1
|
Tiwari N, Joshi A, Das R, Lall DS, Chary KS, Singh N. Ultrasound stimulated piezoelectric antibacterial silk composite films guiding differentiation of mesenchymal stem cells. BIOMATERIALS ADVANCES 2025; 170:214218. [PMID: 39922137 DOI: 10.1016/j.bioadv.2025.214218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Smart materials for tissue engineering have been in extensive use for few decades now. This work delves into the exploration of ultrasound-stimulated piezoelectric and antibacterial silk-based composite films as a pioneering strategy to guide the differentiation of human mesenchymal stem cells into osteogenic lineage without the application of any exogenous growth factors. The study evaluates the biocompatibility and antibacterial attributes of these films, which incorporates Barium Titanate nanoparticles (BTNPs) along with Zinc Oxide nanoparticles for obtaining high piezo modulated stimuli response and antibacterial properties. Further, to enhance the piezoelectric capability, a novel calcium doped Barium Titanate (BCTs) nanoparticles were synthesized and incorporated in silk based films with ZnO. The choice of using calcium as a doping material allows to increase its piezoelectric potential and retain its biocompatibility. The results reveal that, under the influence of ultrasound stimulation, these composite films respond to mechanical cues like low frequency ultrasound stimulations to facilitate lineage-specific differentiation of the seeded human mesenchymal stem cells. Ultrasound stimulations being wireless avoid complicated wired electric circuits and are also known to activate calcium channels in the cells which aids osteogenesis. Significantly, our findings exhibit the profound potential of these films to exploit the piezoelectric properties of BCTs, effectively enhancing the differentiation trajectories of stem cells. Furthermore, their demonstrated antibacterial capacities underscore their pivotal role in infection prevention, an important facet in the domains of tissue engineering and medical implantation. This study strongly suggests the utility of ultrasound-stimulated silk-based composite films in advancing the frontiers of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Namrata Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ritu Das
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Davinder Singh Lall
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kammari Suresh Chary
- Naval Materials Research Laboratory, DRDO, Shil Badlapur Road, Ambernath, Mumbai 421506, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
2
|
Wang W, Xu D, Ding J, Pan Y, Wang F, Su S, Peng X, Zhang S, Zhang W. Nanotechnology Innovations in Myocardial Infarction: Diagnosis, Treatment and the Way Forward. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10614-1. [PMID: 40205317 DOI: 10.1007/s12265-025-10614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Myocardial infarction (MI) is a global health concern that necessitates continued advancements in diagnostic and therapeutic modalities. Nanotechnology facilitates prompt diagnosis and personalized treatment. This manuscript explicitly reviews the application of innovative methodologies for identifying cardiac biomarkers to facilitate the early diagnosis of MI and its clinical management. Nanoscale agents such as nanoparticles and nanosensors have been employed for this purpose. Technological advancements in medical imaging are revolutionizing therapeutic approaches while reducing morbidity and mortality typically associated with cardiac tissue injury. Besides all, applications of nanotechnology in therapeutics have proven extremely effective. The development of nanoparticle-based customized drug delivery systems will contribute to more effective treatments, fewer side effects, and improved therapeutic outcomes. Biomaterials and nanoscale surgical technologies may benefit patients with MI by promoting tissue regeneration and repair. This manuscript also investigates the ethical and legal limitations that could prevent seamless incorporation of nanotechnology into clinical practice.
Collapse
Affiliation(s)
- Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yinping Pan
- Department of Pediatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shu Su
- Department of Medical Laboratory, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shitong Zhang
- Department of Neurology I, Qian Wei Hospital of Jilin Province, Changchun, 130012, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China.
| |
Collapse
|
3
|
Li H, Zhang Z, Liu J, Wang H. Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges. Biomed Eng Online 2025; 24:41. [PMID: 40200302 PMCID: PMC11980302 DOI: 10.1186/s12938-025-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Bone regeneration is integral to maintaining bone function and integrity in the body, as well as treating bone diseases, such as osteoporosis and defects. However, oxidative stress often poses a significant obstacle during bone regeneration, leading to cell damage, inflammatory responses, and subsequent impediment of normal bone tissue formation. Therefore, to maintain bone regeneration, antioxidant therapy is essential. Bone scaffolds, serving as a temporary support for bone tissue, can provide an ideal microenvironment for cell proliferation and differentiation, effectively promoting bone tissue formation. In recent years, with in-depth research on antioxidants and their mechanisms of action, the development and application of antioxidant bone scaffolds have shown tremendous potential. These antioxidant bone scaffolds not only promote osteogenic differentiation and angiogenesis, but also effectively inhibit the inflammatory response and osteoclast formation, significantly improving the efficiency of bone regeneration. Notably, with the rapid development of nanotechnology, nanozymes with multi-enzyme-like activities have been successfully constructed and encapsulated within bone scaffolds, leading to the proposal of multifunctional antioxidant strategies. Therefore, this review summarizes recent research progress, categorically introducing types of bone scaffolds and antioxidants, elucidating therapeutic strategies of antioxidant bone scaffolds, and identifying current challenges, aiming to provide valuable guidance for subsequent research.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Huiwen Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
4
|
Tsurkan MV, Bessert J, Selzer R, Tsurkan SD, Pette D, Maitz MF, Welzel PB, Werner C. FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae. Adv Healthc Mater 2025; 14:e2402593. [PMID: 39840500 PMCID: PMC12004427 DOI: 10.1002/adhm.202402593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates. The gel system features a small peptide sequence that is selectively cleaved by the coagulation factor FXa. In a cell culture environment, where active FXa is absent, the hydrogel remains stable, providing a conducive matrix for the growth of complex tissue structures or organoids. Upon the introduction of FXa, the hydrogel is designed to disintegrate rapidly, enabling the gentle release of the cultivated tissues without impairing their functionality. The efficacy of this approach is demonstrated through the ex vivo development, detachment, and transplantation of human corneal endothelial lamellae, achieving sizes relevant for clinical application in Descemet Membrane Endothelial Keratoplasty (DMEK). Furthermore, the practicality of the hydrogel system is validated in vitro using a de-endothelialized porcine cornea as a surrogate recipient. Since the FXa-cleavable peptide can be integrated into a variety of multifunctional hydrogels, it can pave the way for next-generation scaffold-free tissue engineering and organoid regenerative therapies.
