1
|
Boehm T, Jilma B. Are leukotrienes really the world's best bronchoconstrictors and at least 100 to 1000 times more potent than histamine? Drug Discov Today 2025; 30:104349. [PMID: 40180311 DOI: 10.1016/j.drudis.2025.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
It has been stated numerous times that leukotrienes are 100 to 1000 times more potent compared with histamine, but is this statement correct? Can we really compare a charged mono-cation with lipoid amphiphiles in their ability to penetrate an epithelial cell layer after inhalation challenge? In this review we question the shift in clinical and drug development attention from histamine towards leukotriene receptor antagonists for the treatment of chronic asthma and acute asthma exacerbations. The presented data indicate that histamine very likely plays a much more important role than previously assumed. It is time to rethink mediator involvement during bronchospasm and shift attention back to histamine.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
2
|
Koller A, Preishuber-Pflügl J, Mayr D, Brunner SM, Ladek AM, Runge C, Aigner L, Reitsamer HA, Trost A. Cysteinyl leukotriene receptor 1 modulates retinal immune cells, vascularity and proteolytic activity in aged mice. Aging (Albany NY) 2025; 17:308-328. [PMID: 39891615 PMCID: PMC11892928 DOI: 10.18632/aging.206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cysteinyl leukotrienes (CysLTs) modulate the immune response, the microvasculature, cell stress and the endosomal-lysosomal system, and are involved in cellular aging. Interestingly, CysLT receptor 1 (Cysltr1) is highly expressed in the retina, a tissue that is strongly affected by the aging process. Thus, we performed an introductory examination to determine a potential importance of Cysltr1 for cells in the neurovascular unit using qPCR and immunofluorescence analysis, and on proteolytic activity in the retinas of aged mice. Aged mice (~84 weeks) were treated orally with vehicle or 10 mg/kg montelukast (MTK), a specific Cysltr1 inhibitor, for 8 weeks, 5x/week. The retinas of young mice (~11 weeks) served as controls. Compared with young control mice, aged mice exhibited increased numbers of microglia and a reduced retinal capillary diameter, but these age-dependent changes were abrogated by MTK treatment. Retinal protein levels of the ubiquitin binding protein sequestosome-1 were amplified by aging, but were reduced by MTK treatment. Interestingly, retinal proteasome activity was decreased in aged mice, whereas Cysltr1 inhibition increased this activity. The reduction in immune cells caused by Cysltr1 suppression may dampen neuroinflammation, a known promoter of tissue aging. Additionally, an increase in capillary diameter after Cysltr1 inhibition could have a beneficial effect on blood flow in aged individuals. Furthermore, the increase in proteolytic activity upon Cysltr1 inhibition could prevent the accumulation of toxic deposits, which is a hallmark of aged tissue. Overall, Cysltr1 is a promising target for modulating the impact of aging on retinal tissue.
Collapse
Affiliation(s)
- Andreas Koller
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Daniela Mayr
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
3
|
García de Alba Graue P, Abdouh M, Goyeneche A, Burnier JV, Burnier MN. CYSLTR1 antagonism displays potent anti-tumor effects in uveal melanoma. Exp Eye Res 2024; 248:110120. [PMID: 39389443 DOI: 10.1016/j.exer.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Uveal Melanoma (UM) is the most common primary intraocular malignancy in adults. Although rare, it is a deadly tumor, with a long-term prognosis of death occurring in more than 50% of the cases. It is characterized by frequent (∼80%) driver mutations in GNAQ and GNA11 genes, both of which are activated by cysteinyl leukotriene receptors (CYSLTRs). CYSLTR1 is upregulated and participated in the progression of several cancers. In the present study, we sought to determine the expression levels of CYSLTR1 in 31 human UM specimens and cell lines (3 primary and 1 metastatic), and its role in the proliferation and viability of these cells by analyzing cell metabolic activity, cell confluence and apoptosis levels. We show that all analyzed UM specimens and cells expressed CYSLTR1 at high levels. Notably, the pharmacological blockage of this receptor, using the inverse agonist MK571, reduced the growth and metabolic activity, and increased the apoptotic cell death of all analyzed UM cell lines. We provide evidence that CYSLTR1 is expressed in human UM and plays a significant role in UM progression behavior. Our data highlight the potential beneficial effects of targeting CYSLTR1 in the control of UM progression.
Collapse
Affiliation(s)
- Paulina García de Alba Graue
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada.
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| | - Julia Valdemarin Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| |
Collapse
|
4
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
5
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
6
|
Satapathy SR, Ghatak S, Sjölander A. The tumor promoter cysteinyl leukotriene receptor 1 regulates PD-L1 expression in colon cancer cells via the Wnt/β-catenin signaling axis. Cell Commun Signal 2023; 21:138. [PMID: 37316937 DOI: 10.1186/s12964-023-01157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/01/2023] [Indexed: 06/16/2023] Open
Abstract
Immunotherapy targeting programmed death-ligand 1 (PD-L1) or PD-1 in solid tumors has been shown to be clinically beneficial. However, in colorectal cancer (CRC), only a subset of patients benefit from PD-1/PD-L1 treatment. Previously, we showed that high cysteinyl leukotriene receptor 1 (CysLT1R) levels are associated with poor prognosis in CRC patients. Recently, we have revealed the role of the tumor promoter CysLT1R in drug resistance and stemness in colon cancer (CC) cells. Here, we show the role of the CysLT1R/Wnt/β-catenin signaling axis in the regulation of PD-L1 using both in vitro and in vivo preclinical model systems. Interestingly, we found that both endogenous and IFNγ-induced PD-L1 expression in CC cells is mediated through upregulation of CysLT1R, which enhances Wnt/β-catenin signaling. Therapeutic targeting of CysLT1R with its antagonist montelukast (Mo), as well as CRISPR/Cas9-mediated or doxycycline-inducible functional absence of CysLT1R, negatively regulated PD-L1 expression in CC cells. Interestingly, an anti-PD-L1 neutralizing antibody exhibited stronger effects together with the CysLT1R antagonist in cells (Apcmut or CTNNB1mut) with either endogenous or IFNγ-induced PD-L1 expression. Additionally, mice treated with Mo showed depletion of PD-L1 mRNA and protein. Moreover, in CC cells with combined treatment of a Wnt inhibitor and an anti-PD-L1 antibody was effective only in β-catenin-dependent (APCmut) context. Finally, analysis of public dataset showed positive correlations between the PD-L1 and CysLT1R mRNA levels. These results elucidate a previously underappreciated CysLT1R/Wnt/β-catenin signaling pathway in the context of PD-L1 inhibition in CC, which might be considered for improving the efficacy of anti-PD-L1 therapy in CC patients. Video Abstract.
