1
|
Tapia G, Fuenzalida S, Rivera C, Apablaza P, Silva M, Jaimovich E, Juretić N. L-Arginine Activates the Neuregulin-1/ErbB Receptor Signaling Pathway and Increases Utrophin mRNA Levels in C2C12 Cells. Biochem Res Int 2025; 2025:2171745. [PMID: 40224962 PMCID: PMC11991828 DOI: 10.1155/bri/2171745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025] Open
Abstract
L-arginine induces the expression of utrophin in skeletal muscle cells, so it has been proposed as a pharmacological treatment to attenuate the symptoms of Duchenne muscular dystrophy (DMD). On the other hand, it has been described that one of the pathways that participates in the expression of utrophin in muscle is the Neuregulin-1 (NRG-1)/ErbB receptors pathway. Several studies have postulated that disintegrin and metalloprotease-17 (ADAM17) causes the proteolytic processing of NRG of transmembrane, allowing the release of NRG to the medium, which when joining its ErbB receptor activates the signaling pathway that triggers utrophin transcription. The aim of this study was to evaluate the effect of L-arginine in the activation of NRG-1/ErbB pathway and utrophin mRNA levels in C2C12 cells, and the participation of ADAM17 in this process. Our results indicate that L-arginine induces phosphorylation of ErbB2 and increases utrophin mRNA levels in C2C12 myotubes, with a maximum increase of 2-fold at 4 h post-stimulation. This effect is not observed when the myotubes are stimulated in the presence of GM6001 (general metalloprotease inhibitor) or PD-158780 (specific inhibitor of ErbB receptor phosphorylation). Experiments performed by flow cytometry suggest that L-arginine stimulates ADAM17 activation in our study model. Furthermore, immunofluorescence analysis supports our findings that L-arginine stimulates ADAM17 increase in treated myotubes. However, our results using pharmacological inhibitors suggest that ADAM17 does not participate in utrophin expression in C2C12 cells treated with L-arginine. The results obtained help to clarify the mechanism of action of L-arginine in the expression of utrophin in muscle cells, which will contribute to the design of new therapeutic strategies in pathologies such as DMD.
Collapse
Affiliation(s)
- Gladys Tapia
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Sebastián Fuenzalida
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Constanza Rivera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Pía Apablaza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Mónica Silva
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Jaimovich
- Centro de Estudios de Ejercicio, Metabolismo y Cáncer, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Nevenka Juretić
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
2
|
Li J, Jia S, Song Y, Xu W, Lin J. Ginkgolide B can alleviate spinal cord glymphatic system dysfunction and provide neuroprotection in painful diabetic neuropathy rats by inhibiting matrix metalloproteinase-9. Neuropharmacology 2024; 250:109907. [PMID: 38492884 DOI: 10.1016/j.neuropharm.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. β-Dystroglycan (β-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated β-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, β-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased β-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.
Collapse
Affiliation(s)
- Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Shuaiying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | | | - Wenmei Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Jingyan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Sothers H, Hu X, Crossman DK, Si Y, Alexander MS, McDonald MLN, King PH, Lopez MA. Late-Stage Skeletal Muscle Transcriptome in Duchenne muscular dystrophy shows a BMP4-Induced Molecular Signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590266. [PMID: 38712206 PMCID: PMC11071434 DOI: 10.1101/2024.04.19.590266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease due to loss-of-function mutations in the DYSTROPHIN gene. DMD-related skeletal muscle wasting is typified by an aberrant immune response involving upregulation of TGFβ family of cytokines. We previously demonstrated that bone morphogenetic protein 4 (BMP4) is increased in DMD and BMP4 stimulation induces a 20-fold upregulation of Smad8 transcription. However, the role of BMP4 in severely affected DMD skeletal muscle is unknown. We hypothesized that transcriptomic signatures in severely affected human DMD skeletal muscle are driven by BMP4 signaling. Transcriptomes from skeletal muscle biopsies of late-stage DMD vs. non-DMD controls and C2C12 muscle cells with or without BMP4 stimulation were generated by RNA-Seq and analyzed for single transcript differential expression as well as by Ingenuity Pathway Analysis and weighted gene co-expression network analyses. A total of 2,328 and 5,291 transcripts in the human muscle and C2C12 muscle cells, respectively, were differentially expressed. We identified an overlapping molecular signature of 1,027 genes dysregulated in DMD muscle that were induced in BMP4-stimulated C2C12 muscle cells. Highly upregulated DMD transcripts that overlapped with BMP4-stimulated C2C12 muscle cells included ADAMTS3, HCAR2, SERPING1, SMAD8 , and UNC13C. The DMD transcriptome was characterized by dysregulation of pathways involving immune function, extracellular matrix remodeling, and metabolic/mitochondrial function. In summary, we define a late-stage DMD skeletal muscle transcriptome that substantially overlaps with the BMP4-induced molecular signature in C2C12 muscle cells. This supports BMP4 as a disease-driving regulator of transcriptomic changes in late-stage DMD skeletal muscle and expands our understanding of the evolution of dystrophic signaling pathways and their associated gene networks that could be explored for therapeutic development.
Collapse
|
4
|
Omarmeli V, Lewandrowski KU, Assefi M, Faizmahdavi H, Sharafshah A, Mansouri N. A Novel Mutation (Lys31Arg) in the DMD Gene Impacts on Neuromuscular Dysfunctions Found by Whole Exome Sequencing and In Silico Analyses in an Iranian Family. Curr Aging Sci 2024; 17:169-174. [PMID: 38265407 DOI: 10.2174/0118746098280408240112112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Duchene Muscular Disorder (DMD) is a severe X-linked recessive neuromuscular disease. Previous reports predicted that one-third of cases with a fatal X-linked recessive disease will be caused by a novel mutation, and the mutation rate for DMD seems to be higher in males. OBJECTIVE A novel mutation in the DMD gene DMD (NM_004006.3):c.92A>G (p.Lys31Arg) is suggested for males because of their heterozygous mothers carrying the mutant alleles. METHOD Whole Exome Sequencing (WES) was done for a 25-year-old female followed by the screening of the novel mutation in her parents and her brother by the Sanger sequencing technique. Some in silico analyses were run to find the putative alterations in wild-type and mutant structures by PolyPhen-2 and Mupro. Notably, SWISS-MODEL was performed to build a reliable model for the mutant allele based on the PDB ID: 1DXX structure. Also, superimposition was done by PyMol. RESULTS WES analysis revealed three novel mutations including DLD (exon13:c.G1382A:p. G461E), ABCA3 (exon12:c.G1404C:p.W468C), and DMD (exon2:c.A92G:p.K31R) in the case. Focusing on DMD mutation, Sanger sequencing of the patient's parents and brother indicated no mutant allele in her mother and brother but a mutant allele in her father as a hemizygous pattern. In silico analyses showed no considerable change regarding pathogenic impact. CONCLUSION In conclusion, our findings revealed no pathogenic effect of the new mutation (K31R) of the DMD gene in an Iranian 25-year-old woman. Because of the DMD importance in preclinical diagnosis, these data may shed a light on the diagnosis of this mutation in future pregnancies.