Collapse
Affiliation(s)
- Mikhail V. Tsurkan
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- TissueGUARD GmbHTrienter Str 1601217DresdenGermany
| | - Juliane Bessert
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- Faculty of Medicine Carl Gustav CarusInstitute of AnatomyTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Rabea Selzer
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Sarah D. Tsurkan
- TissueGUARD GmbHTrienter Str 1601217DresdenGermany
- Else Kröner Fresenius Center for Digital HealthUniversity Hospital Carl Gustav Carus DresdenTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Dagmar Pette
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Manfred F. Maitz
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- Center for Regenerative Therapies DresdenTechnische Universität DresdenFetscherstr. 10501307DresdenGermany
| |
Collapse
|
5
|
Salleh KM, Selamat ME, Nordin NA, Zuo Q. Understanding nonwoody cellulose extractions, treatments, and properties for biomedical applications. Int J Biol Macromol 2025; 308:142455. [PMID: 40158602 DOI: 10.1016/j.ijbiomac.2025.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Cellulose is a β1-4 glucan polymer that constitutes the most abundant polysaccharide on Earth. Recent advancements in its production have provided greater control and enabled the creation of functional celluloses with enhanced physical, mechanical, and chemical properties. With the increasing interest in polysaccharide materials, attention is now focused on alternative sources, particularly those derived from nonwoody plants such as jute, sisal, cotton, flax, or hemp. Compared to wood, nonwoody plants generally possess lower lignin content, shorter growing cycles with moderate irrigation requirements, high annual crops, and substantial annual cellulose yield. The discovery of nonwoody cellulose disintegration opens new avenues for environmentally friendly approaches, naturally paving the way for the exploration of new applications for this versatile material. Despite the broad range of potential applications, cellulose has primarily been utilized for industrial purposes, with only limited interest in the biomedical sector in the early stages. Therefore, this review focuses on nonwoody cellulose extraction and pretreatments while evaluating the compositions and properties of nonwoody plants, resulting in distinctive features beneficial for biomedical applications. This review aims to facilitate a deeper understanding of nonwoody cellulose and its prospects for biomedical applications.
Collapse
Affiliation(s)
- Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Ezwan Selamat
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia.
| | - Noor Afeefah Nordin
- Institute of Power Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - Qi Zuo
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
6
|
de Carvalho LT, da Silva MB, Vieira TA, Maia LS, de Macedo EF, Tada DB, Rosa DS, Mulinari DR, Medeiros SF. Unveiling the potential of pullulan in enhancing ketoprofen release from PHBV filaments. Int J Biol Macromol 2025; 294:139421. [PMID: 39755312 DOI: 10.1016/j.ijbiomac.2024.139421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
In this study, sustainable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and pullulan (PUL)/PHBV filaments were prepared with ketoprofen for scaffold preparation. The research aimed evaluate the influence of pullulan in the filament properties, such as thermal, morphological, and biological behavior. Hansen parameters demonstrated the difference in the miscibility of the polymers and drug in the blend. This difference in solubility contributed to thermal stabilization, and reduced the crystallinity of the blend, observing a reduction in crystalline peak at 30.82° (002). The morphology change was observed by SEM images, in which ketoprofen appears to smooth and homogenize the filament surface. Cytotoxicity tests on osteoblast cells confirmed that all samples were biocompatible, and the presence of ketoprofen was comparable to the control group. Importantly, the in vitro release of ketoprofen revealed that the presence of pullulan increased the cumulative release of ketoprofen, from 0.1 % to 36 %, within 240 min of the dissolution test. This highlights the crucial role of pullulan in fine-tuning drug release. These findings underscore the potential of these materials for bone regeneration applications, combining the cytotoxic and cell adhesion properties of PHBV with the osteoblasts, and offering precise control over the degradation process and drug release through the incorporation of pullulan.
Collapse
Affiliation(s)
- Layde T de Carvalho
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil; IMT Mines Albi, RAPSODEE UMR CNRS 5302, Albi, France
| | - Maryana B da Silva
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Thiago A Vieira
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Lana S Maia
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Erenilda Ferreira de Macedo
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Dayane B Tada
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Daniella R Mulinari
- State University of Rio de Janeiro (UERJ), Department of Mechanical and Energy, Resende, RJ, Brazil.
| | - Simone F Medeiros
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil.
| |
Collapse
|
7
|
Patne AY, Mohapatra S, Mohapatra SS. Role of Nanomedicine in Transforming Pharmacotherapy for Substance Use Disorder (SUD). WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70008. [PMID: 40190158 PMCID: PMC11973540 DOI: 10.1002/wnan.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The field of nanomedicine offers revolutionary potential to reshape the discovery and development of therapeutics for diverse human diseases. However, its application has been limited in improving Substance Use Disorders (SUDs), which represent a profound public health crisis, including major types such as opioid, alcohol, stimulant, and cannabis use disorders. Pharmacotherapy, a cornerstone of SUD management, has reduced morbidity, mortality, and the societal impact of addiction, though its efficacy has ranged from none to moderate. Thus, there is a major unmet need to transform SUD pharmacotherapy to curb the epidemic of addiction. This article explores the potential roles of nanomedicine-inspired precision-targeted drug delivery, sustained release, and combination therapies to increase therapeutic efficacy and minimize side effects. Additionally, it discusses innovative mechanisms that align with the neurobiological complexities of addiction and synergistic approaches that integrate nanomedicine with behavioral interventions, device-based therapies, and emerging modalities such as immunotherapy and neurostimulation. Despite these advancements, barriers such as treatment accessibility, adherence challenges, and inequitable resource distribution persist, particularly in underserved populations. By harnessing the transformative capabilities of nanomedicine and integrating it into holistic, equitable, and personalized care frameworks, this review highlights a path forward to revolutionize the SUD pharmacotherapy landscape. The article underscores the need for continued nano-SUD pharmacotherapy research and the development of strategies to alleviate the substantial burden of addiction on individuals, families, and society.
