1
|
Jiang YS, Wei WS, Xie DT, Guo G. Circular RNAs inducing the osteogenic differentiation of dental mesenchymal stem cells via microRNA sponging. World J Stem Cells 2025; 17:101638. [DOI: 10.4252/wjsc.v17.i5.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Circular RNAs (circRNAs) are a distinct type of nonlinear and noncoding RNAs endogenously expressed by pre-mRNA back-splicing and crucial in transcriptional and posttranscriptional regulation. CircRNAs can regulate cellular and molecular pathways through various mechanisms, such as microRNA sponging. Numerous studies have indicated the regulatory roles of circRNAs in the osteogenic differentiation of stem cells (SCs) isolated from different sources. Dental tissue-derived mesenchymal SCs (MSCs) have received considerable attention in artificial bone engineering, in which SCs are used to manufacture functional bone tissues to repair bone defects. Recently, studies have reported the regulatory roles of circRNAs in the osteogenic differentiation of dental-derived MSCs, such as apical papillae, dental pulp, and dental follicle SCs. This review aimed to discuss the findings of studies evaluating the contribution of circRNAs to the osteogenic differentiation of dental-derived MSCs.
Collapse
Affiliation(s)
- Yong-Song Jiang
- Department of Orthopedic, The Central Hospital of Yongzhou, Yongzhou 425000, Hunan Province, China
- Department of Orthopedic, Yongzhou Hospital Affiliated to University of South China, Yongzhou 425000, Hunan Province, China
| | - Wei-Sheng Wei
- Department of Orthopedic, The Central Hospital of Yongzhou, Yongzhou 425000, Hunan Province, China
- Department of Orthopedic, Yongzhou Hospital Affiliated to University of South China, Yongzhou 425000, Hunan Province, China
| | - Dao-Tao Xie
- Norxin International Technology Innovation Cooperation Platform, Xi’an 710032, Shaanxi Province, China
| | - Gang Guo
- Norxin International Technology Innovation Cooperation Platform, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
2
|
Wang Y, Tu M, Gao H, Deng S. Impacts of Circular RNAs on the Osteogenic Differentiation of Dental Stem Cells. Stem Cells Int 2025; 2025:8338337. [PMID: 40376229 PMCID: PMC12081154 DOI: 10.1155/sci/8338337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Dental stem cells are widely viewed as good options for bone regeneration because of their ease of acquisition, innate ability to renew themselves, and ability to differentiate into different types of cells. However, the process of osteogenic differentiation of dental stem cells is orchestrated by an intricate system of regulatory mechanisms. Recent studies have demonstrated the critical impacts of circular RNAs (circRNAs) on osteogenic differentiation of dental stem cells. Exploring the roles and regulatory pathways of circRNAs in dental stem cells could identify novel targets and approaches for utilizing dental stem cell therapy in clinical settings. This review provides a comprehensive overview of the functions and mechanisms of circRNAs, with a particular focus on their expression patterns and regulatory roles in osteogenic differentiation of various dental stem cell types. Furthermore, this review discusses current research challenges in this field and proposes future directions for advancing our understanding of circRNA-mediated regulation in dental stem cell biology.
Collapse
Affiliation(s)
- Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Meijie Tu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Huihui Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Chansaenroj J, Kornsuthisopon C, Chansaenroj A, Samaranayake LP, Fan Y, Osathanon T. Potential of Dental Pulp Stem Cell Exosomes: Unveiling miRNA-Driven Regenerative Mechanisms. Int Dent J 2025; 75:415-425. [PMID: 39368923 PMCID: PMC11976581 DOI: 10.1016/j.identj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/07/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have emerged as a promising resource in regenerative medicine due to their unique ability to secrete exosomes containing a diverse array of bioactive molecules, particularly microRNAs (miRNAs). These exosomes appear to be essential for stimulating regenerative mechanisms, especially those associated with stem cell pluripotency and tissue repair. However, several challenges such as cargo specificity and delivery efficiency need to be addressed to maximise the therapeutic potential of hDPSC-derived exosomes and miRNA-based therapies. This narrative review explores hDPSCs' potential in regenerative medicine by examining their role in tissue engineering, secretome composition, exosome function, exosomal miRNA in diverse models, and miRNA profiling. Therefore, it is imperative to sustain ongoing research on miRNA to advance clinical applications in the field of regenerative medicine and dentistry. A comprehensive understanding of the specific miRNA composition within hDPSC-derived exosomes is essential to elucidate their mechanistic roles in diverse disease states and to inform the development of innovative therapeutic strategies. These findings hold significant potential for the development of innovative regenerative therapies and emphasises the importance of establishing a strong connection between translational research discoveries and clinical applications. hDPSC-derived exosomes and miRNA-based therapies play a crucial role in immune modulation, regenerative dentistry, and tissue repair.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Ajjima Chansaenroj
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Luo Y, Shi Y, Wu Y, Cao H. METTL3-mediated m6A modification of circSTAT6 modulates miR-188-3p/Beclin1 axis to promote osteogenic differentiation of mesenchymal stem cells. J Orthop Surg Res 2025; 20:313. [PMID: 40134002 PMCID: PMC11938739 DOI: 10.1186/s13018-025-05720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The role of N6-methyladenosine (m6A)-modified circRNAs in disease progression is of great significance. However, the specific impact of m6A modification of circSTAT6 on osteoporosis (OP) is still uncertain. METHODS The qRT-PCR was employed to assess the levels of METTL3, circSTAT6, miR-188-3p, and Beclin1. To investigate the interaction between miR-188-3p and circSTAT6 or Beclin, a dual-luciferase reporter assay was performed. To evaluate osteogenic differentiation in bone marrow mesenchymal stem cell (BMSC), western blot analysis was conducted to evaluate the protein expression of osteogenic markers, including ALP, OPN, and Runx2. In addition, alizarin red and alkaline phosphatase (ALP) staining assays were employed to assess osteogenesis. RESULTS The findings revealed that the downregulation of circSTAT6 was observed in OP. On the other hand, the overexpression of circSTAT6 was found to enhance the osteogenic differentiation of BMSC. In addition, the involvement of METTL3 in mediating m6A methylation of circSTAT6 was identified, which ultimately promoted osteogenesis. Furthermore, circSTAT6 functioned as an miR-188-3p sponge to regulate the expression of Beclin1. Further study revealed that the osteogenic-enhancing effect caused by circSTAT6 overexpression was counteracted by introducing a miR-188-3p mimic. Similarly, the osteogenic-promoting impact of the miR-188-3p inhibitor was reversed by suppressing Beclin1 expression. CONCLUSIONS The present study revealed, for the first time, that METTL3-mediated m6A modification of circSTAT6 regulated the miR-188-3p/Beclin1 axis to promote the osteogenic differentiation of BMSC. These findings offer a potential therapeutic target for the treatment of OP.