Collapse
Affiliation(s)
- Vahid Omarmeli
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Biology Department, College of Bioscience, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spinal Surgery of Southern Arizona, Tucson, United States
- Department of Orthopaedics, Fundación Universitaria Sanitas, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Brazil
| | - Marjan Assefi
- Department of Biology, University of North Carolina, Greensboro, USA
| | - Hanieh Faizmahdavi
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Sharafshah
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Mansouri
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Petian-Alonso DC, de Castro AC, Barroso de Queiroz Davoli G, Martinez EZ, Mattiello-Sverzut AC. Defining ambulation status in patients with Duchenne muscular dystrophy using the 10-metre walk test and the motor function measure scale. Disabil Rehabil 2023; 45:2984-2988. [PMID: 35980858 DOI: 10.1080/09638288.2022.2112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Timed functional tests have been explored to understand the natural history of Duchenne muscular dystrophy (DMD) and to establish warning signs of loss of gait. This study verified whether the combination of the 10-metre walk test (10MWT) and the motor function measure (MFM) could classify the ambulation status of DMD patients. METHOD Thirty-two patients, aged between 5 and 22 years, with independent gait initially evaluated over 11 years participated in the study. Two groups were created: ambulators and non-ambulators. For both groups, we calculated a 10MWT ratio, by dividing the time spent to perform the last evaluation by the penultimate evaluation, and a MFM dimension-1 score (MFM-D1), collected in the same period. For the statistical analysis, the CART algorithm ("rpart" package in R) classified the patients into ambulators and non-ambulators according to two continuous variables: the 10MWT ratio and the MFM-D1 score. RESULTS The cut-off points were 1.1 for the 10MWT ratio and 26 points for the MFM-D1, which distinguished 70% of the patients as either ambulators or non-ambulators. CONCLUSION This simple measurement strategy can be used by therapists to adjust their rehabilitation strategies and goals.Implications for rehabilitationCombination of 10MWT ratio with MFM-D1 reveal an "indicator" for the ambulation status of patients with DMD.Physiotherapists can guide clinical care and prepare the patient and family for loss of gait.CART algorithm describes how we classified the patients according to two continuous variables.70% Of the patients with DMD can be distinguished as either ambulators or non-ambulators.
Collapse
Affiliation(s)
- Danila Cristina Petian-Alonso
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ani Caroline de Castro
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Edson Zangiacomi Martinez
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Heezen LGM, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nat Commun 2023; 14:4909. [PMID: 37582915 PMCID: PMC10427630 DOI: 10.1038/s41467-023-40555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the DMD gene, leading to lack of dystrophin. Chronic muscle damage eventually leads to histological alterations in skeletal muscles. The identification of genes and cell types driving tissue remodeling is a key step to developing effective therapies. Here we use spatial transcriptomics in two Duchenne muscular dystrophy mouse models differing in disease severity to identify gene expression signatures underlying skeletal muscle pathology and to directly link gene expression to muscle histology. We perform deconvolution analysis to identify cell types contributing to histological alterations. We show increased expression of specific genes in areas of muscle regeneration (Myl4, Sparc, Hspg2), fibrosis (Vim, Fn1, Thbs4) and calcification (Bgn, Ctsk, Spp1). These findings are confirmed by smFISH. Finally, we use differentiation dynamic analysis in the D2-mdx muscle to identify muscle fibers in the present state that are predicted to become affected in the future state.
Collapse
Affiliation(s)
- L G M Heezen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Sandonà M, Esposito F, Cargnoni A, Silini A, Romele P, Parolini O, Saccone V. Amniotic Membrane-Derived Stromal Cells Release Extracellular Vesicles That Favor Regeneration of Dystrophic Skeletal Muscles. Int J Mol Sci 2023; 24:12457. [PMID: 37569832 PMCID: PMC10418925 DOI: 10.3390/ijms241512457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease caused by mutations in the dystrophin gene characterized by myofiber fragility and progressive muscle degeneration. The genetic defect results in a reduced number of self-renewing muscle stem cells (MuSCs) and an impairment of their activation and differentiation, which lead to the exhaustion of skeletal muscle regeneration potential and muscle replacement by fibrotic and fatty tissue. In this study, we focused on an unexplored strategy to improve MuSC function and to preserve their niche based on the regenerative properties of mesenchymal stromal cells from the amniotic membrane (hAMSCs), that are multipotent cells recognized to have a role in tissue repair in different disease models. We demonstrate that the hAMSC secretome (CM hAMSC) and extracellular vesicles (EVs) isolated thereof directly stimulate the in vitro proliferation and differentiation of human myoblasts and mouse MuSC from dystrophic muscles. Furthermore, we demonstrate that hAMSC secreted factors modulate the muscle stem cell niche in dystrophic-mdx-mice. Interestingly, local injection of EV hAMSC in mdx muscles correlated with an increase in the number of activated Pax7+/Ki67+ MuSCs and in new fiber formation. EV hAMSCs also significantly reduced muscle collagen deposition, thus counteracting fibrosis and MuSCs exhaustion, two hallmarks of DMD. Herein for the first time we demonstrate that CM hAMSC and EVs derived thereof promote muscle regeneration by supporting proliferation and differentiation of resident muscle stem cells. These results pave the way for the development of a novel treatment to counteract DMD progression by reducing fibrosis and enhancing myogenesis in dystrophic muscles.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Unit of Histology and Medical Embryology, Division DAHFMO, University of Rome La Sapienza, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Antonietta Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Pietro Romele
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli, 00168 Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
8
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
9
|
Bobadilla Muñoz M, Orbe J, Abizanda G, Machado FJD, Vilas A, Ullate-Agote A, Extramiana L, Baraibar Churio A, Aranguren XL, Cantero G, Sáinz Amillo N, Rodríguez JA, Ramos García L, Romero Riojas JP, Vallejo-Illarramendi A, Paradas C, López de Munain A, Páramo JA, Prósper F, Pérez-Ruiz A. Loss of the matrix metalloproteinase-10 causes premature features of aging in satellite cells. Front Cell Dev Biol 2023; 11:1128534. [PMID: 37228645 PMCID: PMC10203875 DOI: 10.3389/fcell.2023.1128534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.