Collapse
Affiliation(s)
- Akshata Y. Patne
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
| | - Subhra Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Department of Molecular Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| | - Shyam S. Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health DriveTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| |
Collapse
|
8
|
Bagewadi S, Rajendran M, Ganapathisankarakrishnan A, Budharaju H, Sethuraman S, Sundaramurthi D. Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues. Int J Biol Macromol 2025; 295:139563. [PMID: 39788240 DOI: 10.1016/j.ijbiomac.2025.139563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.5GL/2GG was found to be ideal for printing complex and highly intricate structures with excellent shape fidelity. Two different crosslinkers namely transglutaminase (TG) and calcium chloride (CaCl2) were utilized for crosslinking. The rheological properties of GL/GG bioink indicated that TG and dual (TG + CaCl2) crosslinked constructs had storage modulus equivalent to the that of native skin. Direct and indirect cytotoxicity assays revealed that the developed constructs were cytocompatible as well as hemocompatible. The 3D bioprinted GL/GG constructs crosslinked with only TG showed better cell viability, proliferation, cell spreading and wound healing efficiency in vitro compared to dual crosslinked constructs. In conclusion, TG crosslinking of 7.5GL/2GG bioink was ideal for bioprinting of skin tissue constructs for regenerative medicine applications. By altering the concentrations & printing conditions, this bioink may be tuned for other soft tissue engineering applications.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Madhumathi Rajendran
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Aiswarya Ganapathisankarakrishnan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
9
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
10
|
Bradshaw KJ, Leipzig ND. Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury. Tissue Eng Part A 2025; 31:108-125. [PMID: 39556330 DOI: 10.1089/ten.tea.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Tissue engineering provides a path forward for emerging personalized medicine therapies as well as the ability to bring about cures for diseases or chronic injuries. Traumatic spinal cord injuries (SCIs) are an example of a chronic injury in which no cure or complete functional recovery treatment has been developed. In part, this has been due to the complex and interconnected nature of the central nervous system (CNS), the cellular makeup, its extracellular matrix (ECM), and the injury site pathophysiology. One way to combat the complex nature of an SCI has been to create functional tissue-engineered scaffolds that replace or replenish the aspects of the CNS and tissue/ECM that are damaged following the immediate injury and subsequent immune response. This can be achieved by employing the tissue-engineering triad consisting of cells, biomaterial(s), and environmental factors. Stem cells, with their innate ability to proliferate and differentiate, are a common choice for cellular therapies. Natural or synthetic biomaterials that have tunable characteristics are normally used as the scaffold base. Environmental factors can range from drugs to growth factors (GFs) or proteins, depending on if the idea would be to stimulate exogeneous or endogenous cell populations or just simply retain cells on the scaffold for effective transplantation. For functional regeneration and integration for SCI, the scaffold must promote neuroprotection and neuroplasticity. Tissue-engineering strategies have shown benefits including neuronal differentiation, axonal regeneration, axonal outgrowth, integration into the native spinal cord, and partial functional recovery. Overall, this review focuses on the background that causes SCI to be so difficult to treat, the individual components of the tissue-engineering triad, and how combinatorial scaffolds can be beneficial toward the prospects of future SCI recovery.
Collapse
Affiliation(s)
- Katherine J Bradshaw
- Department of Biomedical Engineering, Auburn Science and Engineering Center #275, The University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Biomedical Engineering, Auburn Science and Engineering Center #275, The University of Akron, Akron, Ohio, USA
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
11
|
Nguyen CT, Le VP, Le TH, Kim JS, Back SH, Koo KI. Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers. J Funct Biomater 2025; 16:35. [PMID: 39852591 PMCID: PMC11766338 DOI: 10.3390/jfb16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver's intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes.
Collapse
Affiliation(s)
- Chanh-Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
| | - Jeong Sook Kim
- Department of Obstetrics and Gynecology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea;
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyo-in Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (C.-T.N.)
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
12
|
Damiri F, Fatimi A, Liu Y, Musuc AM, Fajardo AR, Gowda BHJ, Vora LK, Shavandi A, Okoro OV. Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review. Carbohydr Polym 2025; 348:122845. [PMID: 39567171 DOI: 10.1016/j.carbpol.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Polysaccharide hydrogels, which can mimic the natural extracellular matrix and possess appealing physicochemical and biological characteristics, have emerged as significant bioinks for 3D bioprinting. They are highly promising for applications in tissue engineering and regenerative medicine because of their ability to enhance cell adhesion, proliferation, and differentiation in a manner akin to the natural cellular environment. This review comprehensively examines the fabrication methods, characteristics, and applications of polysaccharide hydrogel-driven 3D bioprinting, underscoring its potential in tissue engineering, drug delivery, and regenerative medicine. To contribute pertinent knowledge for future research in this field, this review critically examines key aspects, including the chemistry of carbohydrates, manufacturing techniques, formulation of bioinks, and characterization of polysaccharide-based hydrogels. Furthermore, this review explores the primary advancements and applications of 3D-printed polysaccharide hydrogels, encompassing drug delivery systems with controlled release kinetics and targeted therapy, along with tissue-engineered constructs for bone, cartilage, skin, and vascular regeneration. The use of these 3D bioprinted hydrogels in innovative research fields, including disease modeling and drug screening, is also addressed. Despite notable progress, challenges, including modulating the chemistry and properties of polysaccharides, enhancing bioink printability and mechanical properties, and achieving long-term in vivo stability, have been highlighted.
Collapse
Affiliation(s)
- Fouad Damiri
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - B H Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom.
| | - Armin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba V Okoro
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
13
|
Dinescu VC, Martin L, Bica M, Vasile RC, Gresita A, Bunescu M, Ruscu MA, Aldea M, Rotaru-Zavaleanu AD. Hydrogel-Based Innovations in Carpal Tunnel Syndrome: Bridging Pathophysiological Complexities and Translational Therapeutic Gaps. Gels 2025; 11:52. [PMID: 39852023 PMCID: PMC11764971 DOI: 10.3390/gels11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Carpal Tunnel Syndrome (CTS) is a prevalent neuropathic disorder caused by chronic compression of the median nerve, leading to sensory and motor impairments. Conventional treatments, such as corticosteroid injections, wrist splinting, and surgical decompression, often fail to provide adequate outcomes for chronic or recurrent cases, emphasizing the need for innovative therapies. Hydrogels, highly biocompatible three-dimensional biomaterials with customizable properties, hold significant potential for CTS management. Their ability to mimic the extracellular matrix facilitates localized drug delivery, anti-adhesion barrier formation, and tissue regeneration. Advances in hydrogel engineering have introduced stimuli-responsive systems tailored to the biomechanical environment of the carpal tunnel, enabling sustained therapeutic release and improved tissue integration. Despite these promising developments, hydrogel applications for CTS remain underexplored. Key challenges include the absence of CTS-specific preclinical models and the need for rigorous clinical validation. Addressing these gaps could unlock the full potential of hydrogel-based interventions, which offer minimally invasive, customizable solutions that could improve long-term outcomes and reduce recurrence rates. This review highlights hydrogels as a transformative approach to CTS therapy, advocating for continued research to address translational barriers. These innovations have the potential to redefine the treatment landscape, significantly enhancing patient care and quality of life.
