1
|
Otosu T, Sakaguchi M, Yamaguchi S. A macroscopically homogeneous lipid phase exhibits leaflet-specific lipid diffusion in a glass-supported lipid bilayer. Phys Chem Chem Phys 2025; 27:4944-4949. [PMID: 39962994 DOI: 10.1039/d5cp00203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Lipid bilayer is a building block of cellular membranes. Understanding the physicochemical properties of a lipid bilayer and their composition dependence is thus inevitable to infer the biological functions of lipids in cellular membranes. Here, we performed leaflet-specific lipid diffusion analysis to study the structural and dynamical properties of lipids on glass-supported lipid bilayers composed of dioleoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine and cholesterol, especially focusing on the regions where a macroscopically homogeneous phase was observed in the ternary phase diagram. The data showed that the interleaflet coupling and the effect of the solid support were highly dependent on the lipid/cholesterol compositions. We also found a distinctive feature of leaflet-specific lipid diffusion in the region near the critical point. This observation was discussed in terms of the nanoscale heterogeneity.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Miyuki Sakaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
2
|
Mandal T, Brandt N, Tempra C, Javanainen M, Fábián B, Chiantia S. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184388. [PMID: 39401729 DOI: 10.1016/j.bbamem.2024.184388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Titas Mandal
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Nadine Brandt
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Unit of Physics, Tampere University, 33720 Tampere, Finland
| | - Balázs Fábián
- Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Street 3, 60438 Frankfurt am Main, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Segars B, Makhoul-Mansour M, Beyrouthy J, Freeman EC. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11228-11238. [PMID: 38753461 PMCID: PMC11140749 DOI: 10.1021/acs.langmuir.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.
Collapse
Affiliation(s)
- Braydon
G. Segars
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Michelle Makhoul-Mansour
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
- Mechanical,
Agricultural, Biomedical, and Environmental Engineering Department,
Tickle College of Engineering, University
of Tennessee Knoxville, 1512 Middle Dr., Knoxville, Tennessee 37916, United States
| | - Joyce Beyrouthy
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Eric C. Freeman
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| |
Collapse
|
4
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Tripathy A, Priyadarsinee S, Bag N. Evaluation of functional transbilayer coupling in live cells by controlled lipid exchange and imaging fluorescence correlation spectroscopy. Methods Enzymol 2024; 700:1-32. [PMID: 38971596 DOI: 10.1016/bs.mie.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Biophysical coupling between the inner and outer leaflets, known as inter-leaflet or transbilayer coupling, is a fundamental organizational principle in the plasma membranes of live mammalian cells. Lipid-based interactions between the two leaflets are proposed to be a primary mechanism underlying transbilayer coupling. However, there are only a few experimental evidence supporting the existence of such interactions in live cells. This is seemingly due to the lack of experimental strategies to perturb the lipid composition in one leaflet and quantitative techniques to evaluate the biophysical properties of the opposite leaflet. The existing strategies often dependent on immobilization and clustering a component in one of the leaflets and technically demanding biophysical tools to evaluate the effects on the opposing leaflet. In the recent years, the London group developed a simple but elegant method, namely methyl-alpha-cyclodextrin catalyzed lipid exchange (LEX), to efficiently exchange outer leaflet lipids with an exogenous lipid of choice. Here, we adopted this method to perturb outer leaflet lipid composition. The corresponding changes in the inner leaflet is evaluated by comparing the diffusion of lipid probes localized in this leaflet in unperturbed and perturbed conditions. We employed highly multiplexed imaging fluorescence correlation spectroscopy (ImFCS), realized in a commercially available or home-built total internal reflection fluorescence microsocope equipped with a fast and sensitive camera, to determine diffusion coefficient of the lipid probes. Using the combination of LEX and ImFCS, we directly demonstrate lipid-based transbilayer coupling that does not require immobilization of membrane components in live mast cells in resting conditions. Overall, we present a relatively straightforward experimental strategy to evaluate transbilayer coupling quantitively in live cells.
