1
|
Cason EE, Carlson AV, Siemens AL, Shariat NW. High-resolution Serotyping Reveals Salmonella Surveillance Challenges in the Turkey Industry. J Food Prot 2024; 87:100319. [PMID: 38908798 DOI: 10.1016/j.jfp.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Despite extensive Salmonella controls used at processing, 5.5% of salmonellosis cases are linked to turkey. This study had two objectives: (i) to summarize USDA-FSIS turkey Salmonella verification program data and (ii) to evaluate Salmonella through turkey production and processing of 22 flocks. In objective 1, USDA-FSIS data show the average Salmonella prevalence in ground turkey from 2016 to 2022 was 15.9%, and that the leading serovar changes frequently. For objective 2, bootsocks (n = 22) were collected on-farm right after load-out. At processing, prescald wingtips (n = 6 composites of 10/flock), prechill wingtips (n = 6 composites of 10/flock), mechanically separated turkey (MST; n = 6 bins/flock), and ground turkey (n = 6 bins/flock) were collected. Salmonella prevalence was determined by a commercial qPCR and culture confirmed. In 33.2% of PCR-positive samples, Salmonella was not confirmed by culture, highlighting a discrepancy between molecular and culture detection. On-farm, 8/22 flocks were Salmonella positive, compared to 21 flocks that were positive at one or more processing locations, including 18 flocks that were positive in at least one final product sample. A logistic regression showed higher Salmonella prevalence in prescald (53.8%) than in prechill (18.2%), MST (27.3%) or ground turkey (26.5%). CRISPR-SeroSeq analysis of 148 culture-positive samples detected 18 Salmonella serovars and showed 35.1% of samples contained multiple serovars. In 16 flocks, one or more serovars detected in final products were absent from any upstream samples. Two-thirds of final product samples containing serovar Typhimurium typed as a live-attenuated Typhimurium vaccine strain. Salmonella on-farm and at prescald did not reflect Salmonella observed in final product. These data underscore the complexity of serovar tracking in turkey production and highlight challenges to identify surveillance samples that accurately represent Salmonella in turkey products.
Collapse
Affiliation(s)
- Emily E Cason
- Poultry Diagnostic and Research Center, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | | | | | - Nikki W Shariat
- Poultry Diagnostic and Research Center, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Montoro-Dasi L, Lorenzo-Rebenaque L, Marco-Fuertes A, Vega S, Marin C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023; 11:1765. [PMID: 37512937 PMCID: PMC10386103 DOI: 10.3390/microorganisms11071765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
4
|
Gosling R, Oastler C, Nichols C, Jackson G, Wales AD, Davies RH. Investigations into Salmonella Contamination in Feed Mills Producing Rations for the Broiler Industry in Great Britain. Vet Sci 2022; 9:307. [PMID: 35878324 PMCID: PMC9323917 DOI: 10.3390/vetsci9070307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Feed-associated Salmonella serovars continue to be reported in poultry flocks. A study was conducted to investigate Salmonella contamination in major commercial feed mills that produce rations for broiler chickens within Great Britain. Dust and large moist gauze swab samples (12,791) were collected from 22 feed mills on 31 visits. Salmonella was isolated from 20 mills, with 15 mills (75%) having fewer than 5% Salmonella-positive samples. Fifty-one Salmonella serovars were isolated, with a large proportion of isolates being Salmonella (S.) Kedougou (29.4%) or S. 13,23:i:- (21.4%). European Union-regulated Salmonella serovars (Enteritidis, Infantis, Typhimurium and its monophasic variants) were isolated from 12 mills, mostly from non-processing areas, accounting for 40 isolates (4.4% of all Salmonella-positive samples). Fifteen Salmonella serovars were only isolated once. In terms of individual sampling locations within the mill, the waste handling locations were significantly more likely to be Salmonella-positive than some other mill locations. When sampling locations were grouped, samples collected from finished product areas were significantly less likely to be Salmonella-positive for Salmonella than some other mill areas. In conclusion, this study found that most mills producing broiler rations showed low-level Salmonella contamination.
