1
|
Thomson R, Le C, Wang L, Batstone DJ, Zhou Y, Oehmen A. Higher order volatile fatty acid metabolism and atypical polyhydroxyalkanoate production in fermentation-enhanced biological phosphorus removal. WATER RESEARCH 2025; 280:123503. [PMID: 40121909 DOI: 10.1016/j.watres.2025.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Enhanced biological phosphorus removal (EBPR) is an established wastewater treatment process, but its wider implementation has been limited by factors like high temperature and low carbon availability. Fermentation-enhanced EBPR (F-EBPR) processes have shown promise in addressing these limitations, but the underlying mechanisms are not fully understood. This study investigates the metabolism of higher order (C4-5) volatile fatty acids (VFAs) in F-EBPR systems using a combination of carbon isotope labelling and shotgun metagenomic sequencing analyses. Results show that butyrate (HBu) uptake leads to the formation of both typical (C4-5) and atypical (C6+) polyhydroxyalkanoates (PHAs) through a combination ofβ-oxidation and standard condensation pathways, while the putative role of HBu oxidisers were identified relative to substrate composition in F-EBPR processes. Metagenomic analysis reveals the presence of genes required for higher order VFA metabolism in both polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study also highlights the limitations of current models in describing F-EBPR processes and emphasises the need for improved models that account for higher order VFA metabolism and microbial community dynamics.
Collapse
Affiliation(s)
- R Thomson
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia
| | - C Le
- Asian School of the Environment, Nanyang Technological University, 637141, Singapore
| | - L Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, PR China
| | - D J Batstone
- Australian Centre for Water and Environmental Biotechnology, University of Queensland, St Lucia QLD 4072, Australia
| | - Y Zhou
- Advanced Environmental Biotechnology Center, Nanyang Technological University, 637141, Singapore.
| | - A Oehmen
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
2
|
Liu Y, Li D, Ran X, Nie W, Semeniuk I, Koretska N. Synthesis, Structure, and Properties of Polyhydroxybutyrate Derived from Azotobacter Vinelandii N-15. ChemistryOpen 2025:e2500150. [PMID: 40326197 DOI: 10.1002/open.202500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Biodegradable polymers are of great interest in addressing the current pollution problem caused by synthetic petroleum-based polymers. It is well known that various microorganisms synthesize and store high-molecular-weight polyhydroxyalkanoates in their cytoplasm as water-insoluble inclusions. In this study, the bacterium Azotobacter vinelandii N-15 strain is used for bioplastic production. The optimal polyhydroxybutyrate (PHB) yield (62% of biomass, 23.6 g L-1 dry cells) is achieved by cultivating the bacteria in Burke's medium with molasses as a carbon source (5 wt.%) at 30 °C, 220 rpm, for 50 h. The resulting polymer was characterized using thin-layer chromatography, UV-Vis, fourier transform infrared, nuclear magnetic resonance spectroscopy, gas chromatography, and X-ray diffraction. The results confirmed that the polymer is PHB with a purity of 98.9%, a molecular weight of 1.2 MDa, a crystallinity of 73%, a melting point of 179 °C, a decomposition temperature of 275 °C, a density of 1.22 g cm- 3, a melt flow index of 10 g 10 min-1, a Shore hardness of 82, a tensile strength of 30 MPa, and a relative elongation at break of 4.5%. Thus, a bioplastic with properties suitable for practical applications is successfully obtained using molasses-a byproduct of sugar production.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Dongwei Li
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Xianghai Ran
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Wei Nie
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Ihor Semeniuk
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
- L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Physical Chemistry of Fossil Fuels, 3a, Naukova Str., Lviv, 79060, Ukraine
| | - Nataliia Koretska
- L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Physical Chemistry of Fossil Fuels, 3a, Naukova Str., Lviv, 79060, Ukraine
| |
Collapse
|
3
|
Liu J, Zhang M, Zhou M, Wang Q, Jiang X, Huang Q. Exploring Biomaterial Scaffolds for Eyelid Reconstruction: A Synthesis of Experimental Findings. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40242856 DOI: 10.1089/ten.teb.2024.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This review synthesizes experimental findings on various biomaterial scaffolds used in eyelid reconstruction. It examines the structural properties, cellular responses, and functional outcomes of scaffolds such as chitosan, poly(propylene glycol fumarate)-2-hydroxyethyl methacrylate, poly(propylene glycol fumarate) - type I collagen (PPF-Col), decellularized matrix-polycaprolactone, branched polyethylene, collagen, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, and poly(lactic-co-glycolic acid. These scaffolds exhibit diverse mechanical and biological properties, with some demonstrating good biocompatibility, tunable properties, and potential for tissue repair. However, there are limitations, including concerns about long-term functionality and a lack of comprehensive evaluations. This review highlights the need for multifunctional scaffolds that combine lid replacement and ocular surface function restoration, as well as the establishment of standardized research methods. The goal is to guide future innovation in the field and improve the quality of life for patients with eyelid defects.