Collapse
Affiliation(s)
- Arpita Tripathy
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sudipti Priyadarsinee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Nirmalya Bag
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
6
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
7
|
Shimizu K, Sakaguchi M, Yamaguchi S, Otosu T. Peripheral adsorption of polylysine on one leaflet of a lipid bilayer reduces the lipid diffusion of both leaflets. Phys Chem Chem Phys 2024; 26:8873-8878. [PMID: 38426343 DOI: 10.1039/d3cp04882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Understanding polycation-lipid interaction is essential not only in molecular biology but also in the biomedical industry and pharmacology. However, the effect of the polycation-lipid interaction on the molecular properties of lipids in biomembranes remains elusive. Here, two fluorescence correlation spectroscopies (FCSs), pulse-interleaved excitation (PIE) FCS and lifetime-based FCS, were performed to elucidate the change in the lipid diffusion of a model biomembrane induced by polylysine (PLL) adsorption. The results of PIE-FCS showed that the diffusions of both anionic and zwitterionic lipids become slower in the presence of PLL but the mobility of the anionic lipids is much reduced, suggesting the preferential interaction between the PLL and the anionic lipids due to the electrostatic attraction. Furthermore, leaflet-specific lipid diffusion analysis by lifetime-based FCS clearly showed that PLL adsorption on one leaflet of the membrane reduces the lipid diffusion of both leaflets in the same manner. This clearly indicates that the interleaflet coupling is strong in the presence of PLL.
Collapse
Affiliation(s)
- Kosei Shimizu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Miyuki Sakaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
8
|
Lee Y, Park S, Yuan F, Hayden CC, Wang L, Lafer EM, Choi SQ, Stachowiak JC. Transmembrane coupling of liquid-like protein condensates. Nat Commun 2023; 14:8015. [PMID: 38049424 PMCID: PMC10696066 DOI: 10.1038/s41467-023-43332-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Liquid-liquid phase separation of proteins occurs on both surfaces of cellular membranes during diverse physiological processes. In vitro reconstitution could provide insight into the mechanisms underlying these events. However, most existing reconstitution techniques provide access to only one membrane surface, making it difficult to probe transmembrane phenomena. To study protein phase separation simultaneously on both membrane surfaces, we developed an array of freestanding planar lipid membranes. Interestingly, we observed that liquid-like protein condensates on one side of the membrane colocalized with those on the other side, resulting in transmembrane coupling. Our results, based on lipid probe partitioning and mobility of lipids, suggest that protein condensates locally reorganize membrane lipids, a process which could be explained by multiple effects. These findings suggest a mechanism by which signals originating on one side of a biological membrane, triggered by protein phase separation, can be transferred to the opposite side.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sujin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Azbazdar Y, Demirci Y, Heger G, Ipekgil D, Karabicici M, Ozhan G. Comparative membrane lipidomics of hepatocellular carcinoma cells reveals diacylglycerol and ceramide as key regulators of Wnt/β-catenin signaling and tumor growth. Mol Oncol 2023; 17:2314-2336. [PMID: 37699867 PMCID: PMC10620124 DOI: 10.1002/1878-0261.13520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is largely associated with aberrant activation of Wnt/β-catenin signaling. Nevertheless, how membrane lipid composition is altered in HCC cells with abnormal Wnt signaling remains elusive. Here, by exploiting comprehensive lipidome profiling, we unravel the membrane lipid composition of six different HCC cell lines with mutations in components of Wnt/β-catenin signaling, leading to differences in their endogenous signaling activity. Among the differentially regulated lipids are diacylglycerol (DAG) and ceramide, which were downregulated at the membrane of HCC cells after Wnt3a treatment. DAG and ceramide enhanced Wnt/β-catenin signaling by inducing caveolin-mediated endocytosis of the canonical Wnt-receptor complex, while their depletion suppressed the signaling activity along with a reduction of caveolin-mediated endocytosis in SNU475 and HepG2 cells. Moreover, depletion of DAG and ceramide significantly impeded the proliferation, tumor growth, and in vivo migration capacity of SNU475 and HepG2 cells. This study, by pioneering plasma membrane lipidome profiling in HCC cells, exhibits the remarkable potential of lipids to correct dysregulated signaling pathways in cancer and stop abnormal tumor growth.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Department of Biological ChemistryUniversity of California Los AngelesCAUSA
