1
|
Haghighi P, Jeakle EN, Sturgill BS, Abbott JR, Solis E, Devata VS, Vijayakumar G, Hernandez-Reynoso AG, Cogan SF, Pancrazio JJ. Enhanced Performance of Novel Amorphous Silicon Carbide Microelectrode Arrays in Rat Motor Cortex. MICROMACHINES 2025; 16:113. [PMID: 40047565 PMCID: PMC11857598 DOI: 10.3390/mi16020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 03/09/2025]
Abstract
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity from cortical neurons for applications that include brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic implantation conditions. This has largely been attributed to the brain's foreign body response, which is marked by neuroinflammation and gliosis in the immediate vicinity of the MEA implantation site. This has prompted the development of novel MEAs with either coatings or architectures that aim to reduce the tissue response. The present study examines the comparative performance of multi-shank planar, silicon-based devices and low-flexural-rigidity amorphous silicon carbide (a-SiC) MEAs that have a similar architecture but differ with respect to the shank cross-sectional area. Data from a-SiC arrays were previously reported in a prior study from our group. In a manner consistent with the prior work, larger cross-sectional area silicon-based arrays were implanted in the motor cortex of female Sprague-Dawley rats and weekly recordings were made for 16 weeks after implantation. Single unit metrics from the recordings were compared over the implantation period between the device types. Overall, the expression of single units measured from a-SiC devices was significantly higher than for silicon-based MEAs throughout the implantation period. Immunohistochemical analysis demonstrated reduced neuroinflammation and gliosis around the a-SiC MEAs compared to silicon-based devices. Our findings demonstrate that the a-SiC MEAs with a smaller shank cross-sectional area can record single unit activity with more stability and exhibit a reduced inflammatory response compared to the silicon-based device employed in this study.
Collapse
Affiliation(s)
- Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Eleanor N. Jeakle
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Justin R. Abbott
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Elysandra Solis
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Veda S. Devata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Gayathri Vijayakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.H.); (B.S.S.); (J.R.A.); (E.S.); (A.G.H.-R.); (S.F.C.); (J.J.P.)
| |
Collapse
|
2
|
Rodríguez-Meana B, del Valle J, Navarro X. A Combinatory Therapy of Metformin and Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrodes. Cells 2024; 13:2112. [PMID: 39768202 PMCID: PMC11726768 DOI: 10.3390/cells13242112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Neural electrodes used for bidirectional communication between the nervous system and external devices like prosthetic limbs have advanced in neuroprosthetic applications. However, their effectiveness is hindered by the foreign body reaction, a natural immune response causing inflammation and fibrosis around the implanted device. This process involves protein adsorption, immune cell recruitment, cytokine release, and fibroblast activation, leading to a fibrous capsule formation and a decrease in electrode functionality. Anti-inflammatory and antifibrotic strategies have the potential to diminish the impact of the foreign body response. In this work, we have evaluated long-term metformin administration and short-term dexamethasone administration as a combined therapy to modulate the foreign body reaction induced by a polyimide intraneural implant in the sciatic nerve of rats. After a 12-week implant, the foreign body reaction was significantly reduced only in the group administered both drugs.
Collapse
Affiliation(s)
- Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jaume del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
3
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Cuttaz EA, Bailey ZK, Chapman CAR, Goding JA, Green RA. Polymer Bioelectronics: A Solution for Both Stimulating and Recording Electrodes. Adv Healthc Mater 2024; 13:e2304447. [PMID: 38775757 DOI: 10.1002/adhm.202304447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The advent of closed-loop bionics has created a demand for electrode materials that are ideal for both stimulating and recording applications. The growing complexity and diminishing size of implantable devices for neural interfaces have moved beyond what can be achieved with conventional metallic electrode materials. Polymeric electrode materials are a recent development based on polymer composites of organic conductors such as conductive polymers. These materials present exciting new opportunities in the design and fabrication of next-generation electrode arrays which can overcome the electrochemical and mechanical limitations of conventional electrode materials. This review will examine the recent developments in polymeric electrode materials, their application as stimulating and recording electrodes in bionic devices, and their impact on the development of soft, conformal, and high-density neural interfaces.