Collapse
Affiliation(s)
- Jincheng Liu
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Mange Zhang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Mengling Zhou
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Qingyi Wang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xin Jiang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Qin Huang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
4
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Huang P, Chen Y, Yu S, Zhou Y. Propionic acid enhances H 2 production in purple phototrophic bacteria: Insights into carbon and reducing equivalent allocation. WATER RESEARCH 2025; 269:122799. [PMID: 39577388 DOI: 10.1016/j.watres.2024.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Biohydrogen is gaining popularity as a clean and cost-effective energy source. Among the various production methods, photo fermentation (PF) with purple phototrophic bacteria (PPB) has shown great opportunity due to its high hydrogen yield. In practice, this yield is influenced by several factors, with the carbon source, particularly simple organic acid, being a key element that has attracted considerable research interest. Short-chain volatile fatty acids (VFAs), such as acetate, propionate, and butyrate, are widely found in waste streams and dark fermentation (DF) effluent. However, most studies on these VFAs focus mainly on performance evaluation, with few exploring the underlying mechanisms, which limits their applicability in real-world scenarios. To uncover the metabolic mechanisms, this study uses metagenomics to clarify the processes of reducing power production and distribution during substrate assimilation. Meanwhile, this study presents the impact of short-chain VFAs on biohydrogen, polyhydroxyalkanoates (PHA) and glycogen production by PPB. The results show that: (1) over long-term cultivation at similar COD consumption rates of 0.06 g COD/d, PPB possessed the highest hydrogen yield when fed with propionate (0.620 L H2·g COD-1) compared with butyrate (0.434) and acetate (0.361); (2) with propionate as the substrate, PPB accumulated less PHA (7 % of dry biomass) but more glycogen content (11 %), compared to butyrate (15 % PHA and 8 % glycogen) and acetate (21 % PHA and 5 % glycogen); (3) metagenomic analysis revealed that propionate resulted in the highest amounts of reducing equivalents, followed by butyrate and acetate; hydrogen production was the most efficient pathway for utilizing the reducing power with propionate, as the CO2 fixation and PHA or glycogen synthesis were ineffective for electron dissipation. This study offers insights into metabolic mechanism that could guide waste stream selection and pretreatment processes to provide favorable VFAs for the PF process, thereby enhancing PPB biohydrogen production performance in practical applications.
Collapse
Affiliation(s)
- Peitian Huang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yun Chen
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Siwei Yu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
6
|
Chen H, Klemm S, Dönitz AG, Ou Y, Schmidt B, Fleck C, Simon U, Völlmecke C. Tailoring the Mechanical Properties of Fungal Mycelium Mats with Material Extrusion Additive Manufacturing of PHBH and PLA Biopolymers. ACS OMEGA 2024; 9:49609-49617. [PMID: 39713613 PMCID: PMC11656364 DOI: 10.1021/acsomega.4c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
To advance the concept of a circular economy, fungal mycelium-based materials are drawing increased attention as substitutes for nonsustainable materials, such as petroleum-based and animal-derived products, due to their biodegradability, low carbon footprint, and cruelty-free nature. Addressing the challenge of mechanical properties in fungal mycelium products, this study presents a straightforward approach for reinforcing fungal mycelium mats. This is achieved by using two bio-based and biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and polylactic acid (PLA), via material extrusion additive manufacturing (MEX AM), commonly known as 3D printing, to produce fungal mycelium-biopolymer composites. By analyzing the mechanical properties, roughness, and morphology, this study demonstrates significant improvements in ultimate tensile strength with the application of PHBH and even more with PLA, while elasticity is reduced. The study also discusses potential improvements to enhance the quality of the fungal mycelium-biopolymer composites without trading off bio-based and biodegradable features, offering a promising pathway for the development of more durable and sustainable fungal mycelium products.