Collapse
Affiliation(s)
- Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yubo Shi
- Department of Orthopedics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441200, China
| | - Yanqing Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Sui M, Lyu J, Zhou J, Liao Q, Xiao Z, Jin M, Tao J. Circ-AARS plays an important role during the odontogenic differentiation of dental pulp stem cells by modulating miR-24-3p/KLF6 expression. Stem Cell Res Ther 2025; 16:137. [PMID: 40083007 PMCID: PMC11907881 DOI: 10.1186/s13287-025-04239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a crucial role in stem cell-based tooth regeneration. However, the functions and underlying mechanisms of circRNAs in tooth regeneration from human dental pulp stem cells (DPSCs) remain largely unclear. METHODS In this study, DPSCs were used for odontogenic differentiation. High-throughput sequencing was performed for differential circRNA analysis. A luciferase reporter assay was conducted to confirm the downstream target of the circRNA, circ-AARS. We then constructed vectors and siRNAs for overexpressing and silencing circ-AARS, miR-24-3p, and Krüppel-like factor 6 (KLF6) and transfected them into DPSCs. Alkaline phosphatase staining, Alizarin Red S staining, western blotting assay, and quantitative reverse transcription-polymerase chain reaction were used to explore the underlying mechanisms of circ-AARS. Finally, a heterotopic bone model was utilized to reveal the regulating effects of circ-AARS. RESULTS High-throughput sequencing analysis showed that circ-AARS plays an important role during the odontogenic differentiation of DPSCs. Downregulation of circ-AARS inhibited the odontogenic differentiation of DPSCs; however, circ-AARS overexpression promoted their odontogenic differentiation. Bioinformatics analysis and luciferase reporter assay confirmed that both miR-24-3p and KLF6 were the downstream targets of circ-AARS. miR-24-3p downregulation or KLF6 overexpression restored the odontogenic differentiation ability of DPSCs after circ-AARS silencing. KLF6 upregulation restored the odontogenic differentiation ability of DPSCs after KLF6 overexpression. The heterotopic bone model confirmed that circ-AARS overexpression promoted the odontoblastic differentiation of DPSCs. CONCLUSION The present study showed that circ-AARS can promote the odontoblastic differentiation of DPSCs by increasing KLF6 expression and sponging miR-24-3p. Taken together, the results indicate that circ-AARS may be a potential positive regulator of odontoblastic differentiation of DPSCs.
Collapse
Affiliation(s)
- Meizhi Sui
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
- Department of Stomatology, Kashi Prefecture Second People's Hospital, No 1, Jiankang Road, Kashi, 844000, Xinjiang, China
| | - Jiaxuan Lyu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiaxin Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Qian Liao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
- Department of Stomatology, Kashi Prefecture Second People's Hospital, No 1, Jiankang Road, Kashi, 844000, Xinjiang, China
| | - Zexu Xiao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 200092, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 200092, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Yang Y, Yang P, Zhang Y, Wu Z, Wang X, Zhang J. LINC00673 binds with leptin to regulate osteogenic function in periodontal ligament stem cells. J Orthop Surg Res 2025; 20:165. [PMID: 39953568 PMCID: PMC11827204 DOI: 10.1186/s13018-025-05562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The aim of this study is to investigate whether LINC00673 and leptin are associated with osteogenesis of periodontal ligament stem cells in the microenvironment of advanced glycation end products. METHODS LINC00673 expression was detected in PDLSCs by qRT-PCR performed during osteogenic differentiation. By using alkaline phosphatase and Alizarin red S staining, we were able to confirm the role of LINC00673 in regulating osteogenesis in PDLSCs. Assays were performed on nude mice to test bone regeneration in the dorsal region to investigate MiR-188-3p's binding to LINC00673 and leptin (LEP). Western blot was used to detect osteoblast markers (COL1, ALP and RUNX2). RESULTS As predicted, miR-188-3p interacts with LINC00673 directly, and miR-188-3p overexpression increases osteogenic differentiation. However, overexpression of LINC00673 reversed this effect, suggesting that LINC00673 functions as a competing endogenous RNA for miR-188-3p. A regulatory network formed by LINC00673 and miR-188-3p regulates the expression of LEP, a gene that inhibits the canonical Wnt pathway, reducing bone formation in PDLSCs. CONCLUSIONS PDLSCs differentiate osteogenically as a result of a regulatory network between lncRNA and miRNA (microRNA), which may serve as a therapeutic target for diabetes-related periodontitis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China
- Department of Stomatology, Baotou Central Hospital, No.61 Huancheng Road, Inner Mongolia, 014040, Baotou, China
| | - Peng Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China
| | - Yuxing Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China
| | - Zhaoyan Wu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Shandong, 250012, Jinan, China.
| |
Collapse
|
7
|
Hua X, Yu L, Zhu H, Zhu Y, Fan G, Zhou G. Research progress of circRNAs in bone-related diseases. Front Oncol 2025; 15:1481322. [PMID: 39931083 PMCID: PMC11807992 DOI: 10.3389/fonc.2025.1481322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that exist naturally in various eukaryotic organisms. The majority of circRNAs are produced through the splicing of exons, although there are a limited number that are generated through the circularization of introns. Studies have shown that circRNAs play an irreplaceable role in the pathogenesis, disease progression, diagnosis, and targeted therapy of motor system tumors (osteosarcoma), metabolic diseases (osteoporosis), and degenerative diseases (osteonecrosis of the femoral head, osteoarthritis, intervertebral disc degeneration). This review summarizes the advancements in circRNA detection techniques and the research progress of circRNAs in orthopedic diseases.