Collapse
Affiliation(s)
- Estelle A Cuttaz
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Zachary K Bailey
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Christopher A R Chapman
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Josef A Goding
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| |
Collapse
|
5
|
Mancini V, Damaser MS, Chermansky C, Ochoa CD, Hashim H, Przydacz M, Hervé F, Martino L, Abrams P. Can we improve techniques and patients' selection for nerve stimulation suitable for lower urinary tract dysfunctions? ICI-RS 2023. Neurourol Urodyn 2024; 43:1420-1430. [PMID: 38048061 PMCID: PMC11610276 DOI: 10.1002/nau.25346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
AIMS Lower urinary tract dysfunctions (LUTD) are very common and, importantly, affect patients' quality of life (QoL). LUTD can range from urinary retention to urgency incontinence and includes a variety of symptoms. Nerve stimulation (NS) is an accepted widespread treatment with documented success for LUTD and is used widely. The aim of this review is to report the results of the discussion about how to improve the outcomes of NS for LUTD treatment. METHODS During its 2023 meeting in Bristol, the International Consultation on Incontinence Research Society discussed a literature review, and there was an expert consensus discussion focused on the emerging awareness of NS suitable for LUTD. RESULTS The consensus discussed how to improve techniques and patients' selection in NS, and high-priority research questions were identified. CONCLUSIONS Technique improvement, device programming, and patient selection are the goals of the current approach to NS. The conditional nerve stimulation with minimally invasive wireless systems and tailored algorithms hold promise for improving NS for LUTD, particularly for patients with neurogenic bladder who represent the new extended population to be treated.
Collapse
Affiliation(s)
- Vito Mancini
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Margot S. Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, and Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Carolina D. Ochoa
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Hashim Hashim
- Bristol Urological Institute, North Bristol Trust, University of Bristol, Bristol, UK
| | - Mikolaj Przydacz
- Department of Urology, Jagiellonian University Medical College, Krakow, Poland
| | - François Hervé
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Leonardo Martino
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Paul Abrams
- Bristol Urological Institute, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
O’Sullivan KP, Orazem ME, Otto KJ, Butson CR, Baker JL. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J Neural Eng 2024; 21:10.1088/1741-2552/ad5703. [PMID: 38862007 PMCID: PMC11302379 DOI: 10.1088/1741-2552/ad5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.
Collapse
Affiliation(s)
- KP O’Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - ME Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611
| | - KJ Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - CR Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, FL 32608
| | - JL Baker
- Brain and Mind Research Institute, Weil Cornell Medical College, 407 E 61 St, New York, NY 10065
| |
Collapse
|
7
|
Guan H, Lu X, Zhang D, Tang J, Dong J, Zhang G, Lian J, Lu S. Omental coating attenuates implant-induced foreign body reaction in rats. J Biomater Appl 2024; 38:858-865. [PMID: 38165217 DOI: 10.1177/08853282231226040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The objective of this study is to clarify whether the omental coating can effectively attenuate foreign body reaction (FBR) induced by implanted materials. Male Sprague-Dawley rats were injected with polydextran particle slurry intraperitoneally to activate the omentum. 7 days later, polyether polyurethane sponge discs were implanted subcutaneously on each side of the rat's back as the foreign implants to induce FBR. The next day, omental transposition were performed. The disc on the left side of each rat's back was wrapped with omental flap (omental group); the disc on the right side was untreated (control group). All discs were removed 21 days after implantation and assessed by determining the components of the fibrovascular tissue (angiogenesis, inflammation, foreign body giant cells (FBGCs) aggregation and fibrogenesis). In implants in omental group, micro vessel density (MVD), Hemoglobin (Hb) content and VEGF levels (pro-angiogenic cytokine) were increased when compared with implants from control group. Inflammatory parameters (IL-1β; macrophage accumulation-NAG activity; neutrophil accumulation- MPO levels) were decreased in implants after omental coating. Also, collagen deposition, fibrous capsule thickness, and FBGCs decreased in implants from omental group. However, intra-implant levels of TNF-α and TGF-β1 were not different after omental coating. Our findings showed for the first time that the omental coating around the implants attenuate the adverse FBR, it may be critical in developing new strategies to control FBR and improve the function and performance of the implanted materials.
Collapse
Affiliation(s)
- Haonan Guan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyi Lu
- Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuliang Lu
- Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Tsui CT, Mirkiani S, Roszko DA, Churchward MA, Mushahwar VK, Todd KG. In vitro biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia. Front Bioeng Biotechnol 2024; 12:1351087. [PMID: 38314352 PMCID: PMC10834782 DOI: 10.3389/fbioe.2024.1351087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 μm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1β), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.