Collapse
Affiliation(s)
- Huaiyou Chen
- Faculty
III Process Sciences, Institute of Materials Science and Technology,
Chair of Advanced Ceramic Materials, Technische
Universität Berlin, Berlin 10623, Germany
| | - Sophie Klemm
- Faculty
III - Process Sciences, Institute of Materials Science and Technology,
Chair of Materials Science & Engineering/Fachgebiet Werkstofftechnik, Technische Universität Berlin, Str. des 17. Juni 135, Berlin 10623, Germany
| | - Antonia G. Dönitz
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| | - Yating Ou
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| | - Bertram Schmidt
- Faculty
III Process Sciences, Institute of Biotechnology, Chair of Applied
and Molecular Microbiology, Technische Universität
Berlin, Berlin 10623, Germany
| | - Claudia Fleck
- Faculty
III - Process Sciences, Institute of Materials Science and Technology,
Chair of Materials Science & Engineering/Fachgebiet Werkstofftechnik, Technische Universität Berlin, Str. des 17. Juni 135, Berlin 10623, Germany
| | - Ulla Simon
- Faculty
III Process Sciences, Institute of Materials Science and Technology,
Chair of Advanced Ceramic Materials, Technische
Universität Berlin, Berlin 10623, Germany
| | - Christina Völlmecke
- Faculty
V Mechanical Engineering and Transport Systems, Institute of Mechanics,
Chair of Stability and Failure of Functionally Optimized Structures, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
7
|
Zarzyka I, Krzykowska B, Hęclik K, Frącz W, Janowski G, Bąk Ł, Klepka T, Bieniaś J, Ostapiuk M, Tor-Świątek A, Droździel-Jurkiewicz M, Tomczyk A, Falkowska A, Kuciej M. Modification of Poly(3-Hydroxybutyrate) with a Linear Polyurethane Modifier and Organic Nanofiller-Preparation and Structure-Property Relationship. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5542. [PMID: 39597366 PMCID: PMC11595855 DOI: 10.3390/ma17225542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment. A potential solution to these problems is the use of biopolymers. Biopolymers include biodegradable or biosynthesizable polymers, i.e., obtained from renewable sources or produced synthetically but from raw materials of natural origin. One of them is the poly(3-hydroxybutyrate) (P3HB) biopolymer, whose properties are comparable to PP. Unfortunately, it is necessary to modify its properties to improve its processing and operational properties. In the work, hybrid polymer nanobiocomposites based on P3HB, with the addition of chain, uncross-linked polyurethane (PU) and layered aluminosilicate modified with organic salts (Cloisite®30B) were produced by extrusion process. The introduction of PU and Cloisite®30B to the polymer matrix (P3HB) influenced the processing parameters beneficially and resulted in a decrease in the extrusion temperature of more than 10 °C. The influence of the simultaneous addition of a constant amount of PU (10 m/m%) and the different amounts of nanoadditives (1, 2 and 3 m/m%) on the compatibility, morphology and static mechanical properties of the resulted nanobiocomposites were examined. The component interactions by Fourier transformation infrared spectroscopy (FTIR) analysis, nano- and microscale structure studies using small-angle X-ray scattering (SAXS) and morphology by scanning electron microscopy (SEM) were carried out, and the hardness and tensile strength of the obtained polymer nanobiocomposites were determined. FTIR analysis identified the compatibility of the polyester matrix, PU, and organomodified montmorillonite, the greatest being 3 m/m% Cloisite30B content. The addition of PU to the polyester elasticizes the material and decreases the material's strength and ductility. The presence of nanoclay enhanced the mechanical properties of nanobiocomposites. The resulting nanobiocomposites can be used in the production of short-life materials applied in gardening or agriculture.