Collapse
Affiliation(s)
- Miriam Bobadilla Muñoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Orbe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)-Ictus, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Abizanda
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Florencio J. D. Machado
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Asier Ullate-Agote
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Arantxa Baraibar Churio
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Neira Sáinz Amillo
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Centre for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - José Antonio Rodríguez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ramos García
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Radiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Juan Pablo Romero Riojas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Adolfo López de Munain
- CIBERNED-Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
- Neurology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - José Antonio Páramo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Ana Pérez-Ruiz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
10
|
Chen C, Fan P, Zhang L, Xue K, Hu J, Huang J, Lu W, Xu J, Xu S, Qiu G, Ran J, Gan S. Bumetanide Rescues Aquaporin-4 Depolarization via Suppressing β-Dystroglycan Cleavage and Provides Neuroprotection in Rat Retinal Ischemia-Reperfusion Injury. Neuroscience 2023; 510:95-108. [PMID: 36493910 DOI: 10.1016/j.neuroscience.2022.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Aquaporin-4 (AQP4) regulates retinal water homeostasis and participates in retinal oedema pathophysiology. β-dystroglycan (β-DG) is responsible for AQP4 polarization and can be cleaved by matrix metalloproteinase-9 (MMP9). Retinal oedema induced by ischemia-reperfusion (I/R) injury is an early complication. Bumetanide (BU) has potential efficacy against cytotoxic oedema. Our study investigated the effects of β-DG cleavage on AQP4 and the roles of BU in a rat retinal I/R injury model. The model was induced by applying 110 mm Hg intraocular pressure to the anterior eye chamber. BU and U0126 (a selective ERK inhibitor) were intraperitoneally administered 15 and 30 min, respectively, before I/R induction. Rhodamine isothiocyanate extravasation detection, quantitative real-time PCR, transmission electron microscopy, hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL staining were performed. AQP4 lost its polarization in the retinal perivascular domain as a result of β-DG cleavage. BU rescued AQP4 depolarization, suppressed AQP4 protein expression, attenuated retinal cytotoxic oedema, and downregulated β-DG and AQP4 mRNA expression. BU suppressed glial responses and mitochondria-mediated apoptotic protein expression, including that of Caspase-3 and Cyto C, raised the Bcl-2/Bax ratio, and lowered the number of apoptotic cells in the retina. Both BU and U0126 downregulated p-ERK and MMP9 expression. Thus, BU treatment suppressed β-DG cleavage, recovered AQP4 polarization partially via inhibiting ERK/MMP9 signaling pathway, and possess potential neuroprotective efficacy in the rat retinal ischemia-reperfusion injury model.
Collapse
Affiliation(s)
- Chunyan Chen
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Ping Fan
- Department of Gynecology and Obstetrics of The Fifth People's Hospital of Chongqing, PR China
| | - Lirong Zhang
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Kaige Xue
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jiaheng Hu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Juan Huang
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Weitian Lu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jin Xu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Shiye Xu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Guoping Qiu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jianhua Ran
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Shengwei Gan
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
11
|
Kumar L, Bisen M, Khan A, Kumar P, Patel SKS. Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines 2022; 10:biomedicines10102477. [PMID: 36289739 PMCID: PMC9598837 DOI: 10.3390/biomedicines10102477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal disorders include rheumatoid arthritis, osteoarthritis, sarcopenia, injury, stiffness, and bone loss. The prevalence of these conditions is frequent among elderly populations with significant mobility and mortality rates. This may lead to extreme discomfort and detrimental effect on the patient’s health and socioeconomic situation. Muscles, ligaments, tendons, and soft tissue are vital for body function and movement. Matrix metalloproteinases (MMPs) are regulatory proteases involved in synthesizing, degrading, and remodeling extracellular matrix (ECM) components. By modulating ECM reconstruction, cellular migration, and differentiation, MMPs preserve myofiber integrity and homeostasis. In this review, the role of MMPs in skeletal muscle function, muscle injury and repair, skeletal muscle inflammation, and muscular dystrophy and future approaches for MMP-based therapies in musculoskeletal disorders are discussed at the cellular and molecule level.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Azhar Khan
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Pradeep Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| |
Collapse
|
12
|
Zhu A, Lin Y, Hu X, Lin Z, Lin Y, Xie Q, Ni S, Cheng H, Lu Q, Lai S, Pan G, Chen X, Pang W, Liu C. Treadmill exercise decreases cerebral edema in rats with local cerebral infarction by modulating AQP4 polar expression through the caveolin-1/TRPV4 signaling pathway. Brain Res Bull 2022; 188:155-168. [PMID: 35961528 DOI: 10.1016/j.brainresbull.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Rehabilitation therapy is beneficial for patients with ischemic stroke. Our previous study showed that treadmill training is conducive to neurological function in rats that underwent middle cerebral artery occlusion (MCAO). However, whether exercise benefits cerebral edema and the underlying mechanism remain unclear. This study investigated the influence of treadmill exercise on brain edema and the mechanism of its formation and elimination. The MCAO model was established with Sprague-Dawley (SD) rats, and lentivirus-mediated caveolin-1 shRNA was used to investigate the role of caveolin-1 in brain edema. As expected, we found that treadmill exercise has a beneficial effect on brain edema after stroke. Training led to a significant increase in the expression of caveolin-1 and TRPV4; and reduced brain water content and blood-brain barrier (BBB) damage. This treatment also changed the localization of aquaporin-4 (AQP4). Moreover, the effect of treadmill training on the polar expression of AQP4 differed over time. The results showed that early treadmill training inhibited the polar expression of AQP4, and later promoted its expression. However, the rats that were injected with the caveolin-1 shRNA lentivirus exhibited enhanced edema. Caveolin-1 shRNA eliminated the protective effect induced by exercise, which is consistent with the downregulation of TRPV4 expression. The findings indicate that treadmill training improves brain edema through the caveolin-1/TRPV4/AQP4 pathway.
Collapse
Affiliation(s)
- Anqi Zhu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Yao Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Xuanbo Hu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Zaizai Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Yongqiang Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Shaobo Ni
- The Third Affiliated Hospital of Wenzhou Medical University, No. 108, Wansong Road, Ruian, Zhejiang, China
| | - Hui Cheng
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Qiaoya Lu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Shanshan Lai
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China
| | - Guoyuan Pan
- Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China.
| | - Wei Pang
- The Third Affiliated Hospital of Jiamusi University, No. 419, Dexiang Street, Jiamusi, Heilongjiang, China.