Collapse
Affiliation(s)
- Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Center, Lund University, Skåne University Hospital, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden.
| | - Souvik Ghatak
- Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Center, Lund University, Skåne University Hospital, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden
| | - Anita Sjölander
- Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Center, Lund University, Skåne University Hospital, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden.
| |
Collapse
|
7
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Ghatak S, Satapathy SR, Sjölander A. DNA Methylation and Gene Expression of the Cysteinyl Leukotriene Receptors as a Prognostic and Metastatic Factor for Colorectal Cancer Patients. Int J Mol Sci 2023; 24:ijms24043409. [PMID: 36834820 PMCID: PMC9963074 DOI: 10.3390/ijms24043409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC), one of the leading causes of cancer-related deaths in the western world, is the third most common cancer for both men and women. As a heterogeneous disease, colon cancer (CC) is caused by both genetic and epigenetic changes. The prognosis for CRC is affected by a variety of features, including late diagnosis, lymph node and distant metastasis. The cysteinyl leukotrienes (CysLT), as leukotriene D4 and C4 (LTD4 and LTC4), are synthesized from arachidonic acid via the 5-lipoxygenase pathway, and play an important role in several types of diseases such as inflammation and cancer. Their effects are mediated via the two main G-protein-coupled receptors, CysLT1R and CysLT2R. Multiple studies from our group observed a significant increase in CysLT1R expression in the poor prognosis group, whereas CysLT2R expression was higher in the good prognosis group of CRC patients. Here, we systematically explored and established the role of the CysLTRs, cysteinyl leukotriene receptor 1(CYSLTR1) and cysteinyl leukotriene receptor 2 (CYSLTR2) gene expression and methylation in the progression and metastasis of CRC using three unique in silico cohorts and one clinical CRC cohort. Primary tumor tissues showed significant CYSLTR1 upregulation compared with matched normal tissues, whereas it was the opposite for the CYSLTR2. Univariate Cox proportional-hazards (CoxPH) analysis yielded a high expression of CYSLTR1 and accurately predicted high-risk patients in terms of overall survival (OS; hazard ratio (HR) = 1.87, p = 0.03) and disease-free survival [DFS] Hazard ratio [HR] = 1.54, p = 0.05). Hypomethylation of the CYSLTR1 gene and hypermethylation of the CYSLTR2 gene were found in CRC patients. The M values of the CpG probes for CYSLTR1 are significantly lower in primary tumor and metastasis samples than in matched normal samples, but those for CYSLTR2 are significantly higher. The differentially upregulated genes between tumor and metastatic samples were uniformly expressed in the high-CYSLTR1 group. Two epithelial-mesenchymal transition (EMT) markers, E-cadherin (CDH1) and vimentin (VIM) were significantly downregulated and upregulated in the high-CYSLTR1 group, respectively, but the result was opposite to that of CYSLTR2 expression in CRC. CDH1 expression was high in patients with less methylated CYSLTR1 but low in those with more methylated CYSLTR2. The EMT-associated observations were also validated in CC SW620 cell-derived colonospheres, which showed decreased E-cadherin expression in the LTD4 stimulated cells, but not in the CysLT1R knockdown SW620 cells. The methylation profiles of the CpG probes for CysLTRs significantly predicted lymph node (area under the curve [AUC] = 0.76, p < 0.0001) and distant (AUC = 0.83, p < 0.0001) metastasis. Intriguingly, the CpG probes cg26848126 (HR = 1.51, p = 0.03) for CYSLTR1, and cg16299590 (HR = 2.14, p = 0.03) for CYSLTR2 significantly predicted poor prognosis in terms of OS, whereas the CpG probe cg16886259 for CYSLTR2 significantly predicts a poor prognosis group in terms of DFS (HR = 2.88, p = 0.03). The CYSLTR1 and CYSLTR2 gene expression and methylation results were successfully validated in a CC patient cohort. In this study, we have demonstrated that CysLTRs' methylation and gene expression profile are associated with the progression, prognosis, and metastasis of CRC, which might be used for the assessment of high-risk CRC patients after validating the result in a larger CRC cohort.
Collapse
|
9
|
Slater K, Bosch R, Smith KF, Jahangir CA, Garcia-Mulero S, Rahman A, O’Connell F, Piulats JM, O’Neill V, Horgan N, Coupland SE, O’Sullivan J, Gallagher WM, Villanueva A, Kennedy BN. 1,4-dihydroxy quininib modulates the secretome of uveal melanoma tumour explants and a marker of oxidative phosphorylation in a metastatic xenograft model. Front Med (Lausanne) 2023; 9:1036322. [PMID: 36698840 PMCID: PMC9868667 DOI: 10.3389/fmed.2022.1036322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/04/2022] [Indexed: 01/11/2023] Open
Abstract
Uveal melanoma (UM) is an intraocular cancer with propensity for liver metastases. The median overall survival (OS) for metastatic UM (MUM) is 1.07 years, with a reported range of 0.84-1.34. In primary UM, high cysteinyl leukotriene receptor 1 (CysLT1) expression associates with poor outcomes. CysLT1 antagonists, quininib and 1,4-dihydroxy quininib, alter cancer hallmarks of primary and metastatic UM cell lines in vitro. Here, the clinical relevance of CysLT receptors and therapeutic potential of quininib analogs is elaborated in UM using preclinical in vivo orthotopic xenograft models and ex vivo patient samples. Immunohistochemical staining of an independent cohort (n = 64) of primary UM patients confirmed high CysLT1 expression significantly associates with death from metastatic disease (p = 0.02; HR 2.28; 95% CI 1.08-4.78), solidifying the disease relevance of CysLT1 in UM. In primary UM samples (n = 11) cultured as ex vivo explants, 1,4-dihydroxy quininib significantly alters the secretion of IL-13, IL-2, and TNF-α. In an orthotopic, cell line-derived xenograft model of MUM, 1,4-dihydroxy quininib administered intraperitoneally at 25 mg/kg significantly decreases ATP5B expression (p = 0.03), a marker of oxidative phosphorylation. In UM, high ATP5F1B is a poor prognostic indicator, whereas low ATP5F1B, in combination with disomy 3, correlates with an absence of metastatic disease in the TCGA-UM dataset. These preclinical data highlight the diagnostic potential of CysLT1 and ATP5F1B in UM, and the therapeutic potential of 1,4-dihydroxy quininib with ATP5F1B as a companion diagnostic to treat MUM.
Collapse
Affiliation(s)
- Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rosa Bosch
- Xenopat S.L., Parc Científic de Barcelona, Barcelona, Spain
| | - Kaelin Francis Smith
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sandra Garcia-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - Josep M. Piulats
- Department of Medical Oncology, Catalan Institute of Cancer (ICO), Bellvitge Biomedical Research Institute (IDIBELL)-OncoBell, Barcelona, Spain
| | | | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alberto Villanueva
- Xenopat S.L., Parc Científic de Barcelona, Barcelona, Spain,Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: Breandán N. Kennedy,
| |
Collapse
|
10
|
Su KK, Zheng XH, Bréchot C, Zheng XP, Zhu DH, Huang R, Zhang YH, Tao JJ, Lou YJ, Li LJ. Five-lipoxygenase-activating protein-mediated CYLD attenuation is a candidate driver in hepatic malignant lesion. Front Oncol 2022; 12:912881. [PMID: 35978827 PMCID: PMC9376481 DOI: 10.3389/fonc.2022.912881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-associated cancer. However, the lipid pro-inflammatory mediators have only been seldom investigated in HCC pathogenesis. Cylindromatosis (CYLD) attenuation is involved in hepatocarcinogenesis. Here, we aimed to evaluate the significance of hepatic lipid pro-inflammatory metabolites of arachidonate-affected CYLD expression via the 5-lipoxygenase (5-LO) pathway. Resection liver tissues from HCC patients or donors were evaluated for the correlation of 5-LO/cysteinyl leukotrienes (CysLTs) signaling to the expression of CYLD. The impact of functional components in 5-LO/CysLTs cascade on survival of HCC patients was subsequently assessed. Both livers from canines, a preponderant animal for cancer research, and genetic-modified human HCC cells treated with hepatocarcinogen aristolochic acid I (AAI) were further used to reveal the possible relevance between 5-LO pathway activation and CYLD suppression. Five-LO-activating protein (FLAP), an essential partner of 5-LO, was significantly overexpressed and was parallel to CYLD depression, CD34 neovascular localization, and high Ki-67 expression in the resection tissues from HCC patients. Importantly, high hepatic FLAP transcription markedly shortened the median survival time of HCC patients after surgical resection. In the livers of AAI-treated canines, FLAP overexpression was parallel to enhanced CysLTs contents and the simultaneous attenuation of CYLD. Moreover, knock-in FLAP significantly diminished the expression of CYLD in AAI-treated human HCC cells. In summary, the hepatic FLAP/CysLTs axis is a crucial suppressor of CYLD in HCC pathogenesis, which highlights a novel mechanism in hepatocarcinogenesis and progression. FLAP therefore can be explored for the early HCC detection and a target of anti-HCC therapy.