Collapse
Affiliation(s)
- Christopher T. Tsui
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - David A. Roszko
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Ward NA, Hanley S, Tarpey R, Schreiber LHJ, O'Dwyer J, Roche ET, Duffy GP, Dolan EB. Intermittent actuation attenuates fibrotic behaviour of myofibroblasts. Acta Biomater 2024; 173:80-92. [PMID: 37967693 DOI: 10.1016/j.actbio.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
The foreign body response (FBR) to implanted materials culminates in the deposition of a hypo-permeable, collagen rich fibrotic capsule by myofibroblast cells at the implant site. The fibrotic capsule can be deleterious to the function of some medical implants as it can isolate the implant from the host environment. Modulation of fibrotic capsule formation has been achieved using intermittent actuation of drug delivery implants, however the mechanisms underlying this response are not well understood. Here, we use analytical, computational, and in vitro models to understand the response of human myofibroblasts (WPMY-1 stromal cell line) to intermittent actuation using soft robotics and investigate how actuation can alter the secretion of collagen and pro/anti-inflammatory cytokines by these cells. Our findings suggest that there is a mechanical loading threshold that can modulate the fibrotic behaviour of myofibroblasts, by reducing the secretion of soluble collagen, transforming growth factor beta-1 and interleukin 1-beta, and upregulating the anti-inflammatory interleukin-10. By improving our understanding of how cells involved in the FBR respond to mechanical actuation, we can harness this technology to improve functional outcomes for a wide range of implanted medical device applications including drug delivery and cell encapsulation platforms. STATEMENT OF SIGNIFICANCE: A major barrier to the successful clinical translation of many implantable medical devices is the foreign body response (FBR) and resultant deposition of a hypo-permeable fibrotic capsule (FC) around the implant. Perturbation of the implant site using intermittent actuation (IA) of soft-robotic implants has previously been shown to modulate the FBR and reduce FC thickness. However, the mechanisms of action underlying this response were largely unknown. Here, we investigate how IA can alter the activity of myofibroblast cells, and ultimately suggest that there is a mechanical loading threshold within which their fibrotic behaviour can be modulated. These findings can be harnessed to improve functional outcomes for a wide range of medical implants, particularly drug delivery and cell encapsulation devices.
Collapse
Affiliation(s)
- Niamh A Ward
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Shirley Hanley
- Flow Cytometry Core Facility, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Lucien H J Schreiber
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland; CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
11
|
Paramshetti S, Angolkar M, Al Fatease A, Alshahrani SM, Hani U, Garg A, Ravi G, Osmani RAM. Revolutionizing Drug Delivery and Therapeutics: The Biomedical Applications of Conductive Polymers and Composites-Based Systems. Pharmaceutics 2023; 15:pharmaceutics15041204. [PMID: 37111689 PMCID: PMC10145001 DOI: 10.3390/pharmaceutics15041204] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first conductive polymers (CPs) were developed during the 1970s as a unique class of organic substances with properties that are electrically and optically comparable to those of inorganic semiconductors and metals while also exhibiting the desirable traits of conventional polymers. CPs have become a subject of intensive research due to their exceptional qualities, such as high mechanical and optical properties, tunable electrical characteristics, ease of synthesis and fabrication, and higher environmental stability than traditional inorganic materials. Although conducting polymers have several limitations in their pure state, coupling with other materials helps overcome these drawbacks. Owing to the fact that various types of tissues are responsive to stimuli and electrical fields has made these smart biomaterials attractive for a range of medical and biological applications. For various applications, including the delivery of drugs, biosensors, biomedical implants, and tissue engineering, electrical CPs and composites have attracted significant interest in both research and industry. These bimodalities can be programmed to respond to both internal and external stimuli. Additionally, these smart biomaterials have the ability to deliver drugs in various concentrations and at an extensive range. This review briefly discusses the commonly used CPs, composites, and their synthesis processes. Further highlights the importance of these materials in drug delivery along with their applicability in various delivery systems.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Sultan M Alshahrani
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
- College of Applied Medical Sciences, Bisha University, Bisha 67714, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, India
| |
Collapse
|
12
|
Bao S, Lu Y, Zhang J, Xue L, Zhang Y, Wang P, Zhang F, Gu N, Sun J. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. NANOSCALE 2023; 15:3532-3541. [PMID: 36723151 DOI: 10.1039/d2nr05073k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The imbalance between the sympathetic and the parasympathetic nervous system is one of the main pathogeneses of myocardial infarction (MI). Vagus nerve stimulation (VNS), which restores autonomic nervous balance by enhancing the parasympathetic drive, is shown to have benefits for patients with MI. As a clinically safe and effective remote neuromodulation method, magnetic stimulation is expected to overcome the problems of infection and nerve injury caused by electrode implantation. However, it is difficult to achieve precise stimulation on a single vagus nerve due to the poor focus of the magnetic field. Here, we described a novel magnetic vagus nerve stimulation (mVNS) system, which consisted of an injectable chitosan/β-glycerophosphate (CS/GP) hydrogel loaded with superparamagnetic iron oxide (SPIO) nanoparticles and a mild magnetic pulse sequence. The injectable hydrogel prepared from clinically safe materials ensured minimally invasive implantation, and the SPIO nanoparticles in the hydrogel mediated the precise magnetic stimulation of a single vagus nerve. Under a mild magnetic field (∼100 mT), a decrease in heart rate and a change in vagus nerve potential were found in rats under in situ injection of a magnetic CS/GP hydrogel. Magnetic stimulation on the vagus nerve for 4 weeks (20 Hz, three times daily, 5 minutes each time) significantly improved the cardiac function and reduced the infarct size of the rats subjected to myocardial infarction, accompanied by suppression of inflammatory cell infiltration and inflammation factor expression. Taken together, these results demonstrated that the mVNS exhibited promising potential for treating myocardial infarction in the clinic.