Collapse
Affiliation(s)
- Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Karol Hęclik
- Department of Biotechnology and Bioinformatic, Rzeszów University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Wiesław Frącz
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Grzegorz Janowski
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Łukasz Bąk
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (T.K.); (A.T.-Ś.)
| | - Jarosław Bieniaś
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Monika Ostapiuk
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Aneta Tor-Świątek
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (T.K.); (A.T.-Ś.)
| | - Magda Droździel-Jurkiewicz
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Adam Tomczyk
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| | - Anna Falkowska
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| | - Michał Kuciej
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| |
Collapse
|
8
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Jeon JM, Yoon JJ, Joo JC, Yang YH. Evaluation of Blended Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Properties Containing Various 3HHx Monomers. Polymers (Basel) 2024; 16:3077. [PMID: 39518289 PMCID: PMC11548210 DOI: 10.3390/polym16213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Polyhydroxyalkanoate (PHA), specifically poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx), PHBHHx) with physical properties governed by the 3-hydroxyhexanoate (3HHx) mole fraction, is a promising bioplastic. Although engineered strains used to produce P(3HB-co-3HHx) with various 3HHx mole contents and fermentation techniques have been studied, mass production with specific 3HHx fractions and monomers depends on the batch, supply of substrates, and strains, resulting in the time-consuming development of strains and complex culture conditions for P(3HB-co-3HHx). To overcome these limitations, we blended poly(3-hydroxybutyrate) [(P(3HB), produced from C. necator H16] and P(3HB-co-20 mol%3HHx) [from C. necator 2668/pCB81] to prepare films with various 3HHx contents. We evaluated the molecular weight and physical, thermal, and mechanical properties of these films and confirmed the influence of the 3HHx monomer content on the mechanical and thermal properties as well as degradability of the blended P(3HB-co-3HHx) films containing various 3HHx mole fractions, similar to that of original microbial-based P(3HB-co-3HHx). Moreover, the degradation rate analyzed via Microbulbifer sp. was >76% at all blending ratios within 2 days, whereas a weaker effect of the 3HHx mole fraction of the blended polymer on degradation was observed. P(3HB-co-3HHx) could be produced via simple blending using abundantly produced P(3HB) and P(3HB-co-20 mol%HHx), and the resulting copolymer is applicable as a biodegradable plastic.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Bhatia SK, Patel AK, Yang YH. The green revolution of food waste upcycling to produce polyhydroxyalkanoates. Trends Biotechnol 2024; 42:1273-1287. [PMID: 38582658 DOI: 10.1016/j.tibtech.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
This review emphasizes the urgent need for food waste upcycling as a response to the mounting global food waste crisis. Focusing on polyhydroxyalkanoates (PHAs) as an alternative to traditional plastics, it examines the potential of various food wastes as feedstock for microbial fermentation and PHA production. The upcycling of food waste including cheese whey, waste cooking oil, coffee waste, and animal fat is an innovative practice for food waste management. This approach not only mitigates environmental impacts but also contributes to sustainable development and economic growth. Downstream processing techniques for PHAs are discussed, highlighting their role in obtaining high-quality materials. The study also addresses sustainability considerations, emphasizing biodegradability and recycling, while acknowledging the challenges associated with this path.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Oh SJ, Shin Y, Oh J, Kim S, Lee Y, Choi S, Lim G, Joo JC, Jeon JM, Yoon JJ, Bhatia SK, Ahn J, Kim HT, Yang YH. Strategic Use of Vegetable Oil for Mass Production of 5-Hydroxyvalerate-Containing Polyhydroxyalkanoate from δ-Valerolactone by Engineered Cupriavidus necator. Polymers (Basel) 2024; 16:2773. [PMID: 39408484 PMCID: PMC11478691 DOI: 10.3390/polym16192773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Although efforts have been undertaken to produce polyhydroxyalkanoates (PHA) with various monomers, the low yield of PHAs because of complex metabolic pathways and inhibitory substrates remains a major hurdle in their analyses and applications. Therefore, we investigated the feasibility of mass production of PHAs containing 5-hydroxyvalerate (5HV) using δ-valerolactone (DVL) without any pretreatment along with the addition of plant oil to achieve enough biomass. We identified