Collapse
Affiliation(s)
- Kun-kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue-hua Zheng
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology, Shengjing Hospital, China Medical University, Shenyang, China
| | | | - Xiao-ping Zheng
- Department of Pathology, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Dan-hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rong Huang
- Department of Pathology, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Yan-hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing-jing Tao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-jia Lou
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lan-juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lan-juan Li,
| |
Collapse
|
11
|
Jang HY, Kim IW, Oh JM. Cysteinyl Leukotriene Receptor Antagonists Associated With a Decreased Incidence of Cancer: A Retrospective Cohort Study. Front Oncol 2022; 12:858855. [PMID: 35463337 PMCID: PMC9021999 DOI: 10.3389/fonc.2022.858855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Cysteinyl leukotrienes receptor antagonists (LTRAs) are promising chemoprevention options to target cysteinyl leukotriene signaling in cancer. However, only a number of randomized clinical trials (RCTs) or observational studies have been conducted to date; thus, the effect of LTRAs on patients is yet to be elucidated. Using insurance claim data, we aimed to evaluate whether LTRAs have cancer preventive effects by observing patients who took LTRAs. Method Patients diagnosed with asthma, allergic rhinitis, chronic cough, and have no history of cancer were followed-up from 2005 to 2017. Cox proportional hazard regression analysis was conducted to estimate the hazard ratios (HRs) for cancer risk of LTRA users. Result We followed-up (median: 5.6 years) 188,906 matched patients (94,453 LTRA users and 94,453 non-users). LTRA use was associated with a decreased risk of cancer (adjusted HR [aHR] = 0.85, 95% confidence interval [CI] = 0.83–0.87). The cancer risk showed a tendency to decrease rapidly when LTRAs were used in high dose (aHR = 0.56, 95% CI = 0.40–0.79) or for longer durations of more than 3 years (aHR = 0.68, 95% CI = 0.60–0.76) and 5 years (aHR = 0.33, 95% CI = 0.26–0.42). The greater preventive effects of LTRAs were also observed in patients with specific risk factors related to sex, age, smoking, and the presence of comorbidities. Conclusion In this study, we found that LTRA use was associated with a decreased risk of cancer. The high dose and long duration of the use of LTRAs correlated with a lower cancer risk. Since LTRAs are not yet used for the prevention or treatment of cancer, our findings could be used for developing a new chemo-regimen or designing feasible RCTs.
Collapse
Affiliation(s)
- Ha Young Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Koller A, Preishuber-Pflügl J, Runge C, Ladek AM, Brunner SM, Aigner L, Reitsamer H, Trost A. Chronobiological activity of cysteinyl leukotriene receptor 1 during basal and induced autophagy in the ARPE-19 retinal pigment epithelial cell line. Aging (Albany NY) 2021; 13:25670-25693. [PMID: 34919533 PMCID: PMC8751616 DOI: 10.18632/aging.203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
13
|
Tsai MJ, Chang WA, Chuang CH, Wu KL, Cheng CH, Sheu CC, Hsu YL, Hung JY. Cysteinyl Leukotriene Pathway and Cancer. Int J Mol Sci 2021; 23:ijms23010120. [PMID: 35008546 PMCID: PMC8745400 DOI: 10.3390/ijms23010120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite many advances being made in recent decades. Changes in the tumor microenvironment, including dysregulated immunity, may contribute to carcinogenesis and cancer progression. The cysteinyl leukotriene (CysLT) pathway is involved in several signal pathways, having various functions in different tissues. We summarized major findings of studies about the roles of the CysLT pathway in cancer. Many in vitro studies suggested the roles of CysLTs in cell survival/proliferation via CysLT1 receptor (CysLT1R). CysLT1R antagonism decreased cell vitality and induced cell death in several types of cancer cells, such as colorectal, urological, breast, lung and neurological malignancies. CysLTs were also associated with multidrug resistance of cancer, and CysLT1R antagonism might reverse chemoresistance. Some animal studies demonstrated the beneficial effects of CysLT1R antagonist in inhibiting tumorigenesis and progression of some cancer types, particularly colorectal cancer and lung cancer. The expression of CysLT1R was shown in various cancer tissues, particularly colorectal cancer and urological malignancies, and higher expression was associated with a poorer prognosis. The chemo-preventive effects of CysLT1R antagonists were demonstrated in two large retrospective cohort studies. In summary, the roles of the CysLT pathway in cancer have been delineated, whereas further studies are still warranted.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Hung Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 5651)
| |
Collapse
|
14
|
Trost A, Motloch K, Koller A, Bruckner D, Runge C, Schroedl F, Bogner B, Kaser-Eichberger A, Strohmaier C, Ladek AM, Preishuber-Pfluegl J, Brunner SM, Aigner L, Reitsamer HA. Inhibition of the cysteinyl leukotriene pathways increases survival of RGCs and reduces microglial activation in ocular hypertension. Exp Eye Res 2021; 213:108806. [PMID: 34715090 DOI: 10.1016/j.exer.2021.108806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Glaucoma is the second leading cause of blindness worldwide. This multifactorial, neurodegenerative group of diseases is characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, leading to irreversible visual impairment and blindness. There is a huge unmet and urging need for the development of new and translatable strategies and treatment options to prevent this progressive loss of RGC. Accumulating evidence points towards a critical role of neuroinflammation, in particular microglial cells, in the pathogenesis of glaucoma. Leukotrienes are mediators of neuroinflammation and are involved in many neurodegenerative diseases. Therefore, we tested the leukotriene receptors CysLT1R/GPR17-selective antagonist Montelukast (MTK) for its efficacy to modulate the reactive state of microglia in order to ameliorate RGCs loss in experimental glaucoma. Ocular hypertension (OHT) was induced unilaterally by injection of 8 μm magnetic microbead (MB) into the anterior chamber of female Brown Norway rats. The contralateral, untreated eye served as control. Successful induction of OHT was verified by daily IOP measurement using a TonoLab rebound tonometer. Simultaneously to OHT induction, one group received daily MTK treatment and the control group vehicle solution by oral gavage. Animals were sacrificed 13-15 days after MB injection. Retina and optic nerves (ON) of OHT and contralateral eyes were analyzed by immunofluorescence with specific markers for RGCs (Brn3a), microglial cells/macrophages (Iba1 and CD68), and cysteinyl leukotriene pathway receptors (CysLT1R and GPR17). Protein labeling was documented by confocal microscopy and analyzed with ImageJ plugins. Further, mRNA expression of genes of the inflammatory and leukotriene pathway was analyzed in retinal tissue. MTK treatment resulted in a short-term IOP reduction at day 2, which dissipated by day 5 of OHT induction in MTK treated animals. Furthermore, MTK treatment resulted in a decreased activation of Iba1+ microglial cells in the retina and ON, and in a significantly increased RGC survival in OHT eyes. Within the retina, GPR17 and CysLT1R expression was demonstrated in single RCGs and in microglial cells respectively. Further, increased mRNA expression of pro-inflammatory genes was detected in OHT induced retinas. In the ON, OHT induction increased the number of GPR17+ cells, showing a trend of reduction following MTK treatment. This study shows for the first time a significantly increased RGC survival in an acute OHT model following treatment with the leukotriene receptor antagonist MTK. These results strongly suggest a neuroprotective effect of MTK and a potential new therapeutic strategy for glaucoma treatment.