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Cohen SA, Bar-Am O, Fuoco C, Saar G, Gargioli C, Seliktar D. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides. Cell Death Dis 2022; 13:779. [PMID: 36085138 PMCID: PMC9463190 DOI: 10.1038/s41419-022-05166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease caused by a mutation in the X-linked Dytrophin gene preventing the expression of the functional protein. Exon skipping therapy using antisense oligonucleotides (AONs) is a promising therapeutic strategy for DMD. While benefits of AON therapy have been demonstrated, some challenges remain before this strategy can be applied more comprehensively to DMD patients. These include instability of AONs due to low nuclease resistance and poor tissue uptake. Delivery systems have been examined to improve the availability and stability of oligonucleotide drugs, including polymeric carriers. Previously, we showed the potential of a hydrogel-based polymeric carrier in the form of injectable PEG-fibrinogen (PF) microspheres for delivery of chemically modified 2'-O-methyl phosphorothioate (2OMePs) AONs. The PF microspheres proved to be cytocompatible and provided sustained release of the AONs for several weeks, causing increased cellular uptake in mdx dystrophic mouse cells. Here, we further investigated this delivery strategy by examining in vivo efficacy of this approach. The 2OMePS/PEI polyplexes loaded in PF microspheres were delivered by intramuscular (IM) or intra-femoral (IF) injections. We examined the carrier biodegradation profiles, AON uptake efficiency, dystrophin restoration, and muscle histopathology. Both administration routes enhanced dystrophin restoration and improved the histopathology of the mdx mice muscles. The IF administration of the microspheres improved the efficacy of the 2OMePS AONs over the IM administration. This was demonstrated by a higher exon skipping percentage and a smaller percentage of centered nucleus fibers (CNF) found in H&E-stained muscles. The restoration of dystrophin expression found for both IM and IF treatments revealed a reduced dystrophic phenotype of the treated muscles. The study concludes that injectable PF microspheres can be used as a carrier system to improve the overall therapeutic outcomes of exon skipping-based therapy for treating DMD.
Collapse
Affiliation(s)
- Shani Attias Cohen
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Claudia Fuoco
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Galit Saar
- grid.6451.60000000121102151Biomedical Core Facility, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cesare Gargioli
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Dror Seliktar
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
15
|
Yang S, Yang J, Zhao H, Deng R, Fan H, Zhang J, Yang Z, Zeng H, Kuang B, Shao L. The Protective Effects of γ-Tocotrienol on Muscle Stem Cells Through Inhibiting Reactive Oxidative Stress Production. Front Cell Dev Biol 2022; 10:820520. [PMID: 35372342 PMCID: PMC8965065 DOI: 10.3389/fcell.2022.820520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudotrophic muscular dystrophy is a common clinical skeletal muscle necrotic disease, among which Duchenne muscular dystrophy (DMD) is the predominant. For such diseases, there is no clinically effective treatment, which is only symptomatic or palliative treatment. Oxidative stress and chronic inflammation are common pathological features of DMD. In recent years, it has been found that the pathophysiological changes of skeletal muscle in DMD mice are related to muscle stem cell failure. In the present study, we established a DMD mice model and provided tocotrienol (γ-tocotrienol, GT3), an antioxidant compound, to explore the relationship between the physiological state of muscle stem cells and oxidative stress. The results showed that the application of GT3 can reduce ROS production and cellular proliferation in the muscle stem cells of DMD mice, which is beneficial to promote the recovery of muscle stem cell function in DMD mice. GT3 treatment improved the differentiation ability of muscle stem cells in DMD mice with increasing numbers of MyoD+ cells. GT3 application significantly decreased percentages of CD45+ cells and PDGFRα+ fibro-adipogenic progenitors in the tibialis anterior of DMD mice, indicating that the increased inflammation and fibro-adipogenic progenitors were attenuated in GT3-treated DMD mice. These data suggest that increased ROS production causes dysfunctional muscle stem cell in DMD mice, which might provide a new avenue to treat DMD patients in the clinic.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Juan Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huiwen Zhao
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Rong Deng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jinfu Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Zihao Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
- *Correspondence: Lijian Shao,
| |
Collapse
|
16
|
Understanding the Role of Metalloproteinases and Their Inhibitors in Periodontology. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-021-09281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Deficiency of MMP-10 Aggravates the Diseased Phenotype of Aged Dystrophic Mice. Life (Basel) 2021; 11:life11121398. [PMID: 34947929 PMCID: PMC8705381 DOI: 10.3390/life11121398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the progression of muscular dystrophy, and recent studies have reported the role of MMP-10 in skeletal muscle pathology of young dystrophic mice. Nevertheless, its involvement in dystrophin-deficient hearts remains unexplored. Here, we aimed to investigate the involvement of MMP-10 in the progression of severe muscular dystrophy and to characterize MMP-10 loss in skeletal and cardiac muscles of aged dystrophic mice. We examined the histopathological effect of MMP-10 ablation in aged mdx mice, both in the hind limb muscles and heart tissues. We found that MMP-10 loss compromises survival rates of aged mdx mice, with skeletal and cardiac muscles developing a chronic inflammatory response. Our findings indicate that MMP-10 is implicated in severe muscular dystrophy progression, thus identifying a new area of research that could lead to future therapies for dystrophic muscles.
Collapse
|
18
|
Galli F, Mouly V, Butler-Browne G, Cossu G. Challenges in cell transplantation for muscular dystrophy. Exp Cell Res 2021; 409:112908. [PMID: 34736920 DOI: 10.1016/j.yexcr.2021.112908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
For decades now, cell transplantation has been considered a possible therapeutic strategy for muscular dystrophy, but failures have largely outnumbered success or at least encouraging outcomes. In this review we will briefly recall the history of cell transplantation, discuss the peculiar features of skeletal muscle, and dystrophic skeletal muscle in particular, that make the procedure complicated and inefficient. As there are many recent and exhaustive reviews on the various myogenic cell types that have been or will be transplanted, we will only briefly describe them and refer the reader to these reviews. Finally, we will discuss possible strategies to overcome the hurdles that prevent biological efficacy and hence clinical success.