Collapse
Affiliation(s)
- Xianming Hua
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingfeng Yu
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhu
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Zhu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gentao Fan
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Wuxi Xishan Nanjing University (NJU) Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Yang Y, Jiang C, Zeng J, Guo X, Chen M, Wu B. hsa_circ_0001599 promotes odontogenic differentiation of human dental pulp stem cells by increasing ITGA2 expression and stability. Commun Biol 2025; 8:74. [PMID: 39825107 PMCID: PMC11742660 DOI: 10.1038/s42003-025-07488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation. The expression of hsa_circ_0001599 in hDPSCs and dental pulp tissue was determined by using quantitative real-time PCR (qRT‒PCR). The role of hsa_circ_0001599 in the odontogenic differentiation of hDPSCs and its mechanism were studied using a variety of in vivo and in vitro assessments. The odontogenic differentiation of hDPSCs was facilitated by the overexpression of hsa_circ_0001599, which activated the PI3K/AKT signalling pathway in vitro. In vivo, hsa_circ_0001599 can promote the formation of new dentin-like structures. Mechanistically, hsa_circ_0001599 enhanced ITGA2 expression by sponging miR-889-3p. Furthermore, hsa_circ_0001599 interacts with the methylation reader hnRNPA2B1, promoting hnRNPA2B1 translocation from the nucleus to the cytoplasm and increasing ITGA2 mRNA stability. This research revealed the important role of hsa_circ_0001599 in odontogenic differentiation. Thus, hDPSCs engineered with hsa_circ_0001599 have the potential to be effective therapeutic targets for dental pulp repair and regeneration.
Collapse
Affiliation(s)
- Yeqing Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chong Jiang
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junkai Zeng
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Ming Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Buling Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China.
| |
Collapse
|
9
|
Mao S, Wu C, Feng G, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Selection and Regulatory Network Analysis of Differential CircRNAs in the Hypothalamus of Goats with High and Low Reproductive Capacity. Int J Mol Sci 2024; 25:10479. [PMID: 39408808 PMCID: PMC11476610 DOI: 10.3390/ijms251910479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Wei Y, Zheng Z, Zhang Y, Sun J, Xu S, Di X, Ding X, Ding G. Regulation of mesenchymal stem cell differentiation by autophagy. Open Med (Wars) 2024; 19:20240968. [PMID: 38799254 PMCID: PMC11117459 DOI: 10.1515/med-2024-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xinsheng Di
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| |
Collapse
|
12
|
Huo K, Chen T, Kong D, Zhang W, Shao J. Comprehensive analysis of circRNA expression profiles in postmenopausal women differing in bone mineral density. Medicine (Baltimore) 2024; 103:e37813. [PMID: 38640297 PMCID: PMC11029967 DOI: 10.1097/md.0000000000037813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) seriously endangers the bone health of older women. Although there are currently indicators to diagnose PMOP, early diagnostic biomarkers are lacking. Circular ribonucleic acid (circRNA) has a stable structure, regulates gene expression, participates in the pathological process of disease, and has the potential to become a biomarker. The purpose of this study was to investigate circRNAs that could be used to predict patients with early PMOP. Ribonucleic acid (RNA) sequencing was performed on peripheral blood leukocytes from 15 female patients to identify differential circRNAs between different groups. Using bioinformatics analysis, enrichment analysis was performed to discover relevant functions and pathways. CircRNA-micro ribonucleic acid (miRNA) interaction analysis and messenger ribonucleic acid (mRNA) prediction and network construction help us to understand the relationship between circRNA, miRNA, and mRNA. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the gene expression of candidate circRNAs. We screened out 2 co-expressed differential circRNAs, namely hsa_circ_0060849 and hsa_circ_0001394. By analyzing the regulatory network, a total of 54 miRNAs and 57 osteoporosis-related mRNAs were identified, which, as potential downstream target genes of hsa_circ_0060849 and hsa_circ_0001394, may play a key role in the occurrence and development of PMOP. The occurrence and development of PMOP is regulated by circRNAs, and hsa_circ_0060849 and hsa_circ_0001394 can be used as new diagnostic markers and therapeutic targets for early PMOP.
Collapse
Affiliation(s)
- Kailun Huo
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Tianning Chen
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Yao J, Xin R, Zhao C, Yu C. MicroRNAs in osteoblast differentiation and fracture healing: From pathogenesis to therapeutic implication. Injury 2024; 55:111410. [PMID: 38359711 DOI: 10.1016/j.injury.2024.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
The term "fracture" pertains to the occurrence of bones being either fully or partially disrupted as a result of external forces. Prolonged fracture healing can present a notable danger to the patient's general health and overall quality of life. The significance of osteoblasts in the process of new bone formation is widely recognized, and optimizing their function could be a desirable strategy. Therefore, the mending of bone fractures is intricately linked to the processes of osteogenic differentiation and mineralization. MicroRNAs (miRNAs) are RNA molecules that do not encode for proteins, but rather modulate the functioning of physiological processes by directly targeting proteins. The participation of microRNAs (miRNAs) in experimental investigations has been extensive, and their control functions have earned them the recognition as primary regulators of the human genome. Earlier studies have shown that modulating the expression of miRNAs, either by increasing or decreasing their levels, can initiate the differentiation of osteoblasts. This implies that miRNAs play a pivotal function in promoting osteogenesis, facilitating bone mineralization and formation, ultimately leading to an efficient healing of fractures. Hence, focusing on miRNAs can be considered a propitious therapeutic approach to accelerate the healing of fractures and forestall nonunion. In this manner, the information supplied by this investigation has the potential to aid in upcoming clinical utilization, including its possible use as biomarkers or as resources for devising innovative therapeutic tactics aimed at promoting fracture healing.