Collapse
Affiliation(s)
- Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria.
| | - Karolina Motloch
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Andreas Koller
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Falk Schroedl
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria; Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria; Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria; Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Anja-Maria Ladek
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Julia Preishuber-Pfluegl
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Susanne Maria Brunner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| | - Herbert Anton Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
15
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
16
|
Saier L, Peyruchaud O. Emerging role of cysteinyl LTs in cancer. Br J Pharmacol 2021; 179:5036-5055. [PMID: 33527344 DOI: 10.1111/bph.15402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer.
Collapse
Affiliation(s)
- Lou Saier
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Sadybekov AA, Brouillette RL, Marin E, Sadybekov AV, Luginina A, Gusach A, Mishin A, Besserer-Offroy É, Longpré JM, Borshchevskiy V, Cherezov V, Sarret P, Katritch V. Structure-Based Virtual Screening of Ultra-Large Library Yields Potent Antagonists for a Lipid GPCR. Biomolecules 2020; 10:E1634. [PMID: 33287369 PMCID: PMC7761830 DOI: 10.3390/biom10121634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Cysteinyl leukotriene G protein-coupled receptors, CysLT1R and CysLT2R, regulate bronchoconstrictive and pro-inflammatory effects and play a key role in allergic disorders, cardiovascular diseases, and cancer. CysLT1R antagonists have been widely used to treat asthma disorders, while CysLT2R is a potential target against uveal melanoma. However, very few selective antagonist chemotypes for CysLT receptors are available, and the design of such ligands has proved to be challenging. To overcome this obstacle, we took advantage of recently solved crystal structures of CysLT receptors and an ultra-large Enamine REAL library, representing a chemical space of 680 M readily available compounds. Virtual ligand screening employed 4D docking models comprising crystal structures of CysLT1R and CysLT2R and their corresponding ligand-optimized models. Functional assessment of the candidate hits yielded discovery of five novel antagonist chemotypes with sub-micromolar potencies and the best Ki = 220 nM at CysLT1R. One of the hits showed inverse agonism at the L129Q constitutively active mutant of CysLT2R, with potential utility against uveal melanoma.
Collapse
Affiliation(s)
- Arman A. Sadybekov
- Michelson Center for Convergent Biosciences, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; (A.V.S.); (V.C.)
| | - Rebecca L. Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (R.L.B.); (É.B.-O.); (J.-M.L.); (P.S.)
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
| | - Anastasiia V. Sadybekov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; (A.V.S.); (V.C.)
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (R.L.B.); (É.B.-O.); (J.-M.L.); (P.S.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (R.L.B.); (É.B.-O.); (J.-M.L.); (P.S.)
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; (A.V.S.); (V.C.)
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (E.M.); (A.L.); (A.G.); (A.M.); (V.B.)
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (R.L.B.); (É.B.-O.); (J.-M.L.); (P.S.)
| | - Vsevolod Katritch
- Michelson Center for Convergent Biosciences, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; (A.V.S.); (V.C.)
| |
Collapse
|
18
|
Johnson AM, Kleczko EK, Nemenoff RA. Eicosanoids in Cancer: New Roles in Immunoregulation. Front Pharmacol 2020; 11:595498. [PMID: 33364964 PMCID: PMC7751756 DOI: 10.3389/fphar.2020.595498] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Eicosanoids represent a family of active biolipids derived from arachidonic acid primarily through the action of cytosolic phospholipase A2-α. Three major downstream pathways have been defined: the cyclooxygenase (COX) pathway which produces prostaglandins and thromboxanes; the 5-lipoxygenase pathway (5-LO), which produces leukotrienes, lipoxins and hydroxyeicosatetraenoic acids, and the cytochrome P450 pathway which produces epoxygenated fatty acids. In general, these lipid mediators are released and act in an autocrine or paracrine fashion through binding to cell surface receptors. The pattern of eicosanoid production is cell specific, and is determined by cell-specific expression of downstream synthases. Increased eicosanoid production is associated with inflammation and a panel of specific inhibitors have been developed designated non-steroidal anti-inflammatory drugs. In cancer, eicosanoids are produced both by tumor cells as well as cells of the tumor microenvironment. Earlier studies demonstrated that prostaglandin E2, produced through the action of COX-2, promoted cancer cell proliferation and metastasis in multiple cancers. This resulted in the development of COX-2 inhibitors as potential therapeutic agents. However, cardiac toxicities associated with these agents limited their use as therapeutic agents. The advent of immunotherapy, especially the use of immune checkpoint inhibitors has revolutionized cancer treatment in multiple malignancies. However, the majority of patients do not respond to these agents as monotherapy, leading to intense investigation of other pathways mediating immunosuppression in order to develop rational combination therapies. Recent data have indicated that PGE2 has immunosuppressive activity, leading to renewed interest in targeting this pathway. However, little is known regarding the role of other eicosanoids in modulating the tumor microenvironment, and regulating anti-tumor immunity. This article reviews the role of eicosanoids in cancer, with a focus on their role in modulating the tumor microenvironment. While the role of PGE2 will be discussed, data implicating other eicosanoids, especially products produced through the lipoxygenase and cytochrome P450 pathway will be examined. The existence of small molecular inhibitors and activators of eicosanoid pathways such as specific receptor blockers make them attractive candidates for therapeutic trials, especially in combination with novel immunotherapies such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Slater K, Heeran AB, Garcia-Mulero S, Kalirai H, Sanz-Pamplona R, Rahman A, Al-Attar N, Helmi M, O’Connell F, Bosch R, Portela A, Villanueva A, Gallagher WM, Jensen LD, Piulats JM, Coupland SE, O’Sullivan J, Kennedy BN. High Cysteinyl Leukotriene Receptor 1 Expression Correlates with Poor Survival of Uveal Melanoma Patients and Cognate Antagonist Drugs Modulate the Growth, Cancer Secretome, and Metabolism of Uveal Melanoma Cells. Cancers (Basel) 2020; 12:E2950. [PMID: 33066024 PMCID: PMC7600582 DOI: 10.3390/cancers12102950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Metastatic uveal melanoma (UM) is a rare, but often lethal, form of ocular cancer arising from melanocytes within the uveal tract. UM has a high propensity to spread hematogenously to the liver, with up to 50% of patients developing liver metastases. Unfortunately, once liver metastasis occurs, patient prognosis is extremely poor with as few as 8% of patients surviving beyond two years. There are no standard-of-care therapies available for the treatment of metastatic UM, hence it is a clinical area of urgent unmet need. Here, the clinical relevance and therapeutic potential of cysteinyl leukotriene receptors (CysLT1 and CysLT2) in UM was evaluated. High expression of CYSLTR1 or CYSLTR2 transcripts is significantly associated with poor disease-free survival and poor overall survival in UM patients. Digital pathology analysis identified that high expression of CysLT1 in primary UM is associated with reduced disease-specific survival (p = 0.012; HR 2.76; 95% CI 1.21-6.3) and overall survival (p = 0.011; HR 1.46; 95% CI 0.67-3.17). High CysLT1 expression shows a statistically significant (p = 0.041) correlation with ciliary body involvement, a poor prognostic indicator in UM. Small molecule drugs targeting CysLT1 were vastly superior at exerting anti-cancer phenotypes in UM cell lines and zebrafish xenografts than drugs targeting CysLT2. Quininib, a selective CysLT1 antagonist, significantly inhibits survival (p < 0.0001), long-term proliferation (p < 0.0001), and oxidative phosphorylation (p < 0.001), but not glycolysis, in primary and metastatic UM cell lines. Quininib exerts opposing effects on the secretion of inflammatory markers in primary versus metastatic UM cell lines. Quininib significantly downregulated IL-2 and IL-6 in Mel285 cells (p < 0.05) but significantly upregulated IL-10, IL-1β, IL-2 (p < 0.0001), IL-13, IL-8 (p < 0.001), IL-12p70 and IL-6 (p < 0.05) in OMM2.5 cells. Finally, quininib significantly inhibits tumour growth in orthotopic zebrafish xenograft models of UM. These preclinical data suggest that antagonism of CysLT1, but not CysLT2, may be of therapeutic interest in the treatment of UM.