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Wellcome Sanger InstituteCambridgeUK
| | | | - Dogac Ipekgil
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG)Dokuz Eylul University Health CampusIzmirTurkey
- Izmir International Biomedicine and Genome Institute (IBG‐Izmir)Dokuz Eylul UniversityIzmirTurkey
- Present address:
Department of Molecular Biology and GeneticsIzmir Institute of TechnologyTurkey
| |
Collapse
|
10
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
11
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Liu J, Arora N, Zhou Y. RAS GTPases and Interleaflet Coupling in the Plasma Membrane. Cold Spring Harb Perspect Biol 2023; 15:a041414. [PMID: 37463719 PMCID: PMC10513163 DOI: 10.1101/cshperspect.a041414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
RAS genes are frequently mutated in cancer. The primary signaling compartment of wild-type and constitutively active oncogenic mutant RAS proteins is the inner leaflet of the plasma membrane (PM). Thus, a better understanding of the unique environment of the PM inner leaflet is important to shed further light on RAS function. Over the past few decades, an integrated approach of superresolution imaging, molecular dynamic simulations, and biophysical assays has yielded new insights into the capacity of RAS proteins to sort lipids with specific headgroups and acyl chains, to assemble signaling nanoclusters on the inner PM. RAS proteins also sense and respond to changes in components of the outer PM leaflet, including glycophosphatidylinositol-anchored proteins, sphingophospholipids, glycosphingolipids, and galectins, as well as cholesterol that translocates between the two leaflets. Such communication between the inner and outer leaflets of the PM, called interleaflet coupling, allows RAS to potentially integrate extracellular mechanical and electrostatic information with intracellular biochemical signaling events, and reciprocally allows mutant RAS-transformed tumor cells to modify tumor microenvironments. Here, we review RAS-lipid interactions and speculate on potential mechanisms that allow communication between the opposing leaflets of the PM.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center and University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Petrich A, Chiantia S. Influenza A Virus Infection Alters Lipid Packing and Surface Electrostatic Potential of the Host Plasma Membrane. Viruses 2023; 15:1830. [PMID: 37766238 PMCID: PMC10537794 DOI: 10.3390/v15091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of influenza A viruses (IAVs) is influenced by several factors, including IAV strain origin and reassortment, tissue tropism and host type. While such factors were mostly investigated in the context of virus entry, fusion and replication, little is known about the viral-induced changes to the host lipid membranes which might be relevant in the context of virion assembly. In this work, we applied several biophysical fluorescence microscope techniques (i.e., Förster energy resonance transfer, generalized polarization imaging and scanning fluorescence correlation spectroscopy) to quantify the effect of infection by two IAV strains of different origin on the plasma membrane (PM) of avian and human cell lines. We found that IAV infection affects the membrane charge of the inner leaflet of the PM. Moreover, we showed that IAV infection impacts lipid-lipid interactions by decreasing membrane fluidity and increasing lipid packing. Because of such alterations, diffusive dynamics of membrane-associated proteins are hindered. Taken together, our results indicate that the infection of avian and human cell lines with IAV strains of different origins had similar effects on the biophysical properties of the PM.