Collapse
Affiliation(s)
- Jilong Yao
- Department of surgery teaching and research section, Jiangxi Medical College, Shangrao, 334000, China
| | - Ruiwen Xin
- Department of surgery teaching and research section, Jiangxi Medical College, Shangrao, 334000, China
| | - Chao Zhao
- Department of Neurology, Shangrao municipal hospital, Shangrao, 334000, China
| | - Chunfu Yu
- Department of Neurology, Shangrao municipal hospital, Shangrao, 334000, China.
| |
Collapse
|
14
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Zhou J, Sui M, Ji F, Shen S, Lin Y, Jin M, Tao J. Hsa_circ_0036872 has an important promotional effect in enhancing osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. Int Immunopharmacol 2024; 130:111744. [PMID: 38412676 DOI: 10.1016/j.intimp.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs), an extremely stable group of RNAs, possess a covalent closed-loop configuration. Numerous studies have highlighted the involvement of circRNAs in physiological processes and the development of various diseases. The present study aimed to investigate how circRNA regulates the osteogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS We isolated hDPSCs from dental pulp and used next-generation sequencing analysis to determine the differentially-expressed circRNAs during osteogenic differentiation. Bioinformatics and dual-luciferase reporter assays identified the downstream targets. The role of circRNAs in osteogenic differentiation was further confirmed through the use of heterotopic bone models. RESULTS We found that hsa_circ_0036872 expression was increased during osteogenic differentiation of hDPSCs, and downregulation of hsa_circ_0036872 inhibited their osteogenic differentiation. Dual-luciferase reporter assays showed that both miR-143-3p and IGF2 were downstream targets of hsa_circ_0036872. Overexpression of IGF2 or inhibition of miR-143-3p restored the osteogenic differentiation ability of hDPSCs after silencing hsa_circ_0036872. Overexpression of IGF2 reversed the inhibitory effect of miR-143-3p on osteogenic differentiation. CONCLUSION Taken together, our results show that hsa_circ_0036872 exerts an important promotional effect in enhancing the osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. These data suggest a novel therapeutic strategy for osteoporosis treatment and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Meizhi Sui
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Stomatology, Kashgar Prefecture Second People's Hospital, Kashgar Xinjiang 844000, China
| | - Fang Ji
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, ; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shihui Shen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yueting Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai 201318, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
16
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
18
|
Balachander GM, Nilawar S, Meka SRK, Ghosh LD, Chatterjee K. Unravelling microRNA regulation and miRNA-mRNA regulatory networks in osteogenesis driven by 3D nanotopographical cues. Biomater Sci 2024; 12:978-989. [PMID: 38189225 DOI: 10.1039/d3bm01597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Three-dimensional (3D) culturing of cells is being adopted for developing tissues for various applications such as mechanistic studies, drug testing, tissue regeneration, and animal-free meat. These approaches often involve cost-effective differentiation of stem or progenitor cells. One approach is to exploit architectural cues on a 3D substrate to drive cellular differentiation, which has been shown to be effective in various studies. Although extensive gene expression data from such studies have shown that gene expression patterns might differ, the gene regulatory networks controlling the expression of genes are rarely studied. In this study, we profiled genes and microRNAs (miRNAs) via next-generation sequencing (NGS) in human mesenchymal stem cells (hMSCs) driven toward osteogenesis via architectural cues in 3D matrices (3D conditions) and compared with cells in two-dimensional (2D) culture driven toward osteogenesis via soluble osteoinductive factors (OF conditions). The total number of differentially expressed genes was smaller in 3D compared to OF conditions. A distinct set of genes was observed under these conditions that have been shown to control osteogenic differentiation via different pathways. Small RNA sequencing revealed a core set of miRNAs to be differentially expressed under these conditions, similar to those that have been previously implicated in osteogenesis. We also observed a distinct regulation of miRNAs in these samples that can modulate gene expression, suggesting supplementary gene regulatory networks operative under different stimuli. This study provides insights into studying gene regulatory networks for identifying critical nodes to target for enhanced cellular differentiation and reveal the differences in physical and biochemical cues to drive cell fates.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
19
|
Mazziotta C, Badiale G, Cervellera CF, Tognon M, Martini F, Rotondo JC. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics 2024; 14:143-158. [PMID: 38164139 PMCID: PMC10750202 DOI: 10.7150/thno.89066] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/01/2023] [Indexed: 01/03/2024] Open
Abstract
Human osteogenic differentiation is a complex and well-orchestrated process which involves a plethora of molecular players and cellular processes. A growing number of studies have underlined that circular RNAs (circRNAs) play an important regulatory role during human osteogenic differentiation. CircRNAs are single-stranded, covalently closed non-coding RNA molecules that are acquiring increased attention as epigenetic regulators of gene expression. Given their intrinsic high conformational stability, abundance, and specificity, circRNAs can undertake various biological activities in order to regulate multiple cellular processes, including osteogenic differentiation. The most recent evidence indicates that circRNAs control human osteogenesis by preventing the inhibitory activity of miRNAs on their downstream target genes, using a competitive endogenous RNA mechanism. The aim of this review is to draw attention to the currently known regulatory mechanisms of circRNAs during human osteogenic differentiation. Specifically, we provide an understanding of recent advances in research conducted on various human mesenchymal stem cell types that underlined the importance of circRNAs in regulating osteogenesis. A comprehensive understanding of the underlying regulatory mechanisms of circRNA in osteogenesis will improve knowledge on the molecular processes of bone growth, resulting in the potential development of novel preclinical and clinical studies and the discovery of novel diagnostic and therapeutic tools for bone disorders.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| |
Collapse
|
20
|
Wang T, Zhang C, Xu L, Li X. Roles of circular RNAs in osteogenic/osteoclastogenic differentiation. Biofactors 2024; 50:6-15. [PMID: 37534732 DOI: 10.1002/biof.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023]