Collapse
Affiliation(s)
- Rebecca Gosling
- Department of Bacteriology, Animal and Plant Health Agency (APHA–Weybridge), Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (R.G.); (C.N.); (G.J.); (R.H.D.)
| | - Claire Oastler
- Department of Bacteriology, Animal and Plant Health Agency (APHA–Weybridge), Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (R.G.); (C.N.); (G.J.); (R.H.D.)
| | - Christopher Nichols
- Department of Bacteriology, Animal and Plant Health Agency (APHA–Weybridge), Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (R.G.); (C.N.); (G.J.); (R.H.D.)
- Woodland Trust, Kempton Way, Grantham NG31 6LL, UK
| | - George Jackson
- Department of Bacteriology, Animal and Plant Health Agency (APHA–Weybridge), Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (R.G.); (C.N.); (G.J.); (R.H.D.)
| | - Andrew D. Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;
| | - Robert H. Davies
- Department of Bacteriology, Animal and Plant Health Agency (APHA–Weybridge), Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (R.G.); (C.N.); (G.J.); (R.H.D.)
| |
Collapse
|
5
|
Shariat NW, Larsen BR, Schaeffer C, Richardson KE. Animal Feed Contains Diverse Populations of
Salmonella. J Appl Microbiol 2022; 132:4476-4485. [DOI: 10.1111/jam.15525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nikki W. Shariat
- Department of Population Health University of Georgia Athens GA USA
| | - Bryan R. Larsen
- Department of Population Health University of Georgia Athens GA USA
| | | | | |
Collapse
|
6
|
Olson EG, Dittoe DK, Jendza JA, Stock DA, Ricke SC. Application of Microbial Analyses to Feeds and Potential Implications for Poultry Nutrition. Poult Sci 2022; 101:101789. [PMID: 35346494 PMCID: PMC9079344 DOI: 10.1016/j.psj.2022.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Dana K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua A Jendza
- BASF Corporation, 100 Park Avenue, Florham Park, NJ 07932, USA
| | - David A Stock
- Biology Department, Stetson University, Deland, FL 32723, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Jeffrey AM, Aldrich GC, Huss AR, Knueven C, Jones CK, Zumbaugh CA. Effects of a dry acidulant addition to prevent Salmonella Contamination in Poultry Feed. Transl Anim Sci 2022; 6:txab232. [PMID: 35088042 PMCID: PMC8789567 DOI: 10.1093/tas/txab232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Salmonella subs. serovar Enteritidis is a potential biological pathogen of concern in the poultry industry. Contamination of the bacterium on eggshells has led to human illnesses. With the implementation of new regulations, animal feed manufacturing continues to be under more stringent requirements. Specifically, there is zero tolerance for Salmonella Pullorum, Gallinarum, or Enteritidis in poultry feed. For this reason, it is important to determine an effective method of reducing or preventing Salmonella contamination in feed for poultry. Therefore, the objective of this study was to evaluate the impact of sodium bisulfate (SBS; Jones-Hamilton, Co., Walbridge, OH) added to poultry mash to reduce or prevent Salmonella growth over time. A single, commercially produced all-flock poultry mash was mixed with four different levels of SBS: 0.0%, 0.25%, 0.50%, and 0.70%. After SBS addition, the treated mash was inoculated with Salmonella enterica subsp, enterica serovar Enteritidis (ATCC 13076) and enumerated for Salmonella on days 0, 1, 2, 7, and 14 post-inoculation by plating on xylose lysine deoxycholate agar. There was no significant effect of SBS inclusion level on the reduction of Salmonella (P = 0.23); however, there was a significant effect of time across treatments (P < 0.0001). Additionally, there was no inclusion level × time interaction (P = 0.68). These results suggest that while SBS inclusion has no effect on Salmonella concentrations, storage time is effective at reducing or eliminating Salmonella contamination in poultry feed.