Collapse
Affiliation(s)
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Abucayon EG, Rao M, Matyas GR, Alving CR. QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles. Pharmaceutics 2023; 15:2212. [PMID: 37765181 PMCID: PMC10537867 DOI: 10.3390/pharmaceutics15092212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Army Liposome Formulation with QS21 (ALFQ), a vaccine adjuvant preparation, comprises liposomes containing saturated phospholipids, with 55 mol% cholesterol relative to the phospholipids, and two adjuvants, monophosphoryl lipid A (MPLA) and QS21 saponin. A unique feature of ALFQ is the formation of giant unilamellar vesicles (GUVs) having diameters >1.0 µm, due to a remarkable fusion event initiated during the addition of QS21 to nanoliposomes containing MPLA and 55 mol% cholesterol relative to the total phospholipids. This results in a polydisperse size distribution of ALFQ particles, with diameters ranging from ~50 nm to ~30,000 nm. The purpose of this work was to gain insights into the unique fusion reaction of nanovesicles leading to GUVs induced by QS21. This fusion reaction was probed by comparing the lipid compositions and structures of vesicles purified from ALFQ, which were >1 µm (i.e., GUVs) and the smaller vesicles with diameter <1 µm. Here, we demonstrate that after differential centrifugation, cholesterol, MPLA, and QS21 in the liposomal phospholipid bilayers were present mainly in GUVs (in the pellet). Presumably, this occurred by rapid lateral diffusion during the transition from nanosize to microsize particles. While liposomal phospholipid recoveries by weight in the pellet and supernatant were 44% and 36%, respectively, higher percentages by weight of the cholesterol (~88%), MPLA (94%), and QS21 (96%) were recovered in the pellet containing GUVs, and ≤10% of these individual liposomal constituents were recovered in the supernatant. Despite the polydispersity of ALFQ, most of the cholesterol, and almost all of the adjuvant molecules, were present in the GUVs. We hypothesize that the binding of QS21 to cholesterol caused new structural nanodomains, and subsequent interleaflet coupling in the lipid bilayer might have initiated the fusion process, leading to creation of GUVs. However, the polar regions of MPLA and QS21 together have a "sugar lawn" of ten sugars, the hydrophilicity of which might have provided a driving force for rapid lateral diffusion and concentration of the MPLA and QS21 in the GUVs.
Collapse
Affiliation(s)
- Erwin G. Abucayon
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| |
Collapse
|
15
|
Zhukov A, Popov V. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. Int J Mol Sci 2023; 24:11226. [PMID: 37446404 DOI: 10.3390/ijms241311226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This paper deals with the problems encountered in the study of eukaryotic cell membranes. A discussion on the structure and composition of membranes, lateral heterogeneity of membranes, lipid raft formation, and involvement of actin and cytoskeleton networks in the maintenance of membrane structure is included. Modern methods for the study of membranes and their constituent domains are discussed. Various simplified models of biomembranes and lipid rafts are presented. Computer modelling is considered as one of the most important methods. This is stated that from the study of the plasma membrane structure, it is desirable to proceed to the diverse membranes of all organelles of the cell. The qualitative composition and molar content of individual classes of polar lipids, free sterols and proteins in each of these membranes must be considered. A program to create an open access electronic database including results obtained from the membrane modelling of individual cell organelles and the key sites of the membranes, as well as models of individual molecules composing the membranes, has been proposed.
Collapse
Affiliation(s)
- Anatoly Zhukov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Popov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
16
|
Arribas Perez M, Beales PA. Dynamics of asymmetric membranes and interleaflet coupling as intermediates in membrane fusion. Biophys J 2023; 122:1985-1995. [PMID: 36203354 PMCID: PMC10257014 DOI: 10.1016/j.bpj.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion is a tool to increase the complexity of model membrane systems. Here, we use silica nanoparticles to fuse liquid-disordered DOPC giant unilamellar vesicles (GUVs) and liquid-ordered DPPC:cholesterol (7:3) GUVs. After fusion, GUVs display large membrane domains as confirmed by fluorescence confocal microscopy. Laurdan spectral imaging of the membrane phases in the fused GUVs shows differences compared with the initial vesicles indicating some lipid redistribution between phase domains as dictated by the tie lines of the phase diagram. Remarkably, using real-time confocal microscopy we were able to record the dynamics of formation of asymmetric membrane domains in hemifused GUVs and detected interleaflet coupling phenomena by which the DOPC-rich liquid-disordered domains in outer monolayer modulates the phase state of the DPPC:cholesterol inner membrane leaflet which transitions from liquid-ordered to liquid-disordered phase. We find that internal membrane stresses generated by membrane asymmetry enhance the efficiency of full fusion compared with our previous studies on symmetric vesicle fusion. Furthermore, under these conditions, the liquid-disordered monolayer dictates the bilayer phase state of asymmetric membrane domains in >90% of observed cases. By comparison to the findings of previous literature, we suggest that the monolayer phase that dominates the bilayer properties could be a mechanoresponsive signaling mechanism sensitive to the local membrane environment.