that PhaCBP-M-CPF4, a PHA synthase, was capable of incorporating 5HV monomers and that C. necator PHB-4 harboring phaCBP-M-CPF4 synthesized poly(3HB-co-3HHx-co-5HV) in the presence of bean oil and DVL. In fed-batch fermentation, the supply of bean oil resulted in the synthesis of 49 g/L of poly(3HB-co-3.7 mol% 3HHx-co-5.3 mol%5HV) from 66 g/L of biomass. Thermophysical studies showed that 3HHx was effective in increasing the elongation, whereas 5HV was effective in decreasing the melting point. The contact angles of poly(3HB-co-3HHx-co-5HV) and poly(3HB-co-3HHx) were 109 and 98°, respectively. In addition, the analysis of microbial degradation confirmed that poly(3HB-co-3HHx-co-5HV) degraded more slowly (82% over 7 days) compared to poly(3HB-co-3HHx) (100% over 5 days). Overall, the oil-based fermentation strategy helped produce more PHA, and the mass production of novel PHAs could provide more opportunities to study polymer properties.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Gaeun Lim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| | - Jeong-Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Jong-Min Jeon
- Department of Green & Sustainable Materials R&D, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Chungcheongnam-do, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong-Jun Yoon
- Department of Green & Sustainable Materials R&D, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Chungcheongnam-do, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea;
| | - Hee-Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (Y.S.); (J.O.); (S.K.); (Y.L.); (S.C.); (G.L.); (S.K.B.)
| |
Collapse
|
11
|
González-Rojo S, Paniagua-García AI, Díez-Antolínez R. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. Microorganisms 2024; 12:1668. [PMID: 39203509 PMCID: PMC11357511 DOI: 10.3390/microorganisms12081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties. Additionally, techniques have been implemented to expand the range of renewable substrates used in PHA production. These feedstocks are inexpensive and plentiful but require costly and energy-intensive pretreatment. By removing the need for pretreatment and enabling the direct use of these raw materials, microbial biotechnology aims to reduce production costs. Furthermore, improving downstream processes to facilitate the separation of biomass from culture broth and the recovery of PHAs is critical. Genetic modifications that alter cell morphology and allow PHA secretion directly into the culture medium simplify the extraction and purification process, significantly reducing operating costs. These advances in microbial biotechnology not only enhance the efficient and sustainable production of PHAs, but also position these biopolymers as a viable and competitive alternative to petroleum-based plastics, contributing to a circular economy and reducing the dependence on fossil resources.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Chemistry and Applied Physics, Chemical Engineering Area, Campus de Vegazana s/n, University of León, 24071 León, Spain
| | - Ana Isabel Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| |
Collapse
|
12
|
Koh S, Endo R, Kahar P, Mori Y, Ogino C, Tanaka S, Tanaka S, Imai Y, Taguchi S. Complete sequence randomness of lactate-based copolymers (LAHBs) with varied lactate monomer fractions employing a series of propionyl-CoA transferases. Int J Biol Macromol 2024; 274:133055. [PMID: 38866271 DOI: 10.1016/j.ijbiomac.2024.133055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Previously, we biosynthesized an evolved version of a bio-based polylactide (PLA) on microbial platforms using our engineered lactate-polymerizing enzyme (LPE). This lactate (LA)-based copolyester, LAHB, has advantages over PLA, including improved flexibility and biodegradability, and its properties can be regulated through the LA fraction. To expand the LA-incorporation capacity and improve polymer properties, in the state of in vivo LAHB production, propionyl-CoA transferases (PCTs) that exhibited enhanced production of LA-CoA than the conventional PCTs were selected. Here, the present study has demonstrated that the LA fraction of LAHB could be altered using various PCTs. Enhanced PCT performance was achieved by balancing polymer production and cell growth. Both events are governed by the use of acetyl-CoA, a commonly shared key metabolite. This could be attributed to the different reactivities of individual PCTs towards acetyl-CoA, which serves both as a CoA donor and a leading compound in the TCA cycle. Interestingly, we found complete sequence randomness in the LAHB copolymers, independent of the LA fraction. The mechanism of LA fraction-independent sequence randomness is discussed. This new PCT-based strategy synergistically combines with the evolution of LPE to advance the LAHB project, and enables us to perform advanced applications other than LAHB production utilizing CoA-linked substrates.