Collapse
Affiliation(s)
- Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
- Genomics Medicine Ireland Limited, Cherrywood Business Park Building 4, D18 K7W4 Dublin, Ireland
| | - Aisling B. Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Sandra Garcia-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (R.S.-P.)
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK; (H.K.); (S.E.C.)
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (R.S.-P.)
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Nebras Al-Attar
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Mays Helmi
- Unit of Cardiovascular Medicine, Division of Diagnostics and Specialist Medicine, Department of Health, Medical and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden; (M.H.); (L.D.J.)
| | - Fiona O’Connell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Rosa Bosch
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - Anna Portela
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - Alberto Villanueva
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Lasse D. Jensen
- Unit of Cardiovascular Medicine, Division of Diagnostics and Specialist Medicine, Department of Health, Medical and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden; (M.H.); (L.D.J.)
| | - Josep M. Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain;
- Clinical Research in Solid Tumors Group (CREST), Bellvitge Biomedical Research Institute IDIBELL-OncoBell, CIBERONC, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| | - Jacintha O’Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| |
Collapse
|
20
|
Kennedy SA, Morrissey ME, Dunne MR, O'Connell F, Butler CT, Cathcart MC, Buckley AM, Mehigan BJ, Larkin JO, McCormick P, Kennedy BN, O'Sullivan J. Combining 1,4-dihydroxy quininib with Bevacizumab/FOLFOX alters angiogenic and inflammatory secretions in ex vivo colorectal tumors. BMC Cancer 2020; 20:952. [PMID: 33008336 PMCID: PMC7532092 DOI: 10.1186/s12885-020-07430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related mortality worldwide with one in every five patients diagnosed with metastatic CRC (mCRC). In mCRC cases, the 5-year survival rate remains at approximately 14%, reflecting the lack of effectiveness of currently available treatments such as the anti-VEGF targeting antibody Bevacizumab combined with the chemotherapy folinic acid, fluorouracil and oxaliplatin (FOLFOX). Approximately 60% of patients do not respond to this combined treatment. Furthermore, Bevacizumab inhibits dendritic cell (DC) maturation in poor responders, a key process for tumor eradication. Method Following drug treatment, secreted expression levels of angiogenic and inflammatory markers in tumor conditioned media generated from human ex vivo colorectal tumors were measured by ELISA. Dendritic cell phenotypic and maturation markers were assessed by flow cytometry. Results Our novel compound, 1,4-dihydroxy quininib, acts in an alternative pathway compared to the approved therapy Bevacizumab. 1,4-dihydroxy quininib alone, and in combination with Bevacizumab or FOLFOX significantly reduced TIE-2 expression which is involved in the promotion of tumor vascularization. Combination treatment with 1,4-dihydroxy quininib significantly increased the expression level of DC phenotypic and maturation markers. Conclusion Our results indicate the anti-angiogenic small molecule 1,4-dihydroxy quininib could be an alternative novel treatment in combination therapy for CRC patients.
Collapse
Affiliation(s)
- Susan A Kennedy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Maria E Morrissey
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Clare T Butler
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Mary-Clare Cathcart
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | - Breandán N Kennedy
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
21
|
Higurashi T, Arimoto J, Ashikari K, Takatsu T, Misawa N, Yoshihara T, Matsuura T, Fuyuki A, Ohkubo H, Nakajima A. The efficacy of a leukotriene receptor antagonist in the treatment of human rectal aberrant crypt foci: a nonrandomized, open-label, controlled trial. BMC Cancer 2020; 20:770. [PMID: 32807113 PMCID: PMC7433177 DOI: 10.1186/s12885-020-07266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leukotriene receptor antagonists (LTRAs) are broadly used for the management of allergic asthma and have recently been indicated to inhibit carcinogenesis and cancer cell growth. In colorectal cancer (CRC) chemoprevention studies, the occurrence of adenoma or CRC itself is generally set as the trial endpoint. Although the occurrence rate of CRC is the most confident endpoint, it is inappropriate for chemoprevention studies because CRC incidence rate is low in the general population and needed for long-term monitoring. Aberrant crypt foci (ACF), defined as lesions containing crypts that are larger in diameter and darker in methylene blue staining than normal crypts, are regarded to be a fine surrogate biomarker of CRC. Therefore, this prospective study was designed to explore the chemopreventive effect of LTRA on colonic ACF formation and the safety of the medicine in patients scheduled for a poly resection as a pilot trial leading the CRC chemoprevention trial. METHODS This study is a nonrandomized, open-label, controlled trial in patients with colorectal ACF and polyps scheduled for a polypectomy. Participants meet the inclusion criteria will be recruited, and the number of ACF in the rectum will be counted at the baseline colonoscopic examination. Next, the participants will be assigned to the LTRA or no treatment group. Participants in the LTRA group will continue 10 mg of oral montelukast for 8 weeks, and those in the no treatment group will be observed without the administration of any additional drugs. At the end of the 8-week LTRA intervention period, a polypectomy will be conducted to evaluate the changes in the number of ACF, and cell proliferation in the normal colorectal epithelium will be analyzed. DISCUSSION This will be the first study to investigate the effect of LTRAs on colorectal ACF formation in humans. TRIAL REGISTRATION This trial has been registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN000029926 . Registered 10 November 2017.
Collapse
Affiliation(s)
- Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan.
| | - Jun Arimoto
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Keiichi Ashikari
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomohiro Takatsu
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Noboru Misawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tsutomu Yoshihara
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Akiko Fuyuki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidenori Ohkubo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
22
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
23
|
Bai H, Zhou M, Zeng M, Han L. PLA2G4A Is a Potential Biomarker Predicting Shorter Overall Survival in Patients with Non-M3/ NPM1 Wildtype Acute Myeloid Leukemia. DNA Cell Biol 2020; 39:700-708. [PMID: 32077754 DOI: 10.1089/dna.2019.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we aimed at exploring and validating the prognostic value of PLA2G4A expression in patients with non-M3/nucleophosmin (NPM1) wildtype (WT) acute myeloid leukemia (AML) by using two independent datasets. Data from the Cancer Genome Atlas-acute myeloid leukemia (TCGA-LAML) and the therapeutically applicable research to generate effective treatments (TARGET)-AML were used to assess the prognostic value of PLA2G4A in NPM1-WT AML cases. Results showed that non-M3 AML cases had significantly increased PLA2G4A expression compared with normal peripheral blood samples. Patients with high PLA2G4A expression (separated by median gene expression) had a significantly shorter overall survival (OS) compared with the group with low PLA2G4A expression, in both TCGA-LAML and TARGET-AML. Multivariate analysis showed that high PLA2G4A expression was independently associated with shorter OS in 97 non-M3/NPM1-WT AML cases in TCGA-LAML (hazard ratio [HR]: 1.946, 95% confidence interval [CI]: 1.094-3.462, q = 0.036). The prognostic value was validated based on 120 primary non-M3/NPM1-WT AML cases in TARGET-AML (HR: 1.518, 95% CI: 1.037-2.223, q = 0.048). Therefore, PLA2G4A expression might serve as an independent prognostic marker in OS in patients with non-M3/NPM1 WT AML. Bioinformatic analysis identified that several proteins physically interacted with PLA2G4A, some of which have well-characterized oncogenic properties in AML, such as RUVBL2, cytoskeleton regulatory protein 1 (CAP1), signal transducer and activator of transcription 3 (STAT3), and MYCBP. Therefore, we hypothesized that PLA2G4A upregulation has multiple effects on the malignant phenotype of AML cells together with its partners. Future molecular studies are required to explore the detailed regulatory network involved.