Collapse
Affiliation(s)
- Marcos Arribas Perez
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Paul A Beales
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
Li S, Huang F, Xia T, Shi Y, Yue T. Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl Chain Length of Sphingomyelin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5995-6005. [PMID: 37086192 DOI: 10.1021/acs.langmuir.2c03492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.
Collapse
Affiliation(s)
- Shixin Li
- College of Bioscience and Biotechnology and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Tie Xia
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology & Infectious Disease and Snyder Institute, University of Calgary, Calgary, Alberta 00000, Canada
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
18
|
Das S, Mussel M. Characterizing Oscillatory and Excitability Regimes in a Protein-Free Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5752-5760. [PMID: 37058369 DOI: 10.1021/acs.langmuir.2c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Observations of electric potential oscillations in artificial lipid bilayers near the order-disorder transition indicate the existence of a stable limit cycle and, therefore, the possibility of producing excitable signals close to the bifurcation. We present a theoretical investigation of membrane oscillatory and excitability regimes induced by an increase in ion permeability at the order-disorder transition. The model accounts for the coupled effects of state-dependent permeability, membrane charge density, and hydrogen ion adsorption. A bifurcation diagram shows a transition between fixed-point and limit cycle solutions, enabling both oscillatory and excitability responses at different values of the acid association parameter. Oscillations are identified in terms of the membrane state, electric potential difference, and ion concentration near the membrane. The emerging voltage and time scales agree with measurements. Excitability is demonstrated by applying an external electric current stimulus, and the emerging signals display a threshold response and the appearance of repetitive signals upon using a long-lasting stimulus. The approach highlights the important role of the order-disorder transition, enabling membrane excitability in the absence of specialized proteins.
Collapse
Affiliation(s)
- Sandip Das
- Department of Physics, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
| | - Matan Mussel
- Department of Physics, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
- Center for Biophysics and Quantitative Biology, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
| |
Collapse
|
19
|
Tanimoto Y, Yoshimura Y, Hayashi F, Morigaki K. Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers. J Phys Chem B 2023; 127:520-527. [PMID: 36598865 DOI: 10.1021/acs.jpcb.2c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane.
Collapse
Affiliation(s)
- Yasushi Tanimoto
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan.,Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi, Osaka558-8585, Japan
| | - Yu Yoshimura
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan.,Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| |
Collapse
|
20
|
Advances in membrane mimetics and mass spectrometry for understanding membrane structure and function. Curr Opin Chem Biol 2022; 69:102157. [DOI: 10.1016/j.cbpa.2022.102157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
21
|
Cino EA, Tieleman DP. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models. Biophys J 2022; 121:2060-2068. [PMID: 35524412 DOI: 10.1016/j.bpj.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022] Open
Abstract
Curvature is a fundamental property of biological membranes and has essential roles in cellular function. Bending of membranes can be induced by their lipid and protein compositions, as well as peripheral proteins, such as those that make up the cytoskeleton. An important aspect of membrane function is the grouping of lipid species into microdomains, or rafts, which serve as platforms for specific biochemical processes. The fluid mosaic model of membranes has evolved to recognize the importance of curvature and leaflet asymmetry, and there are efforts towards evaluating their functional roles. This work investigates the effect of curvature on the sorting of lipids in buckled asymmetric bilayers containing eight lipid types, approximating an average mammalian plasma membrane, through coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field. The simulations reveal that i) leaflet compositional asymmetry can induce curvature asymmetry, ii) lipids are sorted by curvature to different extents, and iii) curvature-based partitioning trends show moderate to strong correlations with lipid molecular volumes and head to tail bead ratios, respectively. The findings provide unique insights into the role of curvature in membrane organization, and the curvature-based sorting trends should be useful references for later investigations, and potentially interpreting the functional roles of specific lipids.