Collapse
Affiliation(s)
- Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Liviu Martin
- Faculty of Medical Care, Titu Maiorescu University, Văcărești Road, no 187, 040051 Bucharest, Romania;
| | - Marius Bica
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Ramona Constantina Vasile
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| | - Andrei Gresita
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Marius Bunescu
- Department of Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Mihai Andrei Ruscu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| | - Madalina Aldea
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Alexandra Daniela Rotaru-Zavaleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania; (M.A.R.); (A.D.R.-Z.)
| |
Collapse
|
14
|
Ramírez-Ruiz F, Núñez-Tapia I, Piña-Barba MC, Alvarez-Pérez MA, Guarino V, Serrano-Bello J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications. Bioengineering (Basel) 2025; 12:46. [PMID: 39851320 PMCID: PMC11759179 DOI: 10.3390/bioengineering12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
In the last thirty years, tissue engineering (TI) has emerged as an alternative method to regenerate tissues and organs and restore their function by implanting specific lineage cells, growth factors, or biomolecules functionalizing a matrix scaffold. Recently, several pathologies have led to bone loss or damage, such as malformations, bone resorption associated with benign or malignant tumors, periodontal disease, traumas, and others in which a discontinuity in tissue integrity is observed. Bone tissue is characterized by different stiffness, mechanical traction, and compression resistance as a function of the different compartments, which can influence susceptibility to injury or destruction. For this reason, research into repairing bone defects began several years ago to find a scaffold to improve bone regeneration. Different techniques can be used to manufacture 3D scaffolds for bone tissue regeneration based on optimizing reproducible scaffolds with a controlled hierarchical porous structure like the extracellular matrix of bone. Additionally, the scaffolds synthesized can facilitate the inclusion of bone or mesenchymal stem cells with growth factors that improve bone osteogenesis, recruiting new cells for the neighborhood to generate an optimal environment for tissue regeneration. In this review, current state-of-the-art scaffold manufacturing based on the use of polycaprolactone (PCL) as a biomaterial for bone tissue regeneration will be described by reporting relevant studies focusing on processing techniques, from traditional-i.e., freeze casting, thermally induced phase separation, gas foaming, solvent casting, and particle leaching-to more recent approaches, such as 3D additive manufacturing (i.e., 3D printing/bioprinting, electrofluid dynamics/electrospinning), as well as integrated techniques. As a function of the used technique, this work aims to offer a comprehensive overview of the benefits/limitations of PCL-based scaffolds in order to establish a relationship between scaffold composition, namely integration of other biomaterial phases' structural properties (i.e., pore morphology and mechanical properties) and in vivo response.
Collapse
Affiliation(s)
- Fernanda Ramírez-Ruiz
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Israel Núñez-Tapia
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - María Cristina Piña-Barba
- Materials Research Institute, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (I.N.-T.); (M.C.P.-B.)
| | - Marco Antonio Alvarez-Pérez
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad 20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico; (F.R.-R.); (M.A.A.-P.)
| |
Collapse
|
15
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
16
|
Lin TY, Huang TY, Chiu HC, Chung YY, Lin WC, Lin HY, Lee SY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside-stimulated dental pulp stem cells-derived exosomes for wound healing and bone regeneration. J Dent Sci 2025; 20:154-163. [PMID: 39873051 PMCID: PMC11762248 DOI: 10.1016/j.jds.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses. Therefore, we aimed to unveil the potential of THSG-Exo and evaluate its regenerative capabilities through the in vitro experiment and rat bone defect model. Materials and methods The effects of hDPSC-derived exosomes, with or without THSG treatment, on repair and bone regeneration were evaluated through in vitro and in vivo studies. Finally, we conducted a proteomic analysis to meticulously compare the compositional contents of the two types of exosomes. Results In vitro data showed that 10 and 100 μM THSG-Exo enhanced cell proliferation and osteogenic differentiation, reducing wound size to 40 % of its original size. In our maxillary bone defect rat model, THSG-Exo significantly increased bone volume, trabecular thickness, and bone density in the bone defect area. In addition, proteomic analysis of THSG-Exo revealed diverse proteins linked to bone differentiation and tissue repair, including bone morphogenetic protein-1 (BMP-1) and tumor necrosis factor (TNF)-α-stimulated gene 6 (TNFAIP6). Our searches in functional databases revealed that THSG-Exo is involved in numerous biological pathways. Conclusion THSG-Exo enhanced cell proliferation, wound healing, and osteogenesis in vitro, while also expediting tissue repair and bone regeneration in vivo. The protein diversity of THSG-Exo contributes significant value in both basic and regenerative medicine.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Sachdeo RA, Khanwelkar C, Shete A. 3D Printing in Wound Healing: Innovations, Applications, and Future Directions. Cureus 2024; 16:e75331. [PMID: 39776700 PMCID: PMC11706447 DOI: 10.7759/cureus.75331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems. By mimicking the extracellular matrix (ECM) and facilitating cell proliferation, 3D-printed biomaterials have the potential to significantly accelerate the healing process. In addition, 3D bioprinting enables the production of functional skin substitutes that can be customized for individual patients. Despite the promise of these technologies, several challenges remain, including the need for improved vascularization, cost concerns, and regulatory hurdles. The future of wound healing lies in the continued integration of 3D printing with emerging technologies such as 4D printing and bioelectronics, providing opportunities for personalized and on-demand therapies. This review explores the current state of 3D printing in wound care, its challenges, and the future potential of these innovative technologies.
Collapse
Affiliation(s)
- Rahul A Sachdeo
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Chitra Khanwelkar
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Amol Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| |
Collapse
|
18
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
19
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
20
|
Kord-Parijaee E, Ferdosi-Shahandashti E, Bakhshandeh B, Pournajaf A. Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics. Tissue Eng Part C Methods 2024; 30:512-521. [PMID: 39165236 DOI: 10.1089/ten.tec.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) stand for a unique source of mesenchymal stem cells (MSCs) isolated from a neural crest origin with potential application in regenerative medicine. However, there are some limitations to the usage of these cells in clinical cell therapy such as reduced cell number and undesirable differentiation of the cell throughout frequent passages. Nowadays, studies have applied manipulation strategies to improve MSCs' effectiveness in clinical therapy. Among all of the materials used for this purpose, there is a growing trend for the use of biomaterials such as probiotic extracts or their conditioned media due to their lower toxicity. In the present study, we utilized extracts from Lactobacillus reuteri and Lactobacillus rhamnosus to assess their potential to enhance the function of GMSCs. We compared the effectiveness of these bacterial extracts to determine their relative efficacy. Bacterial extracts of two lactic acid bacteria were prepared using an ultrasonic homogenizing device. The impact of these bacterial extracts on GMSCs was evaluated through Alizarin Red and Oil Red O staining, cell counting by Trypan Blue staining, and real-time polymerase chain reaction. The findings of our study indicate that the administration of 50 μg/mL L. rhamnosus extract resulted in a greater enhancement of stemness marker expression, osteogenic differentiation, and proliferation of GMSCs compared with an equivalent concentration of L. reuteri extract. Neither of these bacterial extracts revealed any effect on the differentiation of the GMSCs into the adipogenic lineage. These findings suggest that L. rhamnosus extract could be more effective at promoting GMSCs' efficacy in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ensiyeh Kord-Parijaee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abazar Pournajaf
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Raja S, Paschoalin RT, Terra IAA, Schalla C, Guimarães F, Periyasami G, Mattoso LHC, Sechi A. Highly fluorescent hybrid nanofibers as potential nanofibrous scaffolds for studying cell-fiber interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124535. [PMID: 38830327 DOI: 10.1016/j.saa.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.