Abstract
The process of bone remodeling occurs and is regulated through interactions between osteoclasts, which resorb bone, and osteoblasts, which generate bone tissue. When the homeostatic balance between these two cell types is dysregulated, this can contribute to abnormal bone remodeling resulting in a loss of bone mass as is observed in osteoporosis (OP) and other forms of degenerative bone metabolic diseases. At present, details of molecular mechanism underlying the development of bone metabolic diseases such as OP remain to be elucidated. Circular RNAs (circRNAs) are small non-coding RNA molecules with a closed-loop structure that can regulate the differentiation of osteoclasts and osteoblasts. The present review provides a systematic overview of recent literature on the processes through which circRNAs regulate the dynamic balance between osteoblasts and osteoclasts that ultimately preserve bone homeostasis. It will also give insight that can shape current understanding of the pathogenesis of OP and other bone metabolic diseases to better guide diagnostic and treatment strategies for affected patients.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Chao Zhang
- Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Lin Xu
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Xingnuan Li
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| |
Collapse
|
21
|
Yan B, Li Z, Su H, Xue H, Qiu D, Xu Z, Tan G. Regulatory mechanisms of autophagy-related ncRNAs in bone metabolic diseases. Front Pharmacol 2023; 14:1178310. [PMID: 38146458 PMCID: PMC10749346 DOI: 10.3389/fphar.2023.1178310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Bone metabolic diseases have been tormented and are plaguing people worldwide due to the lack of effective and thorough medical interventions and the poor understanding of their pathogenesis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that cannot encode the proteins but can affect the expressions of other genes. Autophagy is a fundamental mechanism for keeping cell viability, recycling cellular contents through the lysosomal pathway, and maintaining the homeostasis of the intracellular environment. There is growing evidence that ncRNAs, autophagy, and crosstalk between ncRNAs and autophagy play complex roles in progression of metabolic bone disease. This review investigated the complex mechanisms by which ncRNAs, mainly micro RNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate autophagic pathway to assist in treating bone metabolism disorders. It aimed at identifying the autophagy role in bone metabolism disorders and understanding the role, potential, and challenges of crosstalk between ncRNAs and autophagy for bone metabolism disorders treatment.
Collapse
Affiliation(s)
- Binghan Yan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Su
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Bassett C, Triplett H, Lott K, Howard KM, Kingsley K. Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines 2023; 11:3003. [PMID: 38002003 PMCID: PMC10669296 DOI: 10.3390/biomedicines11113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
This study sought to evaluate the expression of previously identified microRNAs known to regulate neuronal differentiation in mesenchymal stem cells (MSCs), including miR-27, miR-125, miR-128, miR-135, miR-140, miR-145, miR-218 and miR-410, among dental pulp stem cells (DPSCs) under conditions demonstrated to induce neuronal differentiation. Using an approved protocol, n = 12 DPSCs were identified from an existing biorepository and treated with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), which were previously demonstrated to induce neural differentiation markers including Sox1, Pax6 and NFM among these DPSCs. This study revealed that some microRNAs involved in the neuronal differentiation of MSCs were also differentially expressed among the DPSCs, including miR-27 and miR-145. In addition, this study also revealed that administration of bFGF and EGF was sufficient to modulate miR-27 and miR-145 expression in all of the stimulus-responsive DPSCs but not among all of the non-responsive DPSCs-suggesting that further investigation of the downstream targets of these microRNAs may be needed to fully evaluate and understand these observations.
Collapse
Affiliation(s)
- Charlton Bassett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Hunter Triplett
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Keegan Lott
- School of Medicine, University of Nevada, Las Vegas 1700 West Charleston Boulevard, Las Vegas, NV 89106, USA; (C.B.); (H.T.); (K.L.)
| | - Katherine M. Howard
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- School of Dental Medicine, University of Nevada, Las Vegas 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
23
|
Wang W, Sun J, Aarabi G, Peters U, Fischer F, Klatt J, Gosau M, Smeets R, Beikler T. Effect of tetracycline hydrochloride application on dental pulp stem cell metabolism-booster or obstacle for tissue engineering? Front Pharmacol 2023; 14:1277075. [PMID: 37841936 PMCID: PMC10568071 DOI: 10.3389/fphar.2023.1277075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Stem cells and scaffolds are an important foundation and starting point for tissue engineering. Human dental pulp stem cells (DPSC) are mesenchymal stem cells with self-renewal and multi-directional differentiation potential, and are ideal candidates for tissue engineering due to their excellent biological properties and accessibility without causing major trauma at the donor site. Tetracycline hydrochloride (TCH), a broad-spectrum antibiotic, has been widely used in recent years for the synthesis of cellular scaffolds to reduce the incidence of postoperative infections. Methods: In order to evaluate the effects of TCH on DPSC, the metabolism of DPSC in different concentrations of TCH environment was tested. Moreover, cell morphology, survival rates, proliferation rates, cell migration rates and differentiation abilities of DPSC at TCH concentrations of 0-500 μg/ml were measured. Phalloidin staining, live-dead staining, MTS assay, cell scratch assay and real-time PCR techniques were used to detect the changes in DPSC under varies TCH concentrations. Results: At TCH concentrations higher than 250 μg/ml, DPSC cells were sequestered, the proportion of dead cells increased, and the cell proliferation capacity and cell migration capacity decreased. The osteogenic and adipogenic differentiation abilities of DPSC, however, were already inhibited at TCH con-centrations higher than 50 μg/ml. Here, the expression of the osteogenic genes, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN), the lipogenic genes lipase (LPL), as well as the peroxisome proliferator-activated receptor-γ (PPAR-γ) expression were found to be down-regulated. Discussion: The results of the study indicated that TCH in concentrations above 50 µg/ml negatively affects the differentiation capability of DPSC. In addition, TCH at concentrations above 250 µg/ml adversely affects the growth status, percentage of living cells, proliferation and migration ability of cells.