Collapse
Affiliation(s)
- Andrea M Jeffrey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Greg C Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Anne R Huss
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, 66506, USA
| | | | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Charles A Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, 66506, USA
| |
Collapse
|
8
|
Elbediwi M, Shi D, Biswas S, Xu X, Yue M. Changing Patterns of Salmonella enterica Serovar Rissen From Humans, Food Animals, and Animal-Derived Foods in China, 1995-2019. Front Microbiol 2021; 12:702909. [PMID: 34394048 PMCID: PMC8358327 DOI: 10.3389/fmicb.2021.702909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonellosis represents a growing threat to global public health. Salmonella enterica remains the leading cause of bacterial foodborne diseases in China. Salmonella enterica serovar Rissen (S. Rissen) has been recognized as one of the emerging serovars among humans in different countries worldwide. However, knowledge on the prevalence of S. Rissen in China is largely lacking. To address essential epidemiological information for S. Rissen in China, a total of 1,182 S. Rissen isolates recovered from samples across the food chain were collected from 16 provinces or province-level cities between 1995 and 2019. Risk factors due to the consumption of animal-derived food products were also analyzed. We found S. Rissen is widely distributed, especially in the Eastern and Southern parts of China, and there is an increasing frequency in recent years as evidenced by the greater number of isolates recovered in 2016, 2017, and 2018. Interestingly, the majority of S. Rissen isolates recovered in this study were from human samples (63.4%; 749/1182), remarkably, 58.4% (438/749) were from asymptomatic carriers. We obtained most of the S. Rissen isolates from humans from Guangxi (59.5%; 446/749) and Shanghai (29.5%; 221/749). Among 302 human diarrheal isolates (40.3%; 302/749), we found 44.6% (139/311) of S. Rissen in children with diarrhea (age below 10 years old). This is of clinical significance as diarrhea is one of the crucial causes of child mortality globally and our findings here highlighted the importance of Salmonella infections in Chinese children. Additionally, S. Rissen isolates were also found to be associated with pork and poultry products in China. This study projected the most updated national-wide study of S. Rissen isolates obtained from different sources in China over the past two decades. Continued surveillance is warranted to further monitor this emerging serovar in China and elsewhere over the world.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Agriculture Research Center, Animal Health Research Institute, Cairo, Egypt
| | - Daiwei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Silpak Biswas
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
9
|
Brooks LA, Bailey MA, Krehling JT, Chasteen KS, Macklin KS. A Comparison of Colonizing Ability Between Salmonella Enteritidis and Salmonella Heidelberg in Broiler Chickens Challenged Through Feed Administration. Foodborne Pathog Dis 2021; 18:784-789. [PMID: 34287066 DOI: 10.1089/fpd.2021.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With over 1 million estimated cases per year in the United States, foodborne salmonellosis is an important public health issue. Chicken products are frequent sources of foodborne Salmonella infection. These bacteria readily colonize the gastrointestinal tract of broiler chickens, and feed is a known vector. Past research has demonstrated that the survivability of Salmonella in feed is dependent on the serovar and strain. Therefore, the objective of this research was to compare colonization incidence of these two serovars in broiler chicken tissues by administration of feed contaminated with Salmonella enterica serovar Enteritidis (SE) or Salmonella enterica serovar Heidelberg (SH). A comparison was made with equal conditions so that there was no influence of other factors. Birds were inoculated by addition of Salmonella to the feed (1 × 104 colony-forming unit [CFU]/g of feed) at 14 days of age, and the following tissue samples were collected from each bird after grow-out (days 34-41 depending on the trial): abdominal cavity swab, bone marrow swab, cloaca swab, lung swab, breast, bursa and thymus, ceca, crop, kidney, liver and spleen, skin, spinal cord, thigh, and trachea. A higher percentage of birds inoculated with SE were positive in at least one tissue compared with SH (68% and 9%, respectively), and the SE inoculated birds also showed a higher number of positive tissue samples than SH (13.1% and 0.7%, respectively). Recovery of SH was low for all tissue samples. However, recovery of SE was variable between samples, with ceca showing the highest percentage (50%). These results indicate that challenge at day 14 through feed administration results in greater colonization by SE compared with SH, suggesting that monitoring and control methods for Salmonella in feed should focus on SE to have the greatest positive effect.