Collapse
Affiliation(s)
- Sebastian Raja
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany; Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody Street 9, Gliwice 44-100, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego Street 22b, Gliwice 44-100, Poland.
| | - Rafaella T Paschoalin
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Idelma A A Terra
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Carmen Schalla
- Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany
| | - Francisco Guimarães
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-590 São Carlos, São Paulo, Brazil
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Luiz H C Mattoso
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Antonio Sechi
- Dept. of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse, 30, D-52074 Aachen, Germany
| |
Collapse
|
22
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
23
|
Salomon I. Neurobiological Insights Into Cerebral Palsy: A Review of the Mechanisms and Therapeutic Strategies. Brain Behav 2024; 14:e70065. [PMID: 39378294 PMCID: PMC11460637 DOI: 10.1002/brb3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by impaired mobility and posture caused by brain injury or abnormal development. CP relates to a variety of neurological mechanisms and pathways that impact the type and severity of motor disability, as well as comorbidities. The heterogeneity in clinical phenotype, pathogenesis, and etiology poses significant challenges for effective therapeutic intervention. OBJECTIVES The review aims to provide a comprehensive analysis of the neurobiological mechanisms underlying CP and evaluate current and prospective therapeutic strategies, highlighting the necessity for targeted interventions to address the disorder's multifaceted nature. METHODS A thorough literature review was conducted, focusing on studies published in peer-reviewed journals that explore the pathophysiological mechanisms, clinical interventions, and therapeutic strategies for CP. RESULTS The pathogenesis of CP involves a complex interplay of genetic, environmental, and perinatal factors leading to brain injury. Inflammatory processes, oxidative stress, and excitotoxicity are critical in CP development. Current therapeutic approaches primarily focus on symptom management through physical and occupational therapy, as well as pharmacological interventions. Emerging therapies, including anti-inflammatory agents, antioxidants, and neuroprotective and neurotrophic agents, show potential but require further validation. Notably, although steroids provide anti-inflammatory benefits, their use in pediatric patients raises concerns regarding long-term adverse effects such as osteoporosis. CONCLUSION Despite advances in understanding CP's neurobiological underpinnings, effective therapeutic targets remain elusive. A comprehensive approach addressing CP's heterogeneity is essential. Future research should emphasize in-depth evaluations of the efficacy and safety of therapeutic agents, particularly in pediatric populations, to develop targeted and effective treatments for CP.
Collapse
Affiliation(s)
- Izere Salomon
- Department of General Medicine and SurgeryUniversity of Rwanda College of Medicine and Health SciencesKigaliRwanda
| |
Collapse
|
24
|
Gómez-Fernández H, Alhakim-Khalak F, Ruiz-Alonso S, Díaz A, Tamayo J, Ramalingam M, Larra E, Pedraz JL. Comprehensive review of the state-of-the-art in corneal 3D bioprinting, including regulatory aspects. Int J Pharm 2024; 662:124510. [PMID: 39053675 DOI: 10.1016/j.ijpharm.2024.124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The global shortage of corneal transplants has spurred an urgency in the quest for efficient treatments. This systematic review not only provides a concise overview of the current landscape of corneal morphology, physiology, diseases, and conventional treatments but crucially delves into the forefront of tissue engineering for corneal regeneration. Emphasizing cellular and acellular components, bioprinting techniques, and pertinent biological assays, it explores optimization strategies for manufacturing and cost-effectiveness. To bridge the gap between research and industrial production, the review outlines the essential regulatory strategy required in Europe, encompassing relevant directives, frameworks, and governing bodies. This comprehensive regulatory framework spans the entire process, from procuring initial components to marketing and subsequent product surveillance. In a pivotal shift towards the future, the review culminates by highlighting the latest advancements in this sector, particularly the integration of tissue therapy with artificial intelligence. This synergy promises substantial optimization of the overall process, paving the way for unprecedented breakthroughs in corneal regeneration. In essence, this review not only elucidates the current state of corneal treatments and tissue engineering but also outlines regulatory pathways and anticipates the transformative impact of artificial intelligence, providing a comprehensive guide for researchers, practitioners, and policymakers in the field.
Collapse
Affiliation(s)
- Hodei Gómez-Fernández
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Fouad Alhakim-Khalak
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Aitor Díaz
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Julen Tamayo
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Murugam Ramalingam
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| | - Eva Larra
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - José L Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
25
|
Meretsky CR, Polychronis A, Liovas D, Schiuma AT. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024; 16:e68872. [PMID: 39376883 PMCID: PMC11457798 DOI: 10.7759/cureus.68872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Tissue engineering represents a revolutionary approach in regenerative medicine, offering promising alternatives to traditional reconstructive techniques. This systematic review explores recent advances in tissue engineering, comparing their efficacy, postoperative outcomes, and patient satisfaction to conventional methods. A comprehensive literature search was conducted across PubMed, Cochrane Library, and Google Scholar, covering studies published from 2000 to 2024. Fourteen studies were selected for final analysis based on inclusion criteria focusing on outcomes such as scar quality, postoperative pain, and patient satisfaction. The review demonstrated that tissue engineering techniques consistently provided superior cosmetic outcomes with minimal scarring compared to traditional methods. Patients undergoing tissue-engineered procedures experienced mild-to-moderate postoperative pain with rapid resolution, whereas traditional techniques resulted in moderate to severe pain requiring extended management. Furthermore, patients treated with tissue engineering reported high satisfaction rates due to improved cosmetic and functional outcomes. Despite challenges such as ensuring adequate vascularization, controlling scaffold degradation, and overcoming regulatory and cost barriers, ongoing research and development are essential to fully realize the potential of these innovative therapies. Tissue engineering offers significant advantages over traditional reconstructive techniques and has the potential to profoundly improve patient care in regenerative medicine.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | - Dimitria Liovas
- Medicine, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
26
|
Javed Z, Daigavane S. Harnessing Corneal Stromal Regeneration for Vision Restoration: A Comprehensive Review of the Emerging Treatment Techniques for Keratoconus. Cureus 2024; 16:e69835. [PMID: 39435192 PMCID: PMC11492026 DOI: 10.7759/cureus.69835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Keratoconus is a progressive corneal disorder characterized by thinning and conical protrusion, leading to visual impairment that often necessitates advanced treatment strategies. Traditional management options, including corrective lenses, corneal cross-linking (CXL), and surgical interventions such as corneal transplants and intracorneal ring segments (ICRS), address symptoms but have limitations, especially in progressive or advanced cases. Recent advancements in corneal stromal regeneration offer promising alternatives for enhancing vision restoration and halting disease progression. This review explores emerging techniques focused on corneal stromal regeneration, emphasizing cell-based therapies, tissue engineering, and gene therapy. Cell-based approaches, including corneal stromal stem cells and adipose-derived stem cells, are promising to promote tissue repair and functional recovery. Tissue engineering techniques, such as developing synthetic and biological scaffolds and 3D bioprinting, are being investigated for their ability to create viable corneal grafts and implants. Additionally, gene therapy and molecular strategies, including gene editing technologies and the application of growth factors, are advancing the potential for targeted treatment and regenerative medicine. Despite these advancements, challenges remain, including technical limitations, safety concerns, and ethical considerations. This review aims to provide a comprehensive overview of these innovative approaches, highlighting their current status, clinical outcomes, and future directions in keratoconus management.