Collapse
Affiliation(s)
- Hansong Bai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxiu Zhou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liying Han
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
24
|
Lee CH. Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers (Basel) 2019; 11:E1841. [PMID: 31766574 PMCID: PMC6966475 DOI: 10.3390/cancers11121841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a key process in the progression of malignant cancer. Therefore, blocking the EMT can be a critical fast track for the development of anticancer drugs. In this paper, we update recent research output of EMT and we explore suppression of EMT by natural anti-inflammatory compounds and pro-resolving lipids.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Korea
| |
Collapse
|
25
|
Luginina A, Gusach A, Marin E, Mishin A, Brouillette R, Popov P, Shiriaeva A, Besserer-Offroy É, Longpré JM, Lyapina E, Ishchenko A, Patel N, Polovinkin V, Safronova N, Bogorodskiy A, Edelweiss E, Hu H, Weierstall U, Liu W, Batyuk A, Gordeliy V, Han GW, Sarret P, Katritch V, Borshchevskiy V, Cherezov V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. SCIENCE ADVANCES 2019; 5:eaax2518. [PMID: 31633023 PMCID: PMC6785256 DOI: 10.1126/sciadv.aax2518] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/18/2019] [Indexed: 05/30/2023]
Abstract
The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rebecca Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Petr Popov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anna Shiriaeva
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Elizaveta Lyapina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Andrii Ishchenko
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Nilkanth Patel
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vitaly Polovinkin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Nadezhda Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Evelina Edelweiss
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
- Juelich Center for Structural Biology, Research Center Juelich, Juelich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Gye Won Han
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Vsevolod Katritch
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Juelich Center for Structural Biology, Research Center Juelich, Juelich, Germany
| | - Vadim Cherezov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Esposito R, Spaziano G, Giannattasio D, Ferrigno F, Liparulo A, Rossi A, Roviezzo F, Sessa M, Falciani M, Berrino L, Polverino M, Polverino F, D'Agostino B. Montelukast Improves Symptoms and Lung Function in Asthmatic Women Compared With Men. Front Pharmacol 2019; 10:1094. [PMID: 31611790 PMCID: PMC6769077 DOI: 10.3389/fphar.2019.01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: Gender differences exist in the prevalence of asthma and allergic diseases, partially due to the effects of sex hormones on the development of allergic manifestations. Women, compared with men, are more prone to suffer allergic asthma, experience difficulties in controlling asthma symptoms, and show adverse responses to drugs. However, there are knowledge gaps on the effectiveness of anti-leukotrienes drugs on lung function, symptoms, and pulmonary and systemic inflammation in adult asthmatic women compared with men. We conducted a prospective cohort study to characterize the effectiveness of an anti-leukotrienes drug, montelukast (MS), in asthmatic adult women and men. Methods: Twenty-one asthmatic subjects (11 women and 10 men), who were on low-dose inhaled corticosteroids (ICS), were treated with MS. The optimal control of the symptoms was achieved in both groups according to the Global Initiative for Asthma guidelines. At enrollment, and after 13 weeks from the beginning of MS, pulmonary function tests and asthma control tests were performed, and the fraction of exhaled nitric oxide and blood eosinophils levels were measured. Results: From baseline until the end of the study, women treated with MS + ICS had better control of the asthmatic symptoms, defined as higher asthma control test (ACT) score (17.00 ± 1.07 to 23.36 ± 0.45; p < 0.0015), improved pulmonary function [with higher forced expiratory volume in 1 s (from 77.25 ± 6.79 to 103.88 ± 6.24; p < 0.0077)], and forced vital capacity (from 91.95 ± 6.81 to 113.17 ± 4.79; p < 0.0183) compared with men. Interestingly, MS + ICS-treated women had significantly lower levels of blood eosinophils (from 5.27 ± 0.30 to 3.30 ± 0.31; p < 0.0449) and exhaled nitric oxide (from 44.70 ± 7.30 to 25.20 ± 3.90; p < 0.0294) compared with men. Conclusion: The treatment with MS, added to ICS, in women leads to better control of symptoms, better management of lung function, and decreased inflammation levels compared with ICS + MS treatment in men.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | | | | | - Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Polverino
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, Scafati, Italy
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
27
|
Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev 2019; 286:37-52. [PMID: 30294963 DOI: 10.1111/imr.12706] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) play critical roles in the induction of type 2 inflammation, response to parasite infection, metabolic homeostasis, and tissue repair. These multifunctional roles of ILC2s are tightly controlled by complex regulatory systems in the local microenvironment, the disruption of which may cause various health problems. This review summarizes up-to-date knowledge regarding positive and negative regulators for ILC2s based on their function and signaling pathways, including activating cytokines (IL-33, IL-25; MAPK, NF-κB pathways), co-stimulatory cytokines (IL-2, IL-7, IL-9, TSLP; STAT5, IL-4; STAT6, TNF superfamily; MAPK, NF-κB pathways), suppressive cytokines (type1 IFNs, IFN-γ, IL-27; STAT1, IL-10, TGF-β), transdifferentiation cytokines (IL-12; STAT4, IL-1β, IL-18), lipid mediators (LTC4, LTD4, LTE4, PGD2; Ca2+ -NFAT pathways, PGE2, PGI2; AC/cAMP/PKA pathways, LXA4, LTB4), neuropeptides (NMU; Ca2+ -NFAT, MAPK pathways, VIP, CGRP, catecholamine, acetylcholine), sex hormones (androgen, estrogen), nutrients (butyrate; HDAC inhibitors, vitamins), and cell-to-cell interactions (ICOSL-ICOS; STAT5, B7-H6-NKp30, E-cadherin-KLRG1). This comprehensive review affords a better understanding of the regulatory network system for ILC2s, providing impetus to develop new treatment strategies for ILC2-related health problems.