Collapse
Affiliation(s)
- Lasheda A Brooks
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Kaicie S Chasteen
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Kenneth S Macklin
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
10
|
Munoz L, Pacheco W, Hauck R, Macklin K. Evaluation of commercially manufactured animal feeds to determine presence of Salmonella, Escherichia coli, and Clostridium perfringens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
12
|
Shariat NW, Feye KM, Richards AK, Booher B, Flores Z, Rubinelli PM, Olson EG, Ricke SC. Incidence of Salmonella serovars isolated from commercial animal feed mills in the United States and serovar identification using CRISPR analysis. J Appl Microbiol 2020; 130:2141-2146. [PMID: 33190398 DOI: 10.1111/jam.14933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
AIMS In this study, we sought to determine the incidence and diversity of Salmonella in a broad collection of commercial animal feeds collected from animal feed mills across the United States over an 11-month period and utilize CRISPR analysis to identify individual serovars. METHODS AND RESULTS Over two independent trials, 387 feed samples from 135 different animal feed mills in the United States were screened for Salmonella. A total of 6·2% (24/387) of samples were contaminated with Salmonella, which is concordant with similar studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-typing was used to serotype Salmonella isolates, and serovars Infantis and Tennessee were the most common. CONCLUSIONS Serogroups O:4 and O:7 were enriched in the feed samples, suggesting that these serogroups are better adapted to surviving in low moisture animal feeds. The study supports the utility of CRISPR to determine serovar type since most of the serovars identified in this study have been also isolated and identified in earlier studies using more classical serotyping methods. SIGNIFICANCE AND IMPACT OF THE STUDY This work contributes to a growing body of literature concerning the Salmonella prevalence in animal feeds and highlights the need to effectively mitigate pathogens in livestock and poultry feed.
Collapse
Affiliation(s)
- N W Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - K M Feye
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - A K Richards
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - B Booher
- Department of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Z Flores
- Department of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - P M Rubinelli
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - E G Olson
- Meat Science and Animal Biologicals Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - S C Ricke
- Meat Science and Animal Biologicals Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Abstract
Food safety remains a significant public health issue for the poultry industry. Foodborne pathogens can be in contact at all phases of poultry production, from initial hatch to processing and ultimately to retail and meal preparation. Salmonella and Campylobacter have been considered the primary foodborne pathogens associated with poultry. Both organisms are major causative agents of human foodborne illness. Limiting these pathogens in poultry production requires identifying their sources and routes of transmission. This involves the ability to isolate and precisely identify them using methodologies capable of discernment at the genome level. Interventions to reduce their occurrence in poultry production employ two basic strategies: prevention of establishment and elimination of already-established pathogens. This review provides an overview of current findings and prospects for further research on poultry food safety issues.
Collapse
Affiliation(s)
- Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
14
|
Ricke SC, Dittoe DK, Richardson KE. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front Vet Sci 2020; 7:563. [PMID: 33088825 PMCID: PMC7494846 DOI: 10.3389/fvets.2020.00563] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organic acids continue to receive considerable attention as feed additives for animal production. Most of the emphasis to date has focused on food safety aspects, particularly on lowering the incidence of foodborne pathogens in poultry and other livestock. Several organic acids are currently either being examined or are already being implemented in commercial settings. Among the several organic acids that have been studied extensively, is formic acid. Formic acid has been added to poultry diets as a means to limit Salmonella spp. and other foodborne pathogens both in the feed and potentially in the gastrointestinal tract once consumed. As more becomes known about the efficacy and impact formic acid has on both the host and foodborne pathogens, it is clear that the presence of formic acid can trigger certain pathways in Salmonella spp. This response may become more complex when formic acid enters the gastrointestinal tract and interacts not only with Salmonella spp. that has colonized the gastrointestinal tract but the indigenous microbial community as well. This review will cover current findings and prospects for further research on the poultry microbiome and feeds treated with formic acid.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
15
|
Malekmohammadi S, Shah MK, Townsend Ramsett MK, Bergholz TM. Survival and thermal resistance among four Salmonella serovars inoculated onto flaxseeds. Food Microbiol 2020; 91:103516. [PMID: 32539945 DOI: 10.1016/j.fm.2020.103516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Thermal resistance among Salmonella serovars has been shown to vary, however, such data are minimal for Salmonella inoculated onto low moisture foods. We evaluated survival and subsequent thermal resistance for 32 strains of Salmonella from four serovars (Agona, Enteritidis, Montevideo, and Tennessee) on flaxseed over 24 weeks. After inoculation, flaxseeds were adjusted to aw = 0.5 and stored at 22 °C. After 24 weeks at 22 °C, strains of serovar Agona had a significantly slower rate of reduction compared to those of Enteritidis and Montevideo (adj. p < 0.05). Inoculated flaxseeds were processed at 71 °C with vacuum steam pasteurization at 4 time points during storage. Average initial D71°C values ranging from 1.0 to 1.5 min were similar across serovars. Over 24 weeks, D71°C varied in a serovar-dependent manner. D71°C at 8, 16, and 24 weeks did not change significantly for Enteritidis and Montevideo but did for Tennessee and Agona. While significant, the differences in D71°C over time were less than 1 min, indicating that storage time prior to heat treatment would have a minimal effect on the processing time required to inactivate Salmonella on flaxseed.