Collapse
Affiliation(s)
- Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou, 221009, P. R. China
| | - Jian Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Le Xue
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| | - Peng Wang
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Ning Gu
- School of Medicine, Nanjing University, Nanjing, 210009, P. R. China.
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
13
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
14
|
Kang YN, Chu JU, Lee KH, Lee Y, Kim S. Design and simulation of a neural interface based on a microfluidic flexible interconnection cable for chemical delivery. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractNeural interfaces are fundamental tools for transmitting information from the nervous system. Research on the immune response of an invasive neural interface is a field that requires continuous effort. Various efforts have been made to overcome or minimize limitations through modifying the designs and materials of neural interfaces, modifying surface characteristics, and adding functions to them. In this study, we demonstrate microfluidic channels with crater-shaped structures fabricated using parylene-C membranes for fluid delivery from the perspective of theory, design, and simulation. The simulation results indicated that the fluid flow depended on the size of the outlet and the alignment of microstructures inside the fluidic channel. All the results can be used to support the design of microfluidic channels made by membranes for drug delivery.
Collapse
|
15
|
Zeng Q, Yu S, Fan Z, Huang Y, Song B, Zhou T. Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes: Structure, Electrochemistry, Durability and Biocompatibility Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193445. [PMID: 36234573 PMCID: PMC9565584 DOI: 10.3390/nano12193445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Neural interfaces provide a window for bio-signal modulation and recording with the assistance of neural microelectrodes. However, shrinking the size of electrodes results in high electrochemical impedance and low capacitance, thus limiting the stimulation/recording efficiency. In order to achieve critical stability and low power consumption, here, nanocone-shaped platinum (Pt) with an extensive surface area is proposed as an adhesive layer on a bare Pt substrate, followed by the deposition of a thin layer of iridium oxide (IrOx) to fabricate high-performance nanocone-array-based Pt-IrOx neural microelectrodes (200 μm in diameter). A uniform nanocone-shaped Pt with significant roughness is created via controlling the ratio of NH4+ and Pt4+ ions in the electrolyte, which can be widely applicable for batch production on multichannel flexible microelectrode arrays (fMEAs) and various substrates with different dimensions. The Pt-IrOx nanocomposite-coated microelectrode presents a significantly low impedance down to 0.72 ± 0.04 Ω cm2 at 1 kHz (reduction of ~92.95%). The cathodic charge storage capacity (CSCc) and charge injection capacity (CIC) reaches up to 52.44 ± 2.53 mC cm-2 and 4.39 ± 0.36 mC cm-2, respectively. Moreover, superior chronic stability and biocompatibility are also observed. The modified microelectrodes significantly enhance the adhesion of microglia, the major immune cells in the central nervous system. Therefore, such a coating strategy presents great potential for biomedical and other practical applications.
Collapse
Affiliation(s)
- Qi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
- Correspondence: (Q.Z.); (B.S.); (T.Z.)
| | - Shoujun Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zihui Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yubin Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Q.Z.); (B.S.); (T.Z.)
| | - Tian Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Q.Z.); (B.S.); (T.Z.)
| |
Collapse
|
16
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
17
|
A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Molecules 2022; 27:molecules27103126. [PMID: 35630604 PMCID: PMC9147366 DOI: 10.3390/molecules27103126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic—poly(sulfobetaine methacrylate) [poly(SBMA)]—hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young’s modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo.