Collapse
Affiliation(s)
- Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, UK
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, UK; Muscle Research Unit, Charité Medical Faculty and Max Delbrück Center, Berlin, Germany; Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
19
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
21
|
Feeley BT, Liu M, Ma CB, Agha O, Aung M, Lee C, Liu X. Human Rotator Cuff Tears Have an Endogenous, Inducible Stem Cell Source Capable of Improving Muscle Quality and Function After Rotator Cuff Repair. Am J Sports Med 2020; 48:2660-2668. [PMID: 32730704 PMCID: PMC9262007 DOI: 10.1177/0363546520935855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The muscle quality of the rotator cuff (RC), measured by atrophy and fatty infiltration (FI), is a key determinant of outcomes in RC injury and repair. The ability to regenerate muscle after repair has been shown to be limited. PURPOSE To determine if there is a source of resident endogenous stem cells, fibroadipogenic progenitor cells (FAPs), within RC injury patients, and if these cells are capable of adipogenic, fibrogenic, and pro-myogenic differentiation. STUDY DESIGN Controlled laboratory study. METHODS A total of 20 patients between the ages of 40 and 75 years with partial- or full-thickness RC tears of the supraspinatus and evidence of atrophy and FI Goutallier grade 1, 2, or 3 were selected from 2 surgeons at an orthopaedic center. During the surgical repair procedure, supraspinatus muscle biopsy specimens were obtained for analysis as were deltoid muscle biopsy specimens to serve as the control. FAPs and satellite cells were quantified using fluorescence-activated cell sorting. Muscle FI and fibrosis was quantified using Oil Red O and Masson trichrome staining. FAP differentiation and gene expression profiles were compared across tear sizes after culture in adipogenic, fibrogenic, and beta-3 agonist (amibegron) conditions. Analysis of variance was used for statistical comparisons between groups, with P < .05 as statistically significant. RESULTS Histologic analysis confirmed the presence of fat in biopsy specimens from patients with full-thickness tears. There were more FAPs in the full-thickness tear group compared with the partial-thickness tear group (9.43% ± 4.25% vs 3.84% ± 2.54%; P < .01). Full-thickness tears were divided by tear size, with patients with larger tears having significantly more FAPs than those with smaller tears. FAPs from muscles with full-thickness tendon tears had more adipogenic and fibrogenic potential than those with partial tears. Induction of a beige adipose tissue (BAT) phenotype in FAPs was possible, as demonstrated by increased expression of BAT markers and pro-myogenic genes including insulin-like growth factor 1 and follistatin. CONCLUSION Endogenous FAPs are present within the RC and likely are the source of FI. These FAPs were increased in muscles with in larger tears but are capable of adopting a pro-myogenic BAT phenotype that could be utilized to improve muscle quality and patient function after RC repair.
Collapse
Affiliation(s)
- Brian T. Feeley
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Address correspondence to Brian T. Feeley, MD, Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA ()
| | - Mengyao Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - C. Benjamin Ma
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Obiajulu Agha
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mya Aung
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA
| | - Carlin Lee
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Tomazoni SS, Casalechi HL, Ferreira CDSB, Serra AJ, Dellê H, Brito RBDO, de Melo BL, Vanin AA, Ribeiro NF, Pereira AL, Monteiro KKDS, Marcos RL, de Carvalho PDTC, Frigo L, Leal-Junior ECP. Can photobiomodulation therapy be an alternative to pharmacological therapies in decreasing the progression of skeletal muscle impairments of mdx mice? PLoS One 2020; 15:e0236689. [PMID: 32785240 PMCID: PMC7423120 DOI: 10.1371/journal.pone.0236689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/29/2020] [Indexed: 01/16/2023] Open
Abstract
Objective To compare the effects of photobiomodulation therapy (PBMT) and pharmacological therapy (glucocorticoids and non-steroidal anti-inflammatory drugs) applied alone and in different combinations in mdx mice. Methods The animals were randomized and divided into seven experimental groups treated with placebo, PBMT, prednisone, non-steroidal anti-inflammatory drug (NSAIDs), PBMT plus prednisone and PBMT plus NSAID. Wild type animals were used as control. All treatments were performed during 14 consecutive weeks. Muscular morphology, protein expression of dystrophin and functional performance were assessed at the end of the last treatment. Results Both treatments with prednisone and PBMT applied alone or combined, were effective in preserving muscular morphology. In addition, the treatments with PBMT (p = 0.0005), PBMT plus prednisone (p = 0.0048) and PBMT plus NSAID (p = 0.0021) increased dystrophin gene expression compared to placebo-control group. However, in the functional performance the PBMT presented better results compared to glucocorticoids (p<0.0001). In contrast, the use of NSAIDs did not appear to add benefits to skeletal muscle tissue in mdx mice. Conclusion We believe that the promising and optimistic results about the PBMT in skeletal muscle of mdx mice may in the future contribute to this therapy to be considered a safe alternative for patients with Duchenne Muscular Dystrophy (DMD) in a washout period (between treatment periods with glucocorticoids), allowing them to remain receiving effective and safe treatment in this period, avoiding at this way periods without administration of any treatment.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Combined Modality Therapy
- Disease Models, Animal
- Disease Progression
- Dystrophin/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/radiation effects
- Glucocorticoids/pharmacology
- Humans
- Low-Level Light Therapy
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/radiation effects
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Prednisone/pharmacology
Collapse
Affiliation(s)
- Shaiane Silva Tomazoni
- Department of Global Public Health and Primary Care, Physiotherapy Research Group, University of Bergen, Bergen, Norway
| | - Heliodora Leão Casalechi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Cheila de Sousa Bacelar Ferreira
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Humberto Dellê
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Brunno Lemes de Melo
- Postgraduate Program in Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Adriane Aver Vanin
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Neide Firmo Ribeiro
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Amanda Lima Pereira
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Kadma Karênina Damasceno Soares Monteiro
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Lucio Frigo
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Department of Periodontology, Dental Research Division, Universidade de Guarulhos (UnG), Guarulhos, São Paulo, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Department of Global Public Health and Primary Care, Physiotherapy Research Group, University of Bergen, Bergen, Norway
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
23
|
Gao M, Lu W, Shu Y, Yang Z, Sun S, Xu J, Gan S, Zhu S, Qiu G, Zhuo F, Xu S, Wang Y, Chen J, Wu X, Huang J. Poldip2 mediates blood-brain barrier disruption and cerebral edema by inducing AQP4 polarity loss in mouse bacterial meningitis model. CNS Neurosci Ther 2020; 26:1288-1302. [PMID: 32790044 PMCID: PMC7702237 DOI: 10.1111/cns.13446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background Specific highly polarized aquaporin‐4 (AQP4) expression is reported to play a crucial role in blood‐brain barrier (BBB) integrity and brain water transport balance. The upregulation of polymerase δ‐interacting protein 2 (Poldip2) was involved in aggravating BBB disruption following ischemic stroke. This study aimed to investigate whether Poldip2‐mediated BBB disruption and cerebral edema formation in mouse bacterial meningitis (BM) model occur via induction of AQP4 polarity loss. Methods and Results Mouse BM model was induced by injecting mice with group B hemolytic streptococci via posterior cistern. Recombinant human Poldip2 (rh‐Poldip2) was administered intranasally at 1 hour after BM induction. Small interfering ribonucleic acid (siRNA) targeting Poldip2 was administered by intracerebroventricular (i.c.v) injection at 48 hours before BM induction. A specific inhibitor of matrix metalloproteinases (MMPs), UK383367, was administered intravenously at 0.5 hour before BM induction. Western blotting, immunofluorescence staining, quantitative real‐time PCR, neurobehavioral test, brain water content test, Evans blue (EB) permeability assay, transmission electron microscopy (TEM), and gelatin zymography were carried out. The results showed that Poldip2 was upregulated and AQP4 polarity was lost in mouse BM model. Both Poldip2 siRNA and UK383367 improved neurobehavioral outcomes, alleviated brain edema, preserved the integrity of BBB, and relieved the loss of AQP4 polarity in BM model. Rh‐Poldip2 upregulated the expression of MMPs and glial fibrillary acidic protein (GFAP) and downregulated the expression of β‐dystroglycan (β‐DG), zonula occludens‐1 (ZO‐1), occludin, and claudin‐5; whereas Poldip2 siRNA downregulated the expression of MMPs and GFAP, and upregulated β‐DG, ZO‐1, occludin, and claudin‐5. Similarly, UK383367 downregulated the expression of GFAP and upregulated the expression of β‐DG, ZO‐1, occludin, and claudin‐5. Conclusion Poldip2 inhibition alleviated brain edema and preserved the integrity of BBB partially by relieving the loss of AQP4 polarity via MMPs/β‐DG pathway.