Collapse
Affiliation(s)
- Zoya Javed
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
27
|
Shinde VS, Jajoo S, Shinde RK. Advancements in Surgical Approaches for Sacrococcygeal Pilonidal Sinus: A Comprehensive Review. Cureus 2024; 16:e68502. [PMID: 39364530 PMCID: PMC11449080 DOI: 10.7759/cureus.68502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Sacrococcygeal pilonidal sinus (SPS) is a condition involving the formation of a cavity in the lower back region. It is more common among young adults and is influenced by factors such as sitting for long periods, body hair, and certain lifestyle habits. Surgical treatment is often necessary for recurring or severe cases, and various surgical techniques available, ranging from traditional surgical methods to newer, less invasive approaches. This comprehensive review examines the progress in surgical techniques for managing SPS, emphasizing the effectiveness, safety, and patient outcomes associated with different methods. It provides an overview of traditional procedures, such as excision with primary closure, and contrasts these with recent innovations like endoscopic and laser-assisted techniques. The review also considers advanced technologies, including the potential of robotic surgery and the use of specialized materials. By assessing clinical outcomes, recurrence rates, complications, and patient satisfaction, this review seeks to identify the most effective surgical strategies for SPS. Additionally, it discusses recent technological advancements and highlights areas needing further research to improve the management and treatment of this condition.
Collapse
Affiliation(s)
- Vishal S Shinde
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suhas Jajoo
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raju K Shinde
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
28
|
Modi PS, Singh A, Chaturvedi A, Agarwal S, Dutta R, Nayak R, Singh AK. Tissue chips as headway model and incitement technology. Synth Syst Biotechnol 2024; 10:86-101. [PMID: 39286054 PMCID: PMC11403008 DOI: 10.1016/j.synbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.
Collapse
Affiliation(s)
- Prerna Suchitan Modi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Awyang Chaturvedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shailly Agarwal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Raghav Dutta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Alok Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
30
|
Hajihosseintehrani M, Amini A, Heidari M, Gholipourmalekabadi M, Fadaei Fathabady F, Mostafavinia A, Ahmadi H, Khodadadi M, Naser R, Zare F, Alizadeh S, Moeinian N, Chien S, Bayat M. The Application of Photobiomodulation and Stem Cells Seeded on the Scaffold Accelerates the Wound Healing Process in Mice. J Lasers Med Sci 2024; 15:e40. [PMID: 39381785 PMCID: PMC11459249 DOI: 10.34172/jlms.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
Collapse
Affiliation(s)
- Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadhossein Heidari
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Maryam Khodadadi
- Xi’an jiaotong University School of Stomatology, Xi’an, Shaanxi Province, China
| | - Reza Naser
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sanaz Alizadeh
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| | - Mohammad Bayat
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| |
Collapse
|
31
|
Corrêa MEAB, Silveira PCL. Amniotic membrane in wound healing: new perspectives. J Wound Care 2024; 33:612-616. [PMID: 39140406 DOI: 10.12968/jowc.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.
Collapse
Affiliation(s)
- Maria Eduarda Anastácio Borgês Corrêa
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Santa Catarina State, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Santa Catarina State, Brazil
| |
Collapse
|
32
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
33
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
34
|
Kanumilli SLD, Kosuru BP, Shaukat F, Repalle UK. Advancements and Applications of Three-dimensional Printing Technology in Surgery. J Med Phys 2024; 49:319-325. [PMID: 39526161 PMCID: PMC11548071 DOI: 10.4103/jmp.jmp_89_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional (3D) printing technology has revolutionized surgical practices, offering precise solutions for planning, education, and patient care. Surgeons now wield tangible, patient-specific 3D models derived from imaging data, allowing for meticulous presurgical planning. These models enhance surgical precision, reduce operative times, and minimize complications, ultimately improving patient outcomes. The technology also serves as a powerful educational tool, providing hands-on learning experiences for medical professionals and clearer communication with patients and their families. Despite its advantages, challenges such as model accuracy and material selection exist. Ongoing advancements, including bioactive materials and artificial intelligence integration, promise to further enhance 3D printing's impact. The future of 3D printing in surgery holds potential for regenerative medicine, increased global accessibility, and collaboration through telemedicine. Interdisciplinary collaboration between medical and engineering fields is crucial for responsible and innovative use of this technology.