Collapse
Affiliation(s)
- Elio A Cino
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
22
|
Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. J Phys Chem B 2022; 126:2325-2336. [PMID: 35294838 DOI: 10.1021/acs.jpcb.2c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Umair M, Sultana T, Xiaoyu Z, Senan AM, Jabbar S, Khan L, Abid M, Murtaza MA, Kuldeep D, Al‐Areqi NAS, Zhaoxin L. LC-ESI-QTOF/MS characterization of antimicrobial compounds with their action mode extracted from vine tea ( Ampelopsis grossedentata) leaves. Food Sci Nutr 2022; 10:422-435. [PMID: 35154679 PMCID: PMC8825723 DOI: 10.1002/fsn3.2679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Ahmed M. Senan
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Labiba Khan
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah, Arid Agriculture University RawalpindiRawalpindiPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Dhama Kuldeep
- Division of PathologyICAR‐Indian Veterinary, Research InstituteIzatnagarIndia
| | - Niyazi A. S. Al‐Areqi
- Department of ChemistryFaculty of Applied ScienceTaiz UniversityTaizRepublic of Yemen
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
24
|
Sarmento MJ, Owen MC, Ricardo JC, Chmelová B, Davidović D, Mikhalyov I, Gretskaya N, Hof M, Amaro M, Vácha R, Šachl R. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys J 2021; 120:5530-5543. [PMID: 34798138 PMCID: PMC8715245 DOI: 10.1016/j.bpj.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023] Open
Abstract
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Joana C Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Chmelová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow Ul. Miklukho-Maklaya, Moscow 117997, Russia
| | - Natalia Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow Ul. Miklukho-Maklaya, Moscow 117997, Russia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
25
|
Smith P, Lorenz CD. LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations. J Chem Theory Comput 2021; 17:5907-5919. [PMID: 34450002 DOI: 10.1021/acs.jctc.1c00447] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are now widely used to study emergent phenomena in lipid membranes with complex compositions. Here, we present LiPyphilic-a fast, fully tested, and easy-to-install Python package for analyzing such simulations. Analysis tools in LiPyphilic include the identification of cholesterol flip-flop events, the classification of local lipid environments, and the degree of interleaflet registration. LiPyphilic is both force field- and resolution-agnostic, and by using the powerful atom selection language of MDAnalysis, it can handle membranes with highly complex compositions. LiPyphilic also offers two on-the-fly trajectory transformations to (i) fix membranes split across periodic boundaries and (ii) perform nojump coordinate unwrapping. Our implementation of nojump unwrapping accounts for fluctuations in the box volume under the NPT ensemble-an issue that most current implementations have overlooked. The full documentation of LiPyphilic, including installation instructions and links to interactive online tutorials, is available at https://lipyphilic.readthedocs.io/en/latest.
Collapse
Affiliation(s)
- Paul Smith
- Department of Physics, King's College London, London WC2R 2LS, U.K
| | | |
Collapse
|
26
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2021; 38:S0213-4853(21)00024-4. [PMID: 33726969 DOI: 10.1016/j.nrl.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Rafts are function-structural cell membrane nano-domains. They contribute to explain the efficiency of signal transduction at the low physiological membrane concentrations of the signaling partners by their clustering inside specialized signaling domains. DEVELOPMENT In this article, we review the current model of the membrane rafts and their physio-pathological relevance in the nervous system, including their role in Parkinson, Alzheimer, and Huntington diseases. CONCLUSIONS Rafts disruption/dysfunction has been shown to relate diverse neurological diseases. Therefore, it has been suggested that preservation of membrane rafts may represent a strategy to prevent or delay neuronal dysfunctions in several diseases.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
27
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
28
|
Doktorova M, Symons JL, Levental I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol 2020; 16:1321-1330. [PMID: 33199908 PMCID: PMC7747298 DOI: 10.1038/s41589-020-00688-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.
Collapse
Affiliation(s)
| | - Jessica L Symons
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
29
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|