Collapse
Affiliation(s)
- Meng Gao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Weitian Lu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yue Shu
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Zhengyu Yang
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Shanquan Sun
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jin Xu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shengwei Gan
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Guoping Qiu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Fei Zhuo
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shiye Xu
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yiying Wang
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Junhong Chen
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Xuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020; 9:cells9071659. [PMID: 32660168 PMCID: PMC7407800 DOI: 10.3390/cells9071659] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage.
Collapse
|
25
|
Transcriptomic Analysis Reveals Involvement of the Macrophage Migration Inhibitory Factor Gene Network in Duchenne Muscular Dystrophy. Genes (Basel) 2019; 10:genes10110939. [PMID: 31752120 PMCID: PMC6896047 DOI: 10.3390/genes10110939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with X-linked recessive inheritance, that leads patients to premature death. The loss of dystrophin determines membrane instability, causing cell damage and inflammatory response. Macrophage migration inhibitory factor (MIF) is a cytokine that exerts pleiotropic properties and is implicated in the pathogenesis of a variety of diseases. Recently, converging data from independent studies have pointed to a possible role of MIF in dystrophic muscle disorders, including DMD. In the present study, we have investigated the modulation of MIF and MIF-related genes in degenerative muscle disorders, by making use of publicly available whole-genome expression datasets. We show here a significant enrichment of MIF and related genes in muscle samples from DMD patients, as well as from patients suffering from Becker’s disease and limb-girdle muscular dystrophy type 2B. On the other hand, transcriptomic analysis of in vitro differentiated myotubes from healthy controls and DMD patients revealed no significant alteration in the expression levels of MIF-related genes. Finally, by analyzing DMD samples as a time series, we show that the modulation of the genes belonging to the MIF network is an early event in the DMD muscle and does not change with the increasing age of the patients, Overall, our analysis suggests that MIF may play a role in vivo during muscle degeneration, likely promoting inflammation and local microenvironment reaction.
Collapse
|
26
|
Early skeletal muscle pathology and disease progress in the dy 3K/dy 3K mouse model of congenital muscular dystrophy with laminin α2 chain-deficiency. Sci Rep 2019; 9:14324. [PMID: 31586140 PMCID: PMC6778073 DOI: 10.1038/s41598-019-50550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Deficiency of laminin α2 chain leads to a severe form of congenital muscular dystrophy (LAMA2-CMD), and dystrophic symptoms progress rapidly in early childhood. Currently, there is no treatment for this detrimental disorder. Development of therapies is largely hindered by lack of understanding of mechanisms involved in the disease initiation and progress, both in patients but also in mouse models that are commonly used in the preclinical setup. Here, we unveil the first pathogenic events and characterise the disease development in a mouse model for LAMA2-CMD (dy3K/dy3K), by analysing muscles at perinatal, neonatal and postnatal stages. We found that apoptotic muscle fibres were present as early as postnatal day 1. Other typical dystrophic hallmarks (muscle degeneration, inflammation, and extensive production of the extracellular matrix proteins) were clearly evident already at postnatal day 4, and the highest degree of muscle deterioration was reached by day 7. Interestingly, the severe phenotype of limb muscles partially recovered on days 14 and 21, despite worsening of the general condition of the dy3K/dy3K mouse by that age. We found that masticatory muscles were severely affected in dy3K/dy3K mice and this may be an underlying cause of their malnutrition, which contributes to death around day 21. We also showed that several signalling pathways were affected already in 1-day-old dy3K/dy3K muscle. Therapeutic tests in the dy3K/dy3K mouse model should therefore be initiated shortly after birth, but should also take into account timing and correlation between regenerative and pathogenic events.
Collapse
|
27
|
Carmen L, Maria V, Morales-Medina JC, Vallelunga A, Palmieri B, Iannitti T. Role of proteoglycans and glycosaminoglycans in Duchenne muscular dystrophy. Glycobiology 2019; 29:110-123. [PMID: 29924302 DOI: 10.1093/glycob/cwy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.
Collapse
Affiliation(s)
- Laurino Carmen
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Vadala' Maria
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, CP, AP 62, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | | |
Collapse
|
28
|
Liu X, Zheng L, Zhou Y, Chen Y, Chen P, Xiao W. BMSC Transplantation Aggravates Inflammation, Oxidative Stress, and Fibrosis and Impairs Skeletal Muscle Regeneration. Front Physiol 2019; 10:87. [PMID: 30814953 PMCID: PMC6382023 DOI: 10.3389/fphys.2019.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contusion is one of the most common muscle injuries in sports medicine and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has been proposed as a promising strategy to promote skeletal muscle regeneration. However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal muscle regeneration are still not completely clear. Here, we investigated the role of BMSC transplantation after muscle contusion. BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. Comprehensive morphological and genetic analyses were performed after BMSC transplantation. BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced by increased leukocyte and macrophage infiltration, increased inflammatory cytokines and chemokines, and increased matrix metalloproteinases. BMSC transplantation also increased muscle oxidative stress. Overall, BMSC transplantation aggravated inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration. These results, shed new light on the role of BMSCs in regenerative medicine and indicate that caution is needed in the application of BMSCs for muscle injury.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongzhan Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
29
|
Soslow JH, Xu M, Slaughter JC, Crum K, Chew JD, Burnette WB, Su YR, Tomasek K, Parra DA, Markham LW. The Role of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Duchenne Muscular Dystrophy Cardiomyopathy. J Card Fail 2019; 25:259-267. [PMID: 30763738 DOI: 10.1016/j.cardfail.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD). Standard cardiac biomarkers are poor indicators of DMD cardiovascular disease. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulate collagen turnover. Given the cardiac fibrosis seen in DMD, we hypothesized that MMPs and TIMPs correlate with severity of DMD cardiomyopathy. METHODS AND RESULTS Prospectively enrolled DMD subjects (n = 42) underwent cardiac magnetic resonance imaging for function and late gadolinium enhancement (LGE), including LGE severity from 0 (no LGE) to 4 (severe). Serum from DMD and healthy male control subjects (n = 15) analyzed for MMPs 1, 2, 3, 7, 9, and 10 and TIMPs 1-4. MMP1, MMP7, and MMP10 were higher in DMD than in control (respectively, median 5080 pg/mL vs 2120 pg/mL [P = .007], 2170 pg/mL vs 1420 pg/mL [P < .001], and 216 pg/mL vs 140pg/mL [P = .040]); TIMP4 was lower in DMD (124 pg/mL vs 263 pg/mL; P = .046). Within DMD, MMP7 correlated inversely with left ventricular ejection fraction (r = -0.40; P = .012) and directly with strain (r = 0.54; P = .001) and LGE severity (r = 0.47; P = .003). MMP7 was higher in DMD patients with LGE compared with those without LGE and control subjects (P < .001). CONCLUSIONS Multiple MMPs are elevated in DMD compared with control subjects. MMP7 is related to DMD cardiac dysfunction and myocardial fibrosis, possibly through remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Jonathan H Soslow