Collapse
Affiliation(s)
- Sahar Malekmohammadi
- Department of Microbiological Sciences North Dakota State University, Fargo, ND, 58102, USA
| | - Manoj K Shah
- Department of Microbiological Sciences North Dakota State University, Fargo, ND, 58102, USA
| | | | - Teresa M Bergholz
- Department of Microbiological Sciences North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
16
|
Xu J, Preciado-Llanes L, Aulicino A, Decker CM, Depke M, Gesell Salazar M, Schmidt F, Simmons A, Huang WE. Single-Cell and Time-Resolved Profiling of Intracellular Salmonella Metabolism in Primary Human Cells. Anal Chem 2019; 91:7729-7737. [PMID: 31117406 PMCID: PMC7006958 DOI: 10.1021/acs.analchem.9b01010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
intracellular pathogen Salmonella enterica has evolved
an array of traits for propagation and invasion of the
intestinal layers. It remains largely elusive how Salmonella adjusts its metabolic states to survive inside immune host cells.
In this study, single-cell Raman biotechnology combined with deuterium
isotope probing (Raman-DIP) have been applied to reveal metabolic
changes of the typhoidal Salmonella Typhi Ty2, the
nontyphoidal Salmonella Typhimurium LT2, and a clinical
isolate Typhimurium D23580. By initially labeling the Salmonella strains with deuterium, we employed reverse labeling to track their
metabolic changes in the time-course infection of THP-1 cell line,
human monocyte-derived dendritic cells (MoDCs) and macrophages (Mf).
We found that, in comparison with a noninvasive serovar, the invasive Salmonella strains Ty2 and D23580 have downregulated metabolic
activity inside human macrophages and dendritic cells and used lipids
as alternative carbon source, perhaps a strategy to escape from the
host immune response. Proteomic analysis using high sensitivity mass
spectrometry validated the findings of Raman-DIP analysis.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Lorena Preciado-Llanes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Anna Aulicino
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Christoph Martin Decker
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany.,Proteomics Core, Weill Cornel Medicine-Qatar , Education City , PO 24144 Doha , Qatar
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Wei E Huang
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| |
Collapse
|
17
|
Longitudinal study reveals persistent environmental Salmonella Heidelberg in Brazilian broiler farms. Vet Microbiol 2019; 233:118-123. [PMID: 31176397 DOI: 10.1016/j.vetmic.2019.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/21/2022]
Abstract
The vast capacity for maintenance and dissemination in the environment are major challenges for the control of Salmonella spp. in poultry farms. The aim of this study was to assess environmental contamination by non-typhoidal Salmonella in successive broiler flocks in nine commercial broiler farms integrated with three companies in the south of Brazil, for a twelve-month production period. Recycled broiler litter, feed and swabs from the evaporative cooling system pads were analyzed, and the total enterobacteria count in the litter samples was ascertained. Positive broiler houses were identified in two of the three broiler companies studied, in which non-typhoidal Salmonella were detected for the first time in the first or second flock, and recurred in the recycled litter of subsequent flocks. Feed and evaporative cooling pad swab samples were also positive in at least one of the assessed flocks. The majority of the isolates (87.5%) originating from different flocks, broiler houses and companies that were sampled were identified as S. Heidelberg, with the prevalence of one single genotype. The total enterobacteria levels in the litter diminished as the flocks progressed, but the presence of Salmonella spp. was constant over the course of time, indicating that the litter management procedures were not capable of interrupting the cycle of residual contamination. The predominance of S. Heidelberg highlights its emergence and dissemination in this region, as well as its resistance and maintenance in the environment, and reinforces the need to improve prevention and recycled litter management measures.