Collapse
Affiliation(s)
- Hiroki Kabata
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Butler CT, Kennedy SA, Buckley A, Doyle R, Conroy E, Gallagher WM, O'Sullivan J, Kennedy BN. 1,4-dihydroxy quininib attenuates growth of colorectal cancer cells and xenografts and regulates the TIE-2 signaling pathway in patient tumours. Oncotarget 2019; 10:3725-3744. [PMID: 31217905 PMCID: PMC6557215 DOI: 10.18632/oncotarget.26966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer associated deaths in developed countries. Cancer progression and metastatic spread is reliant on new blood vasculature, or angiogenesis. Tumour-related angiogenesis is regulated by pro- and anti-angiogenic factors secreted from malignant tissue in a stepwise process. Previously we structurally modified the small anti-angiogenic molecule quininib and discovered a more potent anti-angiogenic compound 1, 4 dihydroxy quininib (Q8), an antagonist of cysteinyl leukotriene receptor-1 with VEGF-independent bioactivity. Here, Q8, quininib (Q1) and five structural analogues were assayed for anti-tumorigenic effects in pre-clinical cancer models. Q8 reduced clone formation of the human colorectal cancer cell line HT29-Luc2. Gene silencing of CysLT1 in HT29-Luc2 cells significantly reduced expression of calpain-2. In human ex vivo colorectal cancer tumour explants, Q8 significantly decreased the secretion of both TIE-2 and VCAM-1 expression. In vivo Q8 was well tolerated up to 50 mg/kg by Balb/C mice and significantly more effective at reducing tumour volume in colorectal tumour xenografts compared to the parent drug quininib. In tumour xenografts, Q8 significantly reduced expression of the angiogenic marker calpain-2. In summary, we propose Q8 may act on the TIE-2-Angiopoietin signalling pathway to significantly inhibit the process of tumour angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Susan A Kennedy
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Amy Buckley
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Ronan Doyle
- Department of Histopathology, Trinity College Dublin Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.,These authors contributed equally to this work
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland.,These authors contributed equally to this work
| |
Collapse
|
29
|
The mercapturomic profile of health and non-communicable diseases. High Throughput 2019; 8:ht8020010. [PMID: 31018482 PMCID: PMC6630208 DOI: 10.3390/ht8020010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
The mercapturate pathway is a unique metabolic circuitry that detoxifies electrophiles upon adducts formation with glutathione. Since its discovery over a century ago, most of the knowledge on the mercapturate pathway has been provided from biomonitoring studies on environmental exposure to toxicants. However, the mercapturate pathway-related metabolites that is formed in humans—the mercapturomic profile—in health and disease is yet to be established. In this paper, we put forward the hypothesis that these metabolites are key pathophysiologic factors behind the onset and development of non-communicable chronic inflammatory diseases. This review goes from the evidence in the formation of endogenous metabolites undergoing the mercapturate pathway to the methodologies for their assessment and their association with cancer and respiratory, neurologic and cardiometabolic diseases.
Collapse
|
30
|
Trinh HKT, Nguyen TVT, Choi Y, Park HS, Shin YS. The synergistic effects of clopidogrel with montelukast may be beneficial for asthma treatment. J Cell Mol Med 2019; 23:3441-3450. [PMID: 30905080 PMCID: PMC6484307 DOI: 10.1111/jcmm.14239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets modulate asthma pathogenesis by forming the platelet‐eosinophil aggregation (PEA), which facilitates the activation of eosinophils. Platelets exhibit the purinergic receptor (P2Y12R), which responds to cysteinyl leukotriene E4 (LTE4). We have suggested that the combination of an antiplatelet drug (clopidogrel, [Clo]) and montelukast (Mon) would synergistically suppress asthma. BALB/c mice were intraperitoneally sensitized with ovalbumin (OVA) on days 0 and 14 and subsequently challenged on days 28‐30 and 42‐44. Mice were administered with Clo (10 mg/kg), Mon (10 mg/kg) or both drugs (Clo/Mon) orally 30 minutes before the OVA (1%) challenge on days 42‐44. Mice were assayed for airway hyper‐responsiveness (AHR) to methacholine and airway inflammation. Clopidogrel and montelukast attenuated the increased AHR; the combined treatment was more effective than a single treatment for total and eosinophil counts (all P < 0.05). Levels of interleukin (IL)‐4, IL‐5, IL‐13, platelet factor 4, eosinophil peroxidase and LTE4 increased in the bronchoalveolar lavage fluid of asthmatic mice, but these levels decreased in mice treated with Clo/Mon (all P < 0.05). Goblet cell hyperplasia decreased in response to Clo/Mon. Mouse platelets and eosinophils were isolated and co‐cultured for an in vitro assay with 10 µmol/L adenosine diphosphate (ADP), LTE4 (200 nmol/L), Mon (1 µmol/L), Clo (1 µmol/L) and Clo/Mon (1 µmol/L). Flow cytometry revealed that the increased formation of the PEA (%) was fully mediated by ADP and partly mediated by LTE4. Clo/Mon reduced ADP‐induced PEA formation and P‐selectin expression (P < 0.05). In conclusion, Clo/Mon synergistically relieved asthma by inhibiting ADP‐mediated PEA formation.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Thuy Van Thao Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
31
|
Lee CH. Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem Pharmacol 2018; 158:261-273. [DOI: 10.1016/j.bcp.2018.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
32
|
Slater K, Hoo PS, Buckley AM, Piulats JM, Villanueva A, Portela A, Kennedy BN. Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev 2018; 37:335-345. [DOI: 10.1007/s10555-018-9751-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
|
34
|
Hwang HJ, Park KS, Choi JH, Cocco L, Jang HJ, Suh PG. Zafirlukast promotes insulin secretion by increasing calcium influx through L-type calcium channels. J Cell Physiol 2018; 233:8701-8710. [PMID: 29797580 DOI: 10.1002/jcp.26750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
The zafirlukast has been reported to be anti-inflammatory and widely used to alleviate the symptoms of asthma. However, its influence on insulin secretion in pancreatic β-cells has not been investigated. Herein, we examined the effects of zafirlukast on insulin secretion and the potential underlying mechanisms. Among the cysteinyl leukotriene receptor 1 antagonists, zafirlukast, pranlukast, and montelukast, only zafirlukast enhanced insulin secretion in a concentration-dependent manner in both low and high glucose conditions and elevated the level of [Ca2+ ]i , further activating Ca2+ /calmodulin-dependent protein kinase II (CaMKII), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) signaling. These effects were nearly abolished by the L-type Ca2+ channel antagonist nifedipine, while treatment with thapsigargin, a sarco/endoplasmic reticulum Ca2+ ATPase inhibitor, did not have the same effect, suggesting that zafirlukast primarily induces the entry of extracellular Ca2+ rather than intracellular Ca2+ from the endoplasmic reticulum. Zafirlukast treatment resulting in a significant drop in glucose levels and increased insulin secretion in C57BL/6J mice. These findings will contribute to an improved understanding of the side effects of zafirlukast and potential candidate for a therapeutic intervention in diabetes.
Collapse
Affiliation(s)
- Hyeon-Jeong Hwang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyoung-Su Park
- In Vivo Research Center, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jang Hyun Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Korea Mouse Phenotyping Center, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
35
|
Piromkraipak P, Parakaw T, Phuagkhaopong S, Srihirun S, Chongthammakun S, Chaithirayanon K, Vivithanaporn P. Cysteinyl leukotriene receptor antagonists induce apoptosis and inhibit proliferation of human glioblastoma cells by downregulating B-cell lymphoma 2 and inducing cell cycle arrest. Can J Physiol Pharmacol 2018; 96:798-806. [PMID: 29726704 DOI: 10.1139/cjpp-2017-0757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glioblastoma is the most aggressive type of brain cancer with the highest proliferation, invasion, and migration. Montelukast and zafirlukast, 2 widely used leukotriene receptor antagonists (LTRAs) for asthma treatment, inhibited invasion and migration of glioblastoma cell lines. Montelukast induces apoptosis and inhibits cell proliferation of various cancer cells. Herein, apoptotic and antiproliferative effects of montelukast and zafirlukast were investigated in 2 glioblastoma cell lines, A172 and U-87 MG. Both LTRAs induced apoptosis and inhibited cell proliferation of glioblastoma cells in a concentration-dependent manner. Montelukast was more cytotoxic and induced higher levels of apoptosis than zafirlukast in A172 cells, but not in U-87 MG cells. Both drugs decreased expression of B-cell lymphoma 2 (Bcl-2) protein without affecting Bcl-2-associated X (Bax) levels. LTRAs also reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In contrast, zafirlukast showed a greater antiproliferative effect than montelukast and induced G0/G1 cell cycle arrest by upregulating p53 and p21 expression. These results suggested the therapeutic potential of LTRAs in glioblastoma.