Collapse
Affiliation(s)
- Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Fischer
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Klatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Wang M, Wu J, Wu P, Li Y. Emerging roles of circular RNAs in stem cells. Genes Dis 2023; 10:1920-1936. [PMID: 37492713 PMCID: PMC10363585 DOI: 10.1016/j.gendis.2022.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that widely exist in eukaryotes. As a new focus in the field of molecular regulation, circRNAs have attracted much attention in recent years. Previous studies have confirmed that circRNAs are associated with many physiological and pathological processes. CircRNAs also participate in the regulation of stem cells. Stem cells have the properties of self-renewal and differentiation, which make stem cell therapy popular. CircRNAs may serve as new targets in stem cell therapy due to their regulation in stem cells. However, the underlying relationships between circRNAs and stem cells are still being explored. In this review, we briefly summarize the effects of circRNAs on stem cells, in the context of biological activities, aging and apoptosis, and aberrant changes. Moreover, we also examine the biological roles of stem cell-derived exosomal circRNAs. We believe our review will provide insights into the effects of circRNAs on stem cells.
Collapse
Affiliation(s)
- Mengru Wang
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Juan Wu
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Pan Wu
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Circular RNAs (circRNAs) are RNA transcripts derived from fragments of pre-messenger RNAs through a back-splicing process. An advantage that rises from their circular covalently closed conformation is their high stability, when compared with their linear counterparts. The current review focuses on the emerging roles of circRNAs in osteoporosis, including in osteogenic differentiation and osteoclastogenesis. Their potential as osteoporosis biomarkers will also be discussed. RECENT FINDINGS Although firstly described as non-coding, some of these single-stranded RNAs were recently reported to possess protein-coding capacity. On the other hand, the circRNAs exhibit cell and tissue-specific patterns at the transcriptome level in eukaryotes and are regulated throughout the development or disease progression. Even though thousands of these circular transcripts are listed and annotated, only a limited number of studies describe their biological role in bone processes. Recent evidence indicates inhibitory activator roles in both osteoblasts and osteoclasts differentiation and function. Latest screenings in the blood, plasma, or serum of osteoporosis patients support the potential for circRNA signature to be used as biomarkers in osteoporosis, but further validation is required. While intense research into circRNAs has been detailing their biological roles, there remains a need for standardization and further research to fulfil the future potential of this emerging and highly promising class of regulatory molecules.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | - Maria Inês Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, Galler KM, Nekoofar MH, Dummer PMH. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther 2023; 14:76. [PMID: 37038220 PMCID: PMC10088330 DOI: 10.1186/s13287-023-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Human dental pulp-derived mesenchymal stem cells (hDP-MSCs), which include human dental pulp stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentiation of hDP-MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover target genes, signaling pathways and gene ontologies associated with the identified miRNAs. METHODS A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of hDP-MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP-MSCs were included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analysis. A miRNA-mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. A protein-protein interaction (PPI) network was also constructed. RESULTS Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were more frequently reported suppressing the odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-221 and hsa-miR-124 promoted and hsa-miR-140-5p inhibited neuronal differentiation, hsa-miR-26a-5p promoted and hsa-miR-424 suppressed angiogenic differentiation, and hsa-miR-135 and hsa-miR-143 inhibited differentiation within myogenic lineages. A miRNA-mRNA network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K-Akt and FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP-MSCs. CONCLUSIONS The findings of this systematic review support the potential application of the specific miRNAs to regulate the directed differentiation of hDP-MSCs in the field of regenerative therapies.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Vedaei
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad-Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M. H. Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet 2023; 14:1153585. [PMID: 37056287 PMCID: PMC10087084 DOI: 10.3389/fgene.2023.1153585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.
Collapse
Affiliation(s)
- Yuzhu Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yumiao Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Xue
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Huanzhi Ma,
| |
Collapse
|
29
|
Zhang M, He Y, Zhang X, Gan S, Xie X, Zheng Z, Liao J, Chen W. Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomater Sci 2023; 11:1665-1676. [PMID: 36472132 DOI: 10.1039/d2bm01472f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the physical and mental health of patients. Bone marrow mesenchymal stem cells (BMSCs) are "gold standard" cells used for bone repair. However, the collection of BMSCs is invasive, and the osteogenic capacity is limited with age. Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising alternative seed cells for bone tissue engineering. Our group previously used high-throughput sequencing technology and bioinformatics methods to detect circ-CTTN (hsa-circ_0003376) molecules, which may play an essential role in the osteogenic differentiation of hUCMSCs. In this study, osteogenic induction in vitro showed that the overexpressing circ-CTTN (OE group) exhibits a more pronounced osteogenic phenotype. The levels of osteogenesis-related genes in the OE group were highly expressed. The gelatin-methacrylate (GelMA) hydrogel possessed excellent biocompatibility and was used to load hUCMSCs. In the rat calvarial defect, the OE group presented a larger bone healing volume and denser bone trabecular distribution than other groups. So far, the overexpression of circ-CTTN could enhance the osteogenic differentiation of hUCMSCs and accelerate bone reconstruction. Our research could provide a new strategy and a strong theoretical basis for promoting hUCMSC clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Yanjing He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| |
Collapse
|
30
|
Abbas AA, Abdulkader HA, Giordo R, Ashour HM, Erre GL, Pintus G, Zayed H. Implications and theragnostic potentials of circular RNAs in rheumatic diseases. Int J Biol Macromol 2023; 235:123783. [PMID: 36822282 DOI: 10.1016/j.ijbiomac.2023.123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), are highly stable and ubiquitous molecules that exhibit tissue-specific expression. Accumulating evidence has shown that aberrant expression of circRNAs can play a role in the pathogenesis of several diseases. Rheumatic diseases are a varied group of autoimmune and inflammatory disorders affecting mainly the musculoskeletal system. Notably, circRNAs, which are essential immune system gene modulators, are strongly linked to the occurrence and progression of autoimmune disorders. Here, we present and discuss the current findings concerning the roles, implications and theragnostic potentials of circRNAs in common rheumatic diseases, including ankylosing spondylitis (AS), osteoarthritis (OA), osteoporosis (OP), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), and gout. This review aims to provide new insights to support the development of novel diagnostic and therapeutic strategies for these disabling diseases.