Collapse
|
18
|
Salazar GA, Guerrero-López R, Lalaleo L, Avilés-Esquivel D, Vinueza-Burgos C, Calero-Cáceres W. Presence and diversity of Salmonella isolated from layer farms in central Ecuador. F1000Res 2019; 8:235. [PMID: 31069068 PMCID: PMC6480948 DOI: 10.12688/f1000research.18233.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Given the considerable role played by Salmonella in the incidence of food contamination, around the world, surveillance of this infection is prioritized by both food producers and health care authorities. Data remains insufficient concerning the prevalence of Salmonella in poultry systems in Ecuador and in Latin America in general. Methods: In this study, we evaluated the presence and diversity of Salmonella serovars in samples taken from 21 layer farms and backyard layers in central Ecuador during August-November 2017. Salmonella was isolated following standardized methods (ISO 6579) and the serovar determination was carried out by PCR. Results: A significant presence of Salmonella was detected in the 21 farms evaluated, with a frequency of 76% (95% confidence interval (CI): 53-92) in environmental surfaces, 33% (95%CI: 15-57) in pooled cloacal swabs from layer hens, 33% (95% CI: 13-59) on feed samples, and 10% (95%CI: 1-30) in backyard layer feces from traditional local markets. The dominant serovars detected were S. Infantis and S. Typhimurium. Conclusions: This study forms a basis for further surveillance of Salmonella serovars in layer farms in central Ecuador.
Collapse
Affiliation(s)
- Gabriela A Salazar
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Ricardo Guerrero-López
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Liliana Lalaleo
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Diana Avilés-Esquivel
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | | | - William Calero-Cáceres
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| |
Collapse
|
19
|
Ricke SC, Kim SA, Shi Z, Park SH. Molecular-based identification and detection of Salmonella in food production systems: current perspectives. J Appl Microbiol 2018; 125:313-327. [PMID: 29675864 DOI: 10.1111/jam.13888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies have greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed.
Collapse
Affiliation(s)
- S C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S A Kim
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Z Shi
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S H Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
20
|
Richardson KE, Cox NA, Cosby DE, Berrang ME. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:141-144. [PMID: 29172985 DOI: 10.1080/03601234.2017.1397467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.
Collapse
Affiliation(s)
| | - Nelson A Cox
- b USDA, ARS, U. S. National Poultry Research Center , Athens , Georgia , USA
| | - Douglas E Cosby
- b USDA, ARS, U. S. National Poultry Research Center , Athens , Georgia , USA
| | - Mark E Berrang
- b USDA, ARS, U. S. National Poultry Research Center , Athens , Georgia , USA
| |
Collapse
|
21
|
Fornefeld E, Schierstaedt J, Jechalke S, Grosch R, Schikora A, Smalla K. Persistence of Salmonella Typhimurium LT2 in Soil Enhanced after Growth in Lettuce Medium. Front Microbiol 2017; 8:757. [PMID: 28503171 PMCID: PMC5408095 DOI: 10.3389/fmicb.2017.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The persistence of Salmonella in the environment is influenced by a multitude of biotic and abiotic factors. In addition, its persistence can be influenced by preadaptation before the introduction into the environment. In order to study how preadaptation changes the survival of Salmonella in soil and therefore its potential to colonize the phytosphere, we developed a new medium based on lettuce material [lettuce medium (LM)]. Salmonella enterica serovar Typhimurium strain LT2 was used as a model for Salmonella in this study. LT2 was inoculated into soil microcosms after pregrowth in Luria Bertani (LB) broth or in LM. Survival of LT2 in soil was monitored over 56 days by plate counts and quantification of the Typhimurium-specific gene STM4497 using qPCR in total community DNA for which primers and TaqMan probe were designed in this study. Significantly enhanced persistence was observed for LT2 pregrown in LM compared to LT2 pregrown in LB, indicating a preadaptation effect. Surprisingly, no improved survival could be observed for S. Typhimurium strain 14028s and S. enterica serovar Senftenberg after pregrowth on LM. This indicates a high strain specificity of preadaptation. Results from previous studies suggested that biofilm formation could enhance the survival of human pathogens in various environments and might contribute to enhanced survival on plants. In vitro biofilm assays with several Salmonella strains revealed a strain-specific effect of LM on the biofilm formation. While LM significantly improved the biofilm formation of S. Senftenberg, the biofilm formation of LT2 was better in LB. This indicates that the better survival of LM-pregrown LT2 in soil was not linked to an improved ability to form biofilms but was likely due to other factors. Most importantly, this study showed that the medium used to pregrow Salmonella can influence its survival in soil and its biofilm formation which might influence the fate of Salmonella in soil.