Collapse
Affiliation(s)
- Pannaree Piromkraipak
- a Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipparat Parakaw
- b Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Sirada Srihirun
- b Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Pornpun Vivithanaporn
- a Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
37
|
Dolinska M, Piccini A, Wong WM, Gelali E, Johansson AS, Klang J, Xiao P, Yektaei-Karin E, Strömberg UO, Mustjoki S, Stenke L, Ekblom M, Qian H. Leukotriene signaling via ALOX5 and cysteinyl leukotriene receptor 1 is dispensable for in vitro growth of CD34 +CD38 - stem and progenitor cells in chronic myeloid leukemia. Biochem Biophys Res Commun 2017. [PMID: 28623130 DOI: 10.1016/j.bbrc.2017.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine kinase inhibitors targeting the BCR-ABL oncoprotein in chronic myeloid leukemia (CML) are remarkably effective inducing deep molecular remission in most patients. However, they are less effective to eradicate the leukemic stem cells (LSC), resulting in disease persistence. Therefore, there is great need to develop novel therapeutic strategies to specifically target the LSC. In an experimental mouse CML model system, the leukotriene pathway, and specifically, the expression ALOX5, encoding 5-lipoxygenase (5-LO), has been reported as a critical regulator of the LSC. Based on these results, the 5-LO inhibitor zileuton has been introduced in clinical trials as a therapeutic option to target the LSC although its effect on primary human CML LSC has not been studied. We have here by using multiplex single cell PCR analyzed the expression of the mediators of the leukotriene pathway in bone marrow (BM) BCR-ABL+CD34+CD38- cells at diagnosis, and found low or undetectable expression of ALOX5. In line with this, zileuton did not exert significant overall growth inhibition in the long-term culture-initiating cell (LTC-IC) and colony (CFU-C) assays of BM CD34+CD38- cells from 7 CML patients. The majority of the single leukemic BCR-ABL+CD34+CD38- cells expressed cysteinyl leukotriene receptors CYSLT1 and CYSLT2. However, montelukast, an inhibitor of CYSLT1, also failed to significantly suppress CFU-C and LTC-IC growth. These findings indicate that targeting ALOX5 or CYSLT1 signaling with leukotriene antagonists, introduced into the clinical practice primarily as prophylaxis and treatment for asthma, may not be a promising pharmacological strategy to eradicate persisting LSC in CML patients.
Collapse
Affiliation(s)
- Monika Dolinska
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Alexandre Piccini
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Wan Man Wong
- Department of Laboratory Medicine, Lund University, Sweden
| | - Eleni Gelali
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Johannis Klang
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Elham Yektaei-Karin
- Department of Hematology, Karolinska University Hospital and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulla Olsson Strömberg
- Department of Medical Science and Division of Hematology, University Hospital, Uppsala, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Leif Stenke
- Department of Hematology, Karolinska University Hospital and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marja Ekblom
- Department of Laboratory Medicine, Lund University, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
38
|
Butler CT, Reynolds AL, Tosetto M, Dillon ET, Guiry PJ, Cagney G, O'Sullivan J, Kennedy BN. A Quininib Analogue and Cysteinyl Leukotriene Receptor Antagonist Inhibits Vascular Endothelial Growth Factor (VEGF)-independent Angiogenesis and Exerts an Additive Antiangiogenic Response with Bevacizumab. J Biol Chem 2016; 292:3552-3567. [PMID: 28035003 DOI: 10.1074/jbc.m116.747766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Excess blood vessel growth contributes to the pathology of metastatic cancers and age-related retinopathies. Despite development of improved treatments, these conditions are associated with high economic costs and drug resistance. Bevacizumab (Avastin®), a monoclonal antibody against vascular endothelial growth factor (VEGF), is used clinically to treat certain types of metastatic cancers. Unfortunately, many patients do not respond or inevitably become resistant to bevacizumab, highlighting the need for more effective antiangiogenic drugs with novel mechanisms of action. Previous studies discovered quininib, an antiangiogenic small molecule antagonist of cysteinyl leukotriene receptors 1 and 2 (CysLT1 and CysLT2). Here, we screened a series of quininib analogues and identified a more potent antiangiogenic novel chemical entity (IUPAC name (E)-2-(2-quinolin-2-yl-vinyl)-benzene-1,4-diol HCl) hereafter designated Q8. Q8 inhibits developmental angiogenesis in Tg(fli1:EGFP) zebrafish and inhibits human microvascular endothelial cell (HMEC-1) proliferation, tubule formation, and migration. Q8 elicits antiangiogenic effects in a VEGF-independent in vitro model of angiogenesis and exerts an additive antiangiogenic response with the anti-VEGF biologic bevacizumab. Cell-based receptor binding assays confirm that Q8 is a CysLT1 antagonist and is sufficient to reduce cellular levels of NF-κB and calpain-2 and secreted levels of the proangiogenic proteins intercellular adhesion molecule-1, vascular cell adhesion protein-1, and VEGF. Distinct reductions of VEGF by bevacizumab explain the additive antiangiogenic effects observed in combination with Q8. In summary, Q8 is a more effective antiangiogenic drug compared with quininib. The VEGF-independent activity coupled with the additive antiangiogenic response observed in combination with bevacizumab demonstrates that Q8 offers an alternative therapeutic strategy to combat resistance associated with conventional anti-VEGF therapies.
Collapse
Affiliation(s)
- Clare T Butler
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Alison L Reynolds
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin 4, Ireland, and
| | - Eugene T Dillon
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Patrick J Guiry
- UCD School of Chemistry, UCD Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard Cagney
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Breandán N Kennedy
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| |
Collapse
|
39
|
Preclinical validation of the small molecule drug quininib as a novel therapeutic for colorectal cancer. Sci Rep 2016; 6:34523. [PMID: 27739445 PMCID: PMC5064353 DOI: 10.1038/srep34523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths. Molecularly targeted therapies (e.g. bevacizumab) have improved survival rates but drug resistance ultimately develops and newer therapies are required. We identified quininib as a small molecule drug with anti-angiogenic activity using in vitro, ex vivo and in vivo screening models. Quininib (2-[(E)-2-(Quinolin-2-yl) vinyl] phenol), is a small molecule drug (molecular weight 283.75 g/mol), which significantly inhibited blood vessel development in zebrafish embryos (p < 0.001). In vitro, quininib reduced endothelial tubule formation (p < 0.001), cell migration was unaffected by quininib and cell survival was reduced by quininib (p < 0.001). Using ex vivo human CRC explants, quininib significantly reduced the secretions of IL-6, IL-8, VEGF, ENA-78, GRO-α, TNF, IL-1β and MCP-1 ex vivo (all values p < 0.01). Quininib is well tolerated in mice when administered at 50 mg/kg intraperitoneally every 3 days and significantly reduced tumour growth of HT-29-luc2 CRC tumour xenografts compared to vehicle control. In addition, quininib reduced the signal from a αvβ3 integrin fluorescence probe in tumours 10 days after treatment initiation, indicative of angiogenic inhibition. Furthermore, quininib reduced the expression of angiogenic genes in xenografted tumours. Collectively, these findings support further development of quininib as a novel therapeutic agent for CRC.
Collapse
|