Collapse
Affiliation(s)
- Alaa Ahmed Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadil Adnan Abdulkader
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
31
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
32
|
Liang C, Li W, Huang Q, Wen Q. CircFKBP5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. Int Dent J 2022; 73:377-386. [DOI: 10.1016/j.identj.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
|
33
|
Lei Q, Liang Z, Lei Q, Liang F, Ma J, Wang Z, He S. Analysis of circRNAs profile in TNF-α treated DPSC. BMC Oral Health 2022; 22:269. [PMID: 35786385 PMCID: PMC9251952 DOI: 10.1186/s12903-022-02267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Pulpitis often are characterized as sustained inflammation and impaired pulp self-repair. Circular RNAs (circRNAs) have been reported to be involved in the development of inflammation, but their influence in pulpitis is still unidentified, which was examined in our research. Methods In this study, TNF-α (20 ng/mL) was used to treat DPSCs, then MTS identified cell proliferation. The circRNAs profile in DPSCs with or without TNF-α treatment was evaluated using RNA sequencing and subsequently by bioinformatics analysis. After that, the circular structure was assessed using agarose gel electrophoresis, followed by Sanger sequencing. And the circRNAs expression was ratified using quantitative real-time polymerase chain reaction in cell and tissues samples. Additionally, the plausible mechanism of circRNAs was envisaged, and the circRNA-miRNA-mRNA linkage was plotted using Cytoscape. Results The treatment of TNF-α inhibited cell proliferation capabilities in DPSCs, which also made 1195 circRNA expressions undergo significant alterations. Among these changes, 11 circRNAs associated with inflammation were chosen for circular structure verification, and only seven circRNAs (hsa_circ_0001658, hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, hsa_circ_0035915, and hsa_circ_0002545) had circular structure. Additionally, five circRNAs expressions (hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, and hsa_circ_0035915) had significantly altered between with or without TNF-α treated DPSCs. Furthermore, hsa_circ_0001978 and hsa_circ_0004417 were increased in patients suffering from pulpitis. Furthermore, their ceRNA linkage and Kyoto Encyclopedia of Genes and Genomes analysis suggested that these two circRNAs may participate in the inflammation development of pulpitis via mitogen-activated protein kinase and the Wnt signaling pathway. Conclusion This study revealed that the circRNAs profile was altered in TNF-α treated DPSCs. Also, hsa_circ_0001978 and hsa_circ_0004417 may be involved in the inflammation progress of pulpitis. These outcomes provided the latest information for additional research on pulpitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02267-2.
Collapse
Affiliation(s)
- Qiyin Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zezi Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Qiaoling Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Fuying Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jing Ma
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zhongdong Wang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Shoudi He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, No.89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
34
|
Xu J, Zheng G, Guo H, Meng K, Zhang W, He R, Zheng C, Ge M. Bioinformatics analysis of downstream circRNAs and miRNAs regulated by Runt-related transcription factor 1 in papillary thyroid carcinoma. Gland Surg 2022; 11:868-881. [PMID: 35694090 PMCID: PMC9177285 DOI: 10.21037/gs-22-219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/13/2022] [Indexed: 01/06/2024]
Abstract
BACKGROUND This study sought to clarify the role of Runt-related transcription factor 1's (RUNX1's) regulation of downstream circular ribonucleic acid (circRNA) in the occurrence and development of papillary thyroid carcinoma (PTC) and to explore its mechanism of action. METHODS The levels of RUNX1 were analyzed in PTC tumor tissues and adjacent non-tumor tissues in different types and at different stages via reverse-transcription quantitative polymerase chain reaction (RT-qPCR). The expression pattern and functional role of RUNX1 were analyzed in PTC cells via RT-qPCR, Western blotting, and Transwell assays. This study explored the differential expression of circRNA and microRNA (miRNA) in cells after knocking down RUNX1 through high-throughput sequencing and examined the changes in downstream signaling pathways through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS RUNX1 was upregulated in PTC tissues, and the expression levels of RUNX1 were related to PTC stage. The knockdown of RUNX1 inhibited the proliferation, migration, and invasion of cells. The high-throughput sequencing results showed that after RUNX1 knockdown, 29 circRNAs (11 upregulated and 18 downregulated) and 20 miRNAs (8 upregulated and 12 downregulated) had the most significant differential expression. The GO analysis of the differential circRNA downstream genes showed that the iron channel-related pathways, endosomal transport, learning, and memory pathways had the largest number of differential genes, and the most significant changes. The KEGG analysis showed that there were 2 pathways with P values <0.05; that is, the glycosaminoglycan synthesis and transcription dysregulation pathways. The GO analysis of the differential miRNA downstream genes showed that the protein binding and cytoplasmic pathways had the largest number of differential genes and the greatest level of difference. The KEGG analysis showed that the tumor-related pathways, phosphatidylinositol-3-kinase and protein kinase B, glycoprotein, cytoskeleton, Ras, and Rap1 pathways changed the most significantly. CONCLUSIONS RUNX1 is highly expressed in PTC. We conducted high-throughput sequencing to analyze the effect of knocking down RUNX1 on the levels of circRNA and miRNA in PTC. The GO and KEGG analyses revealed that the iron channel-related pathways, endosomal transport, learning and memory, glycosaminoglycan synthesis, and transcriptional disorder-related signaling pathways were enriched.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Haiwei Guo
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Kexin Meng
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wanchen Zhang
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ru He
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanming Zheng
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Minghua Ge
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
35
|
Zeng B, Huang J. Progress in the Study of Non-Coding RNAs in Multidifferentiation Potential of Dental-Derived Mesenchymal Stem Cells. Front Genet 2022; 13:854285. [PMID: 35480302 PMCID: PMC9037064 DOI: 10.3389/fgene.2022.854285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
For decades, the desire for tissue regeneration has never been quenched. Dental-derived mesenchymal stem cells (DMSCs), with the potential of self-renewal and multi-directional differentiation, have attracted much attention in this topic. Growing evidence suggests that non-coding RNAs (ncRNAs) can activate various regulatory processes. Even with a slight decrease or increase in expression, ncRNAs can weaken or even subvert cellular fate. Therefore, a systematic interpretation of ncRNAs that guide the differentiation of DMSCs into cells of other tissue types is urgently needed. In this review, we introduce the roles of ncRNAs in the differentiation of DMSCs, such as osteogenic differentiation, odontogenic differentiation, neurogenic differentiation, angiogenic differentiation and myogenic differentiation. Additionally, we illustrate the regulatory mechanisms of ncRNAs in the differentiation of DMSCs, such as epigenetic regulation, transcriptional regulation, mRNA modulation, miRNA sponges and signalling. Finally, we summarize the types and mechanisms of ncRNAs in the differentiation of DMSCs, such as let-7 family, miR-17∼92 family, miR-21, lncRNA H19, lncRNA ANCR, lncRNA MEG3, circRNA CDR1as and CircRNA SIPA1L1. If revealing the intricate relationship between ncRNAs and pluripotency of DMSCs 1 day, the application of DMSCs in regenerative medicine and tissue engineering will be improved. Our work could be an important stepping stone towards this future.
