatory activities differed significantly. Finally, three strains with higher in vitro immunomodulatory properties (Lactobacillus plantarum PZ01, Lactobacillus salivarius JM32 and Pediococcus acidilactici JH231) and three strains with lower in vitro immunomodulatory activities (Enterococcus faecium JS11, Lactobacillus salivarius JK22 and Lactobacillus salivarius JM2A1) were compared for their inhibitory effects on Salmonella adhesion and invasion to Caco-2 cells in vitro and their antimicrobial effects in vivo. The former three strains inhibited Salmonella adhesion and invasion to Caco-2 cells in vitro, reduced the number of Salmonella in intestinal content, spleen and liver, reduced the levels of lipopolysaccharide-induced TNF-α factor (LITAF), IL-1β, IL-6 and IL-12 in serum and increased the level of IL-10 in serum during a challenge study in vivo more efficiently than the latter three strains. These results suggest that in vitro immunomodulatory activities could be used as additional parameters to select more effective probiotics as feed supplements for poultry.
Collapse
Affiliation(s)
- Junchang Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
49
|
Sornplang P, Leelavatcharamas V, Soikum C. Heterophil Phagocytic Activity Stimulated by Lactobacillus salivarius L61 and L55 Supplementation in Broilers with Salmonella Infection. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1657-61. [PMID: 26580288 PMCID: PMC4647107 DOI: 10.5713/ajas.15.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/01/2015] [Accepted: 06/24/2015] [Indexed: 12/02/2022]
Abstract
Newborn chicks are susceptible to Salmonella enterica serovar Enteritidis (SE). The objective of this study was to evaluate the effect of Lactobacillus probiotic isolated from chicken feces on heterophil phagocytosis in broiler chicks. A total of 150 newborn broiler chicks were divided into 5 groups (30 chicks per group) as follows: group 1 (normal control), given feed and water only, group 2 (positive control) given feed, water and SE infection, group 3 (L61 treated) given feed, water, SE infection followed by Lactobacillus salivarius L61 treatment, group 4 (L55 treated) given feed, water, SE infection followed by L. salivarius L55 treatment, and group 5 given feed, water, SE infection followed by L. salivarius L61 + L55 combination treatment. After SE infection, L. salivarius treatment lasted for 7 days. The results showed that L. salivarius L61 and L. salivarius L55 treatment, either alone or combination of both, increased the survival rate after SE infection, and upregulated heterophil phagocytosis and phagocytic index (PI). Conversely, chick groups treated with Lactobacillus showed lower SE recovery rate from cecal tonsils than that of the positive control group. The PI values of the chicken group with SE infection, followed by the combination of L. salivarius L61 and L. salivarius L55 were the highest as compared to either positive control or normal control group. Two Lactobacillus strains supplementation group showed significantly (p<0.05) higher PI value at 48 h than 24 h after treatment.
Collapse
Affiliation(s)
- Pairat Sornplang
- Fermentation research center for value added agricultural products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vichai Leelavatcharamas
- Fermentation research center for value added agricultural products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaiyaporn Soikum
- Fermentation research center for value added agricultural products, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
50
|
Płowiec A, Sławińska A, Siwek MZ, Bednarczyk MF. Effect of in ovo administration of inulin andLactococcus lactison immune-related gene expression in broiler chickens. Am J Vet Res 2015; 76:975-82. [DOI: 10.2460/ajvr.76.11.975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|