Collapse
Affiliation(s)
| | - Bhanu P. Kosuru
- Department of Internal Medicine, University of Pittsburgh Medical Center East, Monroeville, Pennsylvania, USA
| | - Faiza Shaukat
- Department of General Surgery, Akhtar Saeed Medical and Dental College, Lahore, Punjab, India
| | - Uday Kumar Repalle
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
35
|
Chandrashekar S, Jeyaraman M, Mounissamy P, Jeyaraman N, Khanna M, Gupta A. Safety and Efficacy of Bone-Marrow Aspirate Concentrate in Hip Osteoarthritis: A Systematic Review of Current Clinical Evidence. Indian J Orthop 2024; 58:835-844. [PMID: 38948376 PMCID: PMC11208346 DOI: 10.1007/s43465-024-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/04/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Hip osteoarthritis (OA) is one of the leading causes of disability and morbidity worldwide. It is estimated to affect 9.2% individuals globally with age over 45 years. Conventional treatment modalities have limitations and side-effects. To overcome these limitations, over the last decade, there has been an increased interest in the use of orthobiologics derived from autologous sources including platelet-rich plasma (PRP), bone-marrow aspirate concentrate (BMAC) and adipose tissue derived formulations. This review qualitatively presents the in-vitro, pre-clinical, clinical and on-going clinical studies exploring the safety and efficacy of BMAC for management of hip OA. MATERIALS AND METHODS The electronic database search was done through PubMed, Embase, Web of Science, Scopus, ProQuest and Google Scholar till February 2024. The search terms used were "osteoarthritis" OR "hip osteoarthritis" OR "orthobiologics" OR "efficacy or use of orthobiologic treatment" OR "bone-marrow concentrate" OR "bone-marrow aspirate concentrate", AND "BMAC". The inclusion criteria were clinical studies of any level of evidence written in the English language, published till February 2024, evaluating the safety and efficacy of intra-articular administration of BMAC for the management of hip OA. RESULTS A total of 5 studies were included in this review for qualitative data synthesis. The total number of patients who participated in the study was 182, ranging from 4 to 112 in a single study. No adverse events were reported throughout the duration of the study. In addition, intra-articular administration of BMAC led to reduced pain, and improved function and overall quality of life (QoL). CONCLUSION The results from this review demonstrated that administration of BMAC is safe and potentially efficacious in terms of reducing pain, improving function and overall QoL of patients with hip OA in short- and mid-term average follow-up based on the included studies. Nonetheless, more adequately powered, multi-center, prospective, double-blind, non-randomized and randomized controlled trials with long-term follow-up are warranted to establish long-term safety and efficacy of BMAC for management of hip OA and justify its routine clinical use.
Collapse
Affiliation(s)
- Sushma Chandrashekar
- Fellow in Orthopaedic Rheumatology, Dr RML National Law University, Lucknow, 226010 Uttar Pradesh India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077 Tamil Nadu India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
| | - Prabu Mounissamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077 Tamil Nadu India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, Dr KNS Mayo Institute of Medical Sciences, Lucknow, 225001 Uttar Pradesh India
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- Regenerative Orthopaedics, Noida, 201301 Uttar Pradesh India
- Future Biologics, Lawrenceville, GA 30043 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
| |
Collapse
|
36
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
37
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
38
|
Rezaee Asl RS, Rahimzadeh-Bajgiran F, Saburi E. Evaluation of osteoconductive effect of polycaprolactone (PCL) scaffold treated with fibronectin on adipose-derived mesenchymal stem cells (AD-MSCs). AMERICAN JOURNAL OF STEM CELLS 2024; 13:152-161. [PMID: 39021375 PMCID: PMC11249668 DOI: 10.62347/dmky5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Replacing damaged organs or tissues and repairing damage by tissue engineering are attracting great interest today. A potentially effective method for bone remodeling involves combining nanofiber scaffolds with extracellular matrix (ECM), and growth factors. Today, electrospun PCL-based scaffolds are widely used for tissue engineering applications. METHODS In this study, we used an electrospun polycaprolactone (PCL) scaffold coated with fibronectin (Fn), a ubiquitous ECM glycoprotein, to investigate the induction potential of this scaffold in osteogenesis with adipose-derived mesenchymal stem cells (AD-MSCs). RESULTS Scanning electron microscopy (SEM) analysis showed that fibronectin, by binding to the membrane receptors of mesenchymal stem cells (MSCs), leads to their attachment and proliferation on the PCL scaffold and provides a suitable environment for osteogenesis. In addition, biochemical tests showed that fibronectin leads to increased calcium deposition. The results also showed that alkaline phosphatase activity was significantly higher in the PCL scaffold coated with fibronectin than in the control groups (PCL scaffold group and tissue culture polystyrene (TCPS) group) (P<0.05). Also, the analysis of quantitative reverse transcription PCR (qRT-PCR) data showed that the relative expression of bone marker genes such as osteonectin (ON), osteocalcin (OC), RUNX family transcription factor 2 (RUNX2), and collagen type I alpha 1 (COL1) was much higher in the cells seeded on the PCL/Fn scaffold than in the other groups (P<0.05). CONCLUSIONS The results show that fibronectin has an increasing effect in accelerating bone formation and promising potential for use in bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
39
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
40
|
Kuchemüller KB, Pörtner R, Möller J. Implementation of mDoE-methods to a microcarrier-based expansion processes for mesenchymal stem cells. Biotechnol Prog 2024; 40:e3429. [PMID: 38334218 DOI: 10.1002/btpr.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
The need for advanced therapy medicinal products (ATMPs) has gained increased attention in recent years. In this respect, a well-designed cell expansion process is needed to efficiently manufacture the required number of cells with the desired product quality. This step is challenging due to the biological complexity of the respective primary cell (e.g., mesenchymal stem cells (MSC)) and the usage of microcarrier-based expansion systems. One accelerating approach for process design is model-assisted Design of Experiments (mDoE) combining mathematical process models and statistical tools. In this study, the mDoE workflow was used for the development of an expansion processes with human immortalized mesenchymal stem cells (hMSC-TERT) and the aim of maximizing cell yield assuming only a limited amount of prior knowledge at a very early stage of development. First, suitable microcarriers for expansion in shake flasks were screened and the differentiation of the cells was proven. Second, initial experiments were performed to generate prior knowledge, which was then used to set up the mathematical model and to estimate the model parameters. Finally, the mDoE was used to determine and evaluate the design space to be performed experimentally. Overall, a cell expansion process using microcarriers in a shake flask culture was successfully implemented and a significant increase in cell yield (up to 6,2-fold) was achieved compared to literature.