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kimberly Crum
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua D Chew
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - W Bryan Burnette
- Division of Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Ru Su
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey Tomasek
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David A Parra
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Larry W Markham
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
30
|
Kameyama T, Ohuchi K, Funato M, Ando S, Inagaki S, Sato A, Seki J, Kawase C, Tsuruma K, Nishino I, Nakamura S, Shimazawa M, Saito T, Takeda S, Kaneko H, Hara H. Efficacy of Prednisolone in Generated Myotubes Derived From Fibroblasts of Duchenne Muscular Dystrophy Patients. Front Pharmacol 2018; 9:1402. [PMID: 30559667 PMCID: PMC6287205 DOI: 10.3389/fphar.2018.01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive muscle degeneration. This disease is caused by the mutation or deletion of the dystrophin gene. Currently, there are no effective treatments and glucocorticoid administration is a standard care for DMD. However, the mechanism underlying prednisolone effects, which leads to increased walking, as well as decreased muscle wastage, is poorly understood. Our purpose in this study is to investigate the mechanisms of the efficacy of prednisolone for this disease. We converted fibroblasts of normal human cell line and a DMD patient sample to myotubes by MyoD transduction using a retroviral vector. In myotubes from the MyoD-transduced fibroblasts of the DMD patient, the myotube area was decreased and its apoptosis was increased. Furthermore, we confirmed that prednisolone could rescue these pathologies. Prednisolone increased the expression of not utrophin but laminin by down-regulation of MMP-2 mRNA. These results suggest that the up-regulation of laminin may be one of the mechanisms of the efficacy of prednisolone for DMD.
Collapse
Affiliation(s)
- Tsubasa Kameyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Arisu Sato
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Ichizo Nishino
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
31
|
Rebalka IA, Monaco CMF, Varah NE, Berger T, D'souza DM, Zhou S, Mak TW, Hawke TJ. Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. Am J Physiol Cell Physiol 2018; 315:C714-C721. [PMID: 30257107 DOI: 10.1152/ajpcell.00195.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipocalin-2 (LCN2) is an adipokine previously described for its contribution to numerous processes, including innate immunity and energy metabolism. LCN2 has also been demonstrated to be an extracellular matrix (ECM) regulator through its association with the ECM protease matrix metalloproteinase-9 (MMP-9). With the global rise in obesity and the associated comorbidities related to increasing adiposity, it is imperative to gain an understanding of the cross talk between adipose tissue and other metabolic tissues, such as skeletal muscle. Given the function of LCN2 on the ECM in other tissues and the importance of matrix remodeling in skeletal muscle regeneration, we examined the localization and expression of LCN2 in uninjured and regenerating wild-type skeletal muscle and assessed the impact of LCN2 deletion (LCN2-/-) on skeletal muscle repair following cardiotoxin injury. Though LCN2 was minimally present in uninjured skeletal muscle, its expression was increased significantly at 1 and 2 days postinjury, with expression present in Pax7-positive satellite cells. Although satellite cell content was unchanged, the ability of quiescent satellite cells to become activated was significantly impaired in LCN2-/- skeletal muscles. Skeletal muscle regeneration was also significantly compromised as evidenced by decreased embryonic myosin heavy chain expression and smaller regenerating myofiber areas. Consistent with a role for LCN2 in MMP-9 regulation, regenerating muscle also displayed a significant increase in fibrosis and lower ( P = 0.07) MMP-9 activity in LCN2-/- mice at 2 days postinjury. These data highlight a novel role for LCN2 in muscle regeneration and suggest that changes in adipokine expression can significantly impact skeletal muscle repair.
Collapse
Affiliation(s)
- Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Nina E Varah
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network , Toronto, Ontario , Canada
| | - Donna M D'souza
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Sarah Zhou
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network , Toronto, Ontario , Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
32
|
Mantuano P, Sanarica F, Conte E, Morgese MG, Capogrosso RF, Cozzoli A, Fonzino A, Quaranta A, Rolland JF, De Bellis M, Camerino GM, Trabace L, De Luca A. Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol 2018; 154:89-103. [PMID: 29684379 DOI: 10.1016/j.bcp.2018.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-β1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
33
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
34
|
Ogasawara S, Cheng XW, Inoue A, Hu L, Piao L, Yu C, Goto H, Xu W, Zhao G, Lei Y, Yang G, Kimura K, Umegaki H, Shi GP, Kuzuya M. Cathepsin K activity controls cardiotoxin-induced skeletal muscle repair in mice. J Cachexia Sarcopenia Muscle 2018; 9:160-175. [PMID: 29058826 PMCID: PMC5803616 DOI: 10.1002/jcsm.12248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cathepsin K (CatK) is a widely expressed cysteine protease that has gained attention because of its enzymatic and non-enzymatic functions in signalling. Here, we examined whether CatK-deficiency (CatK-/- ) would mitigate injury-related skeletal muscle remodelling and fibrosis in mice, with a special focus on inflammation and muscle cell apoptosis. METHODS Cardiotoxin (CTX, 20 μM/200 μL) was injected into the left gastrocnemius muscle of male wild-type (CatK+/+ ) and CatK-/- mice, and the mice were processed for morphological and biochemical studies. RESULTS On post-injection Day 14, CatK deletion ameliorated muscle interstitial fibrosis and remodelling and performance. At an early time point (Day 3), CatK-/- reduced the lesion macrophage and leucocyte contents and cell apoptosis, the mRNA levels of monocyte chemoattractant protein-1, toll-like receptor-2 and toll-like receptor-4, and the gelatinolytic activity related to matrix metalloproteinase-2/-9. CatK deletion also restored the protein levels of caspase-3 and cleaved caspase-8 and the ratio of the BAX to the Bcl-2. Moreover, CatK deficiency protected muscle fibre laminin and desmin disorder in response to CTX injury. These beneficial muscle effects were mimicked by CatK-specific inhibitor treatment. In vitro experiments demonstrated that pharmacological CatK inhibition reduced the apoptosis of C2C12 mouse myoblasts and the levels of BAX and caspase-3 proteins induced by CTX. CONCLUSIONS These results demonstrate that CatK plays an essential role in skeletal muscle loss and fibrosis in response to CTX injury, possibly via a reduction of inflammation and cell apoptosis, suggesting a novel therapeutic strategy for the control of skeletal muscle diseases by regulating CatK activity.