Collapse
Affiliation(s)
- Eva Fornefeld
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| | | | - Sven Jechalke
- Institute of Phytopathology, Justus-Liebig University GiessenGiessen, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| |
Collapse
|
22
|
Voss-Rech D, Trevisol IM, Brentano L, Silva VS, Rebelatto R, Jaenisch FRF, Okino CH, Mores MAZ, Coldebella A, Botton SDA, Vaz CSL. Impact of treatments for recycled broiler litter on the viability and infectivity of microorganisms. Vet Microbiol 2017; 203:308-314. [PMID: 28619162 DOI: 10.1016/j.vetmic.2017.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/26/2023]
Abstract
The microbiological risk of recycled litter depends on the efficacy of the management system applied to inactivate residual microorganisms and preserve the health of the successive broiler flock. This study aimed to assess the viability and infectivity of the Newcastle Disease Virus (NDV), Infectious Bursal Disease Virus (IBDV) and Salmonella Heidelberg in recycled litter exposed to different treatments. The litter was contaminated with microorganisms and submitted to the treatments (T): T1: shallow fermentation; T2: quicklime (calcium oxide); T3: shallow fermentation followed by addition of quicklime; T4: no treatment. Sentinel chicks housed on the treated litter showed that T1 and T3 inactivated residual IBDV. Analysis of the litter subjected to T1 also showed reduced levels of total enterobacteria. T2 was not able to reduce the microorganisms assessed and its association with T1 (T3) failed to enhance the effect of the treatment. NDV did not survive in the broiler litter, regardless of the treatment applied, and it was also not detected in the sentinel chicks. S. Heidelberg remained viable in the litter submitted to all studied treatments, being isolated from the sentinel chicks of all the experimental groups. The antimicrobial activity of T1 and T3 was associated to higher ammonia contents in the broiler litter. The results indicate that the shallow fermentation treatment is efficient for controlling residual IBDV and total enterobacteria in the recycled litter.
Collapse
Affiliation(s)
- Daiane Voss-Rech
- Embrapa Suínos e Aves, BR 153, Km 110, CEP: 89715-899, Concordia, SC, Brazil; Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, CEP: 97105-900, Santa Maria, RS, Brazil.