Collapse
|
18
|
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022; 11:e2102087. [PMID: 35137550 PMCID: PMC9081257 DOI: 10.1002/adhm.202102087] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Porosity is an important material feature commonly employed in implants and tissue scaffolds. The presence of material voids permits the infiltration of cells, mechanical compliance, and outward diffusion of pharmaceutical agents. Various studies have confirmed that porosity indeed promotes favorable tissue responses, including minimal fibrous encapsulation during the foreign body reaction (FBR). However, increased biofilm formation and calcification is also described to arise due to biomaterial porosity. Additionally, the relevance of host responses like the FBR, infection, calcification, and thrombosis are dependent on tissue location and specific tissue microenvironment. In this review, the features of porous materials and the implications of porosity in the context of medical devices is discussed. Common methods to create porous materials are also discussed, as well as the parameters that are used to tune pore features. Responses toward porous biomaterials are also reviewed, including the various stages of the FBR, hemocompatibility, biofilm formation, and calcification. Finally, these host responses are considered in tissue specific locations including the subcutis, bone, cardiovascular system, brain, eye, and female reproductive tract. The effects of porosity across the various tissues of the body is highlighted and the need to consider the tissue context when engineering biomaterials is emphasized.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
19
|
Ranieri F, Pellegrino G, Ciancio AL, Musumeci G, Noce E, Insola A, Diaz Balzani LA, Di Lazzaro V, Di Pino G. Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation. J Physiol 2021; 600:1497-1514. [PMID: 34921406 PMCID: PMC9305922 DOI: 10.1113/jp282259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cortical integration of sensory inputs is crucial for dexterous movement. Short-latency somatosensory afferent inhibition of motor cortical output is typically produced by peripheral whole-nerve stimulation. We exploited intraneural multichannel electrodes used to provide sensory feedback for prosthesis control to assess whether and how selective intraneural sensory stimulation affects sensorimotor cortical circuits in humans. The activation of the primary somatosensory cortex (S1) was explored by recording scalp somatosensory evoked potentials. Sensorimotor integration was tested by measuring the inhibitory effect of the afferent stimulation on the output of the primary motor cortex (M1) generated by transcranial magnetic stimulation. We demonstrate in humans that selective intraneural sensory stimulation elicits a measurable activation of S1 and that it inhibits the output of M1 at the same time range of whole-nerve superficial stimulation. ABSTRACT The integration of sensory inputs in the motor cortex is crucial for dexterous movement. We recently demonstrated that a closed-loop control based on the feedback provided through intraneural multi-channel electrodes implanted in the median and ulnar nerves of a participant with upper limb amputation improved manipulation skills and increased prosthesis embodiment. Here we assessed, in the same participant, whether and how selective intraneural sensory stimulation also elicits a measurable cortical activation and affects sensorimotor cortical circuits. After estimating the activation of the primary somatosensory cortex evoked by intraneural stimulation, sensorimotor integration was investigated by testing the inhibition of primary motor cortex (M1) output to transcranial magnetic stimulation, after both intraneural and perineural stimulation. Selective sensory intraneural stimulation evoked a low-amplitude, 16 ms-latency, parietal response in the same area of the earliest component evoked by whole-nerve stimulation, compatible with fast-conducting afferent fiber activation. For the first time, we show that the same intraneural stimulation was also capable of decreasing M1 output, at the same time range of the short-latency afferent inhibition effect of whole-nerve superficial stimulation. The inhibition generated by the stimulation of channels activating only sensory fibers was stronger than the one due to intraneural or perineural stimulation of channels activating mixed fibers. We demonstrate in a human subject that the cortical sensorimotor integration inhibiting M1 output previously described after the experimental whole-nerve stimulation is present also with a more ecological selective sensory fiber stimulation. Abstract Figure: Double-sided filament electrodes (ds-FILE), bearing 16 active sites, and perineural Cuff electrodes were implanted in the median and ulnar nerve of the arm in a hand amputee (upper left panel, single nerve represented). Selectivity of stimulation (1), evoked activity in the somatosensory cortex (2), and sensorimotor integration (3) were investigated. TMS: transcranial magnetic stimulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Pellegrino
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anna Lisa Ciancio
- Research Unit of Biomedical Robotics and Biomicrosystems, Campus Bio-Medico University, Rome, Italy
| | - Gabriella Musumeci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy.,Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| | - Emiliano Noce
- Research Unit of Biomedical Robotics and Biomicrosystems, Campus Bio-Medico University, Rome, Italy
| | - Angelo Insola
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| |
Collapse
|