Collapse
Affiliation(s)
- Sangho Koh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryota Endo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yusuke Imai
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
13
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
14
|
Thiele I, Santolin L, Detels S, Osele R, Neubauer P, Riedel SL. High-cell-density fed-batch strategy to manufacture tailor-made P(HB-co-HHx) by engineered Ralstonia eutropha at laboratory scale and pilot scale. Microb Biotechnol 2024; 17:e14488. [PMID: 38850269 PMCID: PMC11162103 DOI: 10.1111/1751-7915.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
The transition towards a sustainable bioeconomy requires the development of highly efficient bioprocesses that enable the production of bulk materials at a competitive price. This is particularly crucial for driving the commercialization of polyhydroxyalkanoates (PHAs) as biobased and biodegradable plastic substitutes. Among these, the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) shows excellent material properties that can be tuned by regulating its monomer composition. In this study, we developed a high-cell-density fed-batch strategy using mixtures of fructose and canola oil to modulate the molar composition of P(HB-co-HHx) produced by Ralstonia eutropha Re2058/pCB113 at 1-L laboratory scale up to 150-L pilot scale. With cell densities >100 g L-1 containing 70-80 wt% of PHA with tunable HHx contents in the range of 9.0-14.6 mol% and productivities of up to 1.5 g L-1 h-1, we demonstrate the tailor-made production of P(HB-co-HHx) at an industrially relevant scale. Ultimately, this strategy enables the production of PHA bioplastics with defined material properties on the kilogram scale, which is often required for testing and adapting manufacturing processes to target diverse applications.
Collapse
Affiliation(s)
- Isabel Thiele
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Lara Santolin
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Svea Detels
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Riccardo Osele
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Sebastian L. Riedel
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Environmental and Bioprocess Engineering Laboratory, Department VIII – Mechanical Engineering, Event Technology and Process EngineeringBerliner Hochschule für TechnikBerlinGermany
| |
Collapse
|
15
|
Hozumi Y, Hachisuka SI, Tomita H, Kikukawa H, Matsumoto K. Engineering of the Long-Main-Chain Monomer-Incorporating Polyhydroxyalkanoate Synthase PhaC AR for the Biosynthesis of Poly[( R)-3-hydroxybutyrate- co-6-hydroxyhexanoate]. Biomacromolecules 2024; 25:2973-2979. [PMID: 38588330 DOI: 10.1021/acs.biomac.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.
Collapse
Affiliation(s)
- Yuka Hozumi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Shin-Ichi Hachisuka
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroya Tomita
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Hiroshi Kikukawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| | - Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kitaku, Sapporo 060-8628, Japan
| |
Collapse
|
16
|
Thiele I, Santolin L, Meyer K, Machatschek R, Bölz U, Tarazona NA, Riedel SL. Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications. Int J Biol Macromol 2024; 263:130188. [PMID: 38373562 DOI: 10.1016/j.ijbiomac.2024.130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nano-plastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 - 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 °C to 126 °C, Tg 4 °C to -5.9 °C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h.
Collapse
Affiliation(s)
- Isabel Thiele
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Lara Santolin
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Klas Meyer
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | | | - Uwe Bölz
- HPX Polymers GmbH, Tutzing, Germany
| | - Natalia A Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany.
| | - Sebastian L Riedel
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany; Berliner Hochschule für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany.
| |
Collapse
|
17
|
Neoh SZ, Tan HT, Trakunjae C, Chek MF, Vaithanomsat P, Hakoshima T, Sudesh K. N-terminal truncation of PhaC BP-M-CPF4 and its effect on PHA production. Microb Cell Fact 2024; 23:52. [PMID: 38360657 PMCID: PMC10867992 DOI: 10.1186/s12934-024-02329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation. RESULTS The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4. CONCLUSION This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.