Collapse
Affiliation(s)
- Shinyu Ogasawara
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China.,Department of Internal Medicine, Kyung Hee University, Seoul, 130-702, Korea
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Public Health, Guilin Medical College, Guilin, 541004, Guangxi, China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Hiroki Goto
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guangxian Zhao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Kaoru Kimura
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hiroyuki Umegaki
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 20115, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| |
Collapse
|
35
|
[Molecular mechanism of sarcopenia]. Nihon Ronen Igakkai Zasshi 2018; 55:13-24. [PMID: 29503355 DOI: 10.3143/geriatrics.55.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
36
|
Tzafetas M, Lathouras K, Tantanasis T, Fidani S, Tziomalos K, Kalinderi K, Loufopoulos A, Zournatzi V. Role of Metalloproteinases in the Pathogenesis of Unexpected Poor Ovarian Response with a Possible Genetic Predisposition. INTERNATIONAL JOURNAL OF INFERTILITY & FETAL MEDICINE 2017; 8:5-11. [DOI: 10.5005/jp-journals-10016-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
ABSTRACTAimTo study the role of matrix metalloproteinase (MMP- 1,2,3), inhibitor tissue inhibitors of metalloproteinase (TIMP)-2, and specific gene polymorphisms in unexpected poor ovarian responders (un-PORs).Materials and methodsGroup I consisted of 44 un-PORs, group II of 42 subfertile, normal ovarian responders (NORs), and group III of 66 fertile women in a prospective study. Matrix metalloproteinase-1,2,3 and TIMP-2 were assessed in 40 patients from groups I and II. Specific polymorphisms (SP; MMP-1 −519 A/G, MMP-2 −1575 G/A, MMP-3 −1171 5A/6A, and TIMP-2 rs55743137T/G) were investigated in group I, II, and III patients.ResultsGroup I required similar amount of gonadotropins compared with group II, with fewer oocytes retrieved, lower fertilization rates, embryos/embryo transfer, clinical pregnancies/cycle, and “take-home babies” (p = 0.900, 0.001, 0.002, 0.001, 0.031, and p = 0.128) respectively, Table 1). Group I had lower MMP-2 with higher TIMP-2 (p = 0.002, 0.037 respectively; Table 2). In the same group, MMP-1 was higher in women with GG genotype of the MMP-1 polymorphism, vs GA genotype (p = 0.047; Table 3). The MMP-2, MMP-3, and TIMP-2 polymorphisms did not affect MMP-2, MMP-3, and TIMP-2 respectively. The same applied for MMP-1,2,3 and TIMP-2 in group II. Comparing frequencies of different genotypes of the MMP-1,2,3 and TIMP-2 polymorphisms, they did not differ between the three different groups: A, B, and C (Table 4).ConclusionImpaired MMP-2 activity, associated with significantly higher TIMP-2 detected, could be involved in un-POR pathogenesis. There was no strong association between MMP polymorphisms and un-POR susceptibility. However, women with A/G polymorphism (MMP-1 −519) had lower MMP-1 compared with GG homozygotes.Clinical significanceIdentification of patients with poor ovarian response in a pretreatment environment would help improve their ongoing fertility plan and manage their expectations. Also by having the ability to investigate if one belongs to that group, it could provide important family planning information for the patient.How to cite this articleTzafetas M, Lathouras K, Tantanasis T, Fidani S, Tziomalos K, Kalinderi K, Loufopoulos A, Zournatzi V. Role of Metalloproteinases in the Pathogenesis of Unexpected Poor Ovarian Response with a Possible Genetic Predisposition. Int J Infertil Fetal Med 2017;8(1):5-11.
Collapse
|
37
|
Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem Cell Biol 2017; 148:49-60. [DOI: 10.1007/s00418-017-1556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
|
38
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
39
|
Smith AST, Davis J, Lee G, Mack DL, Kim DH. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov Today 2016; 21:1387-1398. [PMID: 27109386 DOI: 10.1016/j.drudis.2016.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 01/16/2023]
Abstract
Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
Silva MT, Nascimento TL, Pereira MG, Siqueira AS, Brum PC, Jaeger RG, Miyabara EH. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9. Cell Tissue Res 2016; 365:173-86. [PMID: 26896238 DOI: 10.1007/s00441-016-2373-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/01/2016] [Indexed: 02/04/2023]
Abstract
We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.
Collapse
Affiliation(s)
- Meiricris T Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Tábata L Nascimento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Adriane S Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015; 20:18168-84. [PMID: 26457695 PMCID: PMC6332113 DOI: 10.3390/molecules201018168] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| |
Collapse
|
42
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
43
|
Avantaggiato A, Girardi A, Palmieri A, Pascali M, Carinci F. Bio-Revitalization: Effects of NASHA on Genes Involving Tissue Remodeling. Aesthetic Plast Surg 2015; 39:459-64. [PMID: 26085225 DOI: 10.1007/s00266-015-0514-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/31/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The "non-animal stabilized hyaluronic acid" (NASHA) is a widely used product in bio-revitalization injective procedures in esthetic medicine. The present research aimed to quantitatively evaluate the therapeutic effect of one of the more used bio-revitalization products on cultured dermal fibroblasts. RT-PCR was used for gene expression profiling of some proteins known to be relevant in skin homeostasis. METHODS Human dermal fibroblasts were seeded on a culture medium enriched with a product for dermal bio-revitalization, consisting of stabilized hyaluronic acid gel 20 mg/ml. After 24, 48, and 72 h of exposure, the cDNA was amplified by real-time PCR. Gene expression was quantified with the delta/delta calculation method. RESULTS In this study, the gene of metalloproteinase (MMP)-13 is strongly expressed after NASHA incubation. The MMP-2 encoding gene instead is less expressed, but both evidence the same temporal trend, being progressively up-regulated after 24 and 48 h, thereafter the expression decreases, whereas MMP-3 maintains the same up-regulation at 72 h. Hyaluronan synthase 1 and desmoplakin are progressively up-regulated and increase at 24, 48, and 72 h. Hyaluronidase 1 and neutrophil elastase genes are overexpressed, but at 72 h they both exhibit the same behavior as the other degradative enzymes MMP-13 and MMP-2. CONCLUSIONS Skin bio-revitalization by injecting the tested NASHA gel produces an enhancement in the expression of some genes involved in extracellular matrix degradation and organization. In this study, a time-dependent behavior, different for genes encoding degradative compared to synthesis proteins, was demonstrated.
Collapse
Affiliation(s)
- A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|