| | - Iara Maria Trevisol
- Embrapa Suínos e Aves, BR 153, Km 110, CEP: 89715-899, Concordia, SC, Brazil
| | - Liana Brentano
- Embrapa Suínos e Aves, BR 153, Km 110, CEP: 89715-899, Concordia, SC, Brazil
| | | | - Raquel Rebelatto
- Embrapa Suínos e Aves, BR 153, Km 110, CEP: 89715-899, Concordia, SC, Brazil
| | | | - Cintia Hiromi Okino
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, CEP: 13560-970, São Carlos, SP, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR 153, Km 110, CEP: 89715-899, Concordia, SC, Brazil
| | - Sônia de Avila Botton
- Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, CEP: 97105-900, Santa Maria, RS, Brazil
| | | |
Collapse
|
23
|
Survival characteristics of monophasic Salmonella Typhimurium 4,[5],12:i:- strains derived from pig feed ingredients and compound feed. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Molina A, Granados-Chinchilla F, Jiménez M, Acuña-Calvo MT, Alfaro M, Chavarría G. Vigilance for Salmonella in Feedstuffs Available in Costa Rica: Prevalence, Serotyping and Tetracycline Resistance of Isolates Obtained from 2009 to 2014. Foodborne Pathog Dis 2015; 13:119-27. [PMID: 26682678 DOI: 10.1089/fpd.2015.2050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Relevant epidemiological information is provided in this report for Salmonella based on data obtained from a Costa Rican surveillance program for animal feeds. In addition to prevalence, a description in terms of serotypes and tetracycline (TET) resistance of the isolates is included. A total of 1725 feed and feed ingredients samples were analyzed during 2009 and 2014, from which 110 Salmonella strains were recovered (76 from poultry, 23 from meat and bone meal [MBM], 3 from pet foods, and 8 from other feed). Retrieved isolates were serotyped and tested for minimum inhibitory concentration (MIC) against TET. Salmonella strains were found mainly from poultry feed (different growth stages, n = 76/110; 69.1%) and MBM (n = 23/109; 21.1%). The rest of the isolates were recovered from feather meal, pet food, fish meal (n = 3/110; 2.3% each) and swine feed (n = 1/110; 0.9%). From the different serotypes recovered (n = 21), the most common were Salmonella Give (n = 18; 13.8%) and Salmonella Rissen (n = 6; 4.6%) for MBM and Salmonella Havana (n = 14; 10.8%), Salmonella Rissen, Salmonella Soerenga, and Salmonella Schwarzengrund (n = 8; 6.2% each) in poultry feed. Recovered strains were regarded to be sensitive or have an intermediate resistance to TET as evidenced by their MIC50 and MIC90 concentrations of 4 and 8 μg/mL for MBM and poultry feed, respectively. Compound feed and MBM samples exhibited strains characterized by 86.8 and 88.9% of the isolates classified (according to CLSI, 2015 ) as sensitive, 7.7 and 3.7% as intermediate, and 5.5% (with >256 μg/mL as the highest concentration) and 7.4% (with 64 μg/mL as the highest concentration) as resistant to TET, respectively. Salmonella serovars Anatum and Havana exhibited the highest resistance profile >256 and 128 μg/mL, respectively. Hence, MBM and poultry feed seem to be a target of interest if Salmonella incidence is to be controlled. Serotypes recovered have in the past demonstrated pathogenic capability; therefore, hereafter a stricter surveillance program may be in order.
Collapse
Affiliation(s)
- Andrea Molina
- 1 Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio , San José, Costa Rica .,2 Escuela de Zootecnia, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio , San José, Costa Rica
| | - Fabio Granados-Chinchilla
- 1 Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio , San José, Costa Rica
| | - Marisol Jiménez
- 1 Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio , San José, Costa Rica
| | - María Teresa Acuña-Calvo
- 3 Centro Nacional de Referencia de Bacteriología, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA) , Tres Ríos, Cartago, Costa Rica
| | - Margarita Alfaro
- 4 Unidad de Microbiología, Servicio Nacional de Salud Animal , Ministerio de Agricultura y Ganadería, Heredia, Costa Rica
| | - Guadalupe Chavarría
- 1 Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio , San José, Costa Rica
| |
Collapse
|
25
|
Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. ScientificWorldJournal 2015; 2015:520179. [PMID: 25664339 PMCID: PMC4310208 DOI: 10.1155/2015/520179] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 12/31/2022] Open
Abstract
Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels.
Collapse
Affiliation(s)
- A. Andino
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN 37996, USA
| | - I. Hanning
- Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Skřivanová E, Hovorková P, Čermák L, Marounek M. Potential Use of Caprylic Acid in Broiler Chickens: Effect on Salmonella Enteritidis. Foodborne Pathog Dis 2015; 12:62-7. [DOI: 10.1089/fpd.2014.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Eva Skřivanová
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Petra Hovorková
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Ladislav Čermák
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
| | - Milan Marounek
- Institute of Animal Science, Department of Physiology of Nutrition and Quality of Animal Products, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|