Collapse
Affiliation(s)
- Soon Zher Neoh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Penang, Malaysia
| | - Hua Tiang Tan
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Min Fey Chek
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Penang, Malaysia.
| |
Collapse
|
18
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Brehmer MS, de Oliveira PZ, Binod P, Sindhu R, Soccol CR. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 393:130078. [PMID: 37993072 DOI: 10.1016/j.biortech.2023.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Mateus Seleme Brehmer
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Matsumoto K. Toward the production of block copolymers in microbial cells: achievements and perspectives. Appl Microbiol Biotechnol 2024; 108:164. [PMID: 38252290 PMCID: PMC10803391 DOI: 10.1007/s00253-023-12973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kitaku, Sapporo, N13W8060-8628, Japan.
| |
Collapse
|
20
|
Jin A, del Valle LJ, Puiggalí J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int J Mol Sci 2023; 24:17250. [PMID: 38139077 PMCID: PMC10743438 DOI: 10.3390/ijms242417250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents a comprehensive update of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), emphasizing its production, properties, and applications. The overall biosynthesis pathway of PHBV is explored in detail, highlighting recent advances in production techniques. The inherent physicochemical properties of PHBV, along with its degradation behavior, are discussed in detail. This review also explores various blends and composites of PHBV, demonstrating their potential for a range of applications. Finally, the versatility of PHBV-based materials in multiple sectors is examined, emphasizing their increasing importance in the field of biodegradable polymers.
Collapse
Affiliation(s)
- Anyi Jin
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Venvirotech Biotechnology S.L., Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
21
|
Volova TG, Uspenskaya MV, Kiselev EG, Sukovatyi AG, Zhila NO, Vasiliev AD, Shishatskaya EI. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate- co 3-Hydroxyhexanoate). Polymers (Basel) 2023; 15:2890. [PMID: 37447536 DOI: 10.3390/polym15132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 μm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Mayya V Uspenskaya
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Evgeniy G Kiselev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksey G Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Natalia O Zhila
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksander D Vasiliev
- V. Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, Kirensky St. 26, 660074 Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| |
Collapse
|
22
|
Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers (Basel) 2022; 15:polym15010097. [PMID: 36616449 PMCID: PMC9824233 DOI: 10.3390/polym15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In this research, the utilisation of used transformer oil (UTO) as carbon feedstock for the production of polyhydroxyalkanoate (PHA) was targeted; with a view to reducing the environmental challenges associated with the disposal of the used oil and provision of an alternative to non-biodegradable synthetic plastic. Acinetobacter sp. strain AAAID-1.5 is a PHA-producing bacterium recently isolated from a soil sample collected in Penang, Malaysia. The PHA-producing capability of this bacterium was assessed through laboratory experiments in a shake flask biosynthesis under controlled culture conditions. The effect of some biosynthesis factors on growth and polyhydroxyalkanoate (PHA) accumulation was also investigated, the structural composition of the PHA produced by the organism was established, and the characteristics of the polymer were determined using standard analytical methods. The results indicated that the bacteria could effectively utilise UTO and produce PHA up to 34% of its cell dry weight. Analysis of the effect of some biosynthesis factors revealed that the concentration of carbon substrate, incubation time, the concentration of yeast extract and utilisation of additional carbon substrates could influence the growth and polymer accumulation in the test organism. Manipulation of culture conditions resulted in an enhanced accumulation of the PHA. The data obtained from GC-MS and NMR analyses indicated that the PHA produced might have been composed of 3-hydroxyoctadecanoate and 3-hydroxyhexadecanoate as the major monomers. The physicochemical analysis of a sample of the polymer revealed an amorphous elastomer with average molecular weight and polydispersity index (PDI) of 110 kDa and 2.01, respectively. The melting and thermal degradation temperatures were 88 °C and 268 °C, respectively. The findings of this work indicated that used transformer oil could be used as an alternative carbon substrate for PHA biosynthesis. Also, Acinetobacter sp. strain AAAID-1.5 could serve as an effective agent in the bioconversion of waste oils, especially UTO, to produce biodegradable plastics. These may undoubtedly provide a foundation for further exploration of UTO as an alternative carbon substrate in the biosynthesis of specific polyhydroxyalkanoates.
Collapse
|