Collapse
Affiliation(s)
- Kim B Kuchemüller
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Möller
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
41
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
42
|
Murru C, Duvert L, Magdinier F, Casanova A, Alloncle AP, Testa S, Al-Kattan A. Assessment of laser-synthesized Si nanoparticle effects on myoblast motility, proliferation and differentiation: towards potential tissue engineering applications. NANOSCALE ADVANCES 2024; 6:2104-2112. [PMID: 38633050 PMCID: PMC11019504 DOI: 10.1039/d3na01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Due to their biocompatibility and biodegradability and their unique structural and physicochemical properties, laser-synthesized silicon nanoparticles (Si-NPs) are one of the nanomaterials which have been most studied as potential theragnostic tools for non-invasive therapeutic modalities. However, their ability to modulate cell behavior and to promote proliferation and differentiation is still very little investigated or unknown. In this work, ultrapure ligand free Si-NPs of 50 ± 11.5 nm were prepared by femtosecond (fs) laser ablation in liquid. After showing the ability of Si-NPs to be internalized by murine C2C12 myoblasts, the cytotoxicity of the Si-NPs on these cells was evaluated at concentrations ranging from 14 to 224 μg mL-1. Based on these findings, three concentrations of 14, 28 and 56 μg mL-1 were thus considered to study the effect on myoblast differentiation, proliferation and motility at the molecular and phenotypical levels. It was demonstrated that up to 28 μg mL-1, the Si-NPs are able to promote the proliferation of myoblasts and their subsequent differentiation. Scratch tests were also performed revealing the positive Si-NP effect on cellular motility at 14 and 28 μg mL-1. Finally, gene expression analysis confirmed the ability of Si-NPs to promote proliferation, differentiation and motility of myoblasts even at very low concentration. This work opens up novel exciting prospects for Si-NPs made by the laser process as innovative tools for skeletal muscle tissue engineering in view of developing novel therapeutic protocols for regenerative medicine.
Collapse
Affiliation(s)
- Clarissa Murru
- Aix-Marseille University, CNRS, LP3 UMR 7341 Campus de Luminy C13288 Marseille France
| | - Lucas Duvert
- Aix-Marseille University, CNRS, LP3 UMR 7341 Campus de Luminy C13288 Marseille France
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics 13385 Marseille France
| | - Frederique Magdinier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics 13385 Marseille France
| | - Adrien Casanova
- Aix-Marseille University, CNRS, LP3 UMR 7341 Campus de Luminy C13288 Marseille France
| | | | - Stefano Testa
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics 13385 Marseille France
| | - Ahmed Al-Kattan
- Aix-Marseille University, CNRS, LP3 UMR 7341 Campus de Luminy C13288 Marseille France
| |
Collapse
|
43
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
44
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
45
|
Viola M, Ainsworth MJ, Mihajlovic M, Cedillo-Servin G, van Steenbergen MJ, van Rijen M, de Ruijter M, Castilho M, Malda J, Vermonden T. Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs. Biomacromolecules 2024; 25:1563-1577. [PMID: 38323427 PMCID: PMC10934835 DOI: 10.1021/acs.biomac.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked. Melt electrowriting enables the production of reinforcing microscale fibers that can be effectively integrated with hydrogels. Yet, studies on the interaction between these micrometer scale fibers and hydrogels are limited. Here, we explored the influence of covalent interfacial interactions between reinforcing structures and silk fibroin methacryloyl hydrogels (silkMA) on the mechanical properties of the construct and cartilage-specific matrix production in vitro. For this, melt electrowritten fibers of a thermoplastic polymer blend (poly(hydroxymethylglycolide-co-ε-caprolactone):poly(ε-caprolactone) (pHMGCL:PCL)) were compared to those of the respective methacrylated polymer blend pMHMGCL:PCL as reinforcing structures. Photopolymerization of the methacrylate groups, present in both silkMA and pMHMGCL, was used to generate hybrid materials. Covalent bonding between the pMHMGCL:PCL blend and silkMA hydrogels resulted in an elastic response to the application of torque. In addition, an improved resistance was observed to compression (∼3-fold) and traction (∼40-55%) by the scaffolds with covalent links at the interface compared to those without these interactions. Biologically, both types of scaffolds (pHMGCL:PCL and pMHMGCL:PCL) showed similar levels of viability and metabolic activity, also compared to frequently used PCL. Moreover, articular cartilage progenitor cells embedded within the reinforced silkMA hydrogel were able to form a cartilage-like matrix after 28 days of in vitro culture. This study shows that hybrid cartilage constructs can be engineered with tunable mechanical properties by grafting silkMA hydrogels covalently to pMHMGCL:PCL blend microfibers at the interface.
Collapse
Affiliation(s)
- Martina Viola
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute
for Pharmaceutical Sciences (UIPS), Utrecht
University, 3508 TB Utrecht, The Netherlands
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
| | - Madison J. Ainsworth
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marko Mihajlovic
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute
for Pharmaceutical Sciences (UIPS), Utrecht
University, 3508 TB Utrecht, The Netherlands
| | - Gerardo Cedillo-Servin
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
- Department
of Biomedical Engineering, Technical University
of Eindhoven, 5612 AE Eindhoven, The Netherlands
| | - Mies J. van Steenbergen
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute
for Pharmaceutical Sciences (UIPS), Utrecht
University, 3508 TB Utrecht, The Netherlands
| | - Mattie van Rijen
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
| | - Mylène de Ruijter
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
- Department
Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584
CS Utrecht, The Netherlands
| | - Miguel Castilho
- Department
of Biomedical Engineering, Technical University
of Eindhoven, 5612 AE Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jos Malda
- Department
of Orthopedics, University Medical Centre
Utrecht, 3584 CT Utrecht, The Netherlands
- Department
Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584
CS Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute
for Pharmaceutical Sciences (UIPS), Utrecht
University, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
46
|
Shibru MG, Ali ZM, Almansoori AS, Paunovic J, Pantic IV, Corridon PR. Slaughterhouse waste: a unique and sustainable source for dECM-based bioinks. Regen Med 2024; 19:113-118. [PMID: 38356397 DOI: 10.2217/rme-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Affiliation(s)
- Meklit G Shibru
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M Ali
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Aliyaa S Almansoori
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Department of Pathophysiology, Dr. Subotica 9, RS-11129, Belgrade, Serbia
| | - Igor V Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL, 3498838, Israel
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University of Science & Technology
| | - Peter R Corridon
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
48
|
Verron E. Innovative Drug Delivery Systems for Regenerative Medicine. Pharmaceutics 2024; 16:295. [PMID: 38399349 PMCID: PMC10892195 DOI: 10.3390/pharmaceutics16020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the past two decades, research on drug delivery systems has achieved significant advances [...].
Collapse
Affiliation(s)
- Elise Verron
- Chemical and Interdisciplinarity, Synthesis, Analysis, Modelisation, CEISAM UMR CNRS 6230, University of Nantes, 44300 Nantes, France;
- Department of Elaboration and Evaluation of Drugs, Faculty of Pharmaceutical and Biological Sciences, University of Nantes, 44000 Nantes, France
- Center of Mineral Elements Dosage (CDEM), Faculty of Pharmaceutical and Biological Sciences, University of Nantes, 44000 Nantes, France
| |
Collapse
|
49
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
50
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|