Collapse
Affiliation(s)
- Biyun Zeng
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| |
Collapse
|
36
|
Huang W, Wu Y, Qiao M, Xie Z, Cen X, Huang X, Zhao Z. CircRNA-miRNA networks in regulating bone disease. J Cell Physiol 2022; 237:1225-1244. [PMID: 34796958 DOI: 10.1002/jcp.30625] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Circular RNA (circRNA) is a class of endogenous noncoding RNA (ncRNA), presenting as a special covalent closed loop without a 5' cap or 3' tail, maintaining resistance to RNA exonuclease and keeping high stability. Although lowly expressed in most situations, circRNA makes an active difference in regulating physiological or pathological processes by modulating gene expression by regulation of transcription, protein, and miRNA functions through various mechanisms in particular tissues. Recent studies have demonstrated the roles of the miRNA-circRNA network in the development of several bone diseases such as osteoporosis, a multiple-mechanism disease resulting from defective bone quality and low bone mass, osteoarthritis, whose main pathomechanism is inflammation and articular cartilage degradation, as well as osteosarcoma, known as one of the most common bone cancers. However, the specific mechanism of how circRNA along with miRNA influences those diseases is not well documented, showing potential for the development of new therapies for those bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - MingXin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
37
|
Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:945310. [PMID: 35992137 PMCID: PMC9388761 DOI: 10.3389/fendo.2022.945310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Manqi Gao
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiabin Sun
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| |
Collapse
|
38
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
39
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|
41
|
Yu H, Li Y, Tang J, Lu X, Hu W, Cheng L. Long non-coding RNA RP11-84C13.1 promotes osteogenic differentiation of bone mesenchymal stem cells and alleviates osteoporosis progression via the miR-23b-3p/RUNX2 axis. Exp Ther Med 2021; 22:1340. [PMID: 34630694 PMCID: PMC8495569 DOI: 10.3892/etm.2021.10775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study was to determine the role of RP11-84C13.1 in osteoporosis (OP) and its molecular mechanism. First, clinical samples were collected from OP patients and normal control patients. Human bone marrow stromal cells (hBMSCs) were extracted from femoral head tissues. Runt-related transcription factor 2 (RUNX2) and RP11-84C13.1 serum levels were assessed by reverse transcription-quantitative (RT-q)PCR. Following transfection of pcDNA-RP11-84C13.1, si-RP11-84C13.1, microRNA (miRNA)-23b-3p mimic and miRNA-23b-3p inhibitor, the expression levels of RUNX2 and RP11-84C13.1 were determined by RT-qPCR. In addition, the osteogenic ability of hBMSCs was assessed by Alizarin Red staining. The binding of RP11-84C13.1 to miRNA-23b-3p and the binding of miRNA-23b-3p to RUNX2 was confirmed by dual-luciferase reporter gene assay. Long non-coding RNA (lncRNA) RP11-84C13.1 was significantly downregulated in the serum of OP patients. The osteogenic differentiation-related genes RUNX2 and RP11-84C13.1 were markedly upregulated in a time-dependent manner, while the miRNA-23b-3p level gradually decreased in hBMSCs with the prolongation of osteogenesis. RP11-84C13.1 knockdown inhibited the osteogenic differentiation of hBMSCs. Furthermore, RP11-84C13.1 regulated RUNX2 expression by targeting miRNA-23b-3p. Overexpression of miRNA-23b-3p partially reversed the promoting effect of RP11-84C13.1 on the osteogenesis of hBMSCs. In conclusion, lncRNA RP11-84C13.1 upregulated RUNX2 by absorbing miRNA-23b-3p, and thus induced hBMSC osteogenesis to alleviate osteoporosis.
Collapse
Affiliation(s)
- Huaixi Yu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Yunyun Li
- Department of Information Statistics Center, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Jinshan Tang
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Xiaoqing Lu
- Department of Orthopaedic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Wen Hu
- Department of Endocrinology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| | - Liang Cheng
- Department of Endocrinology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223000, P.R. China
| |
Collapse
|
42
|
Li Z, Xue H, Tan G, Xu Z. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep 2021; 24:788. [PMID: 34505632 PMCID: PMC8441966 DOI: 10.3892/mmr.2021.12428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Osteoporosis is a common metabolic bone disorder typically characterized by decreased bone mass and an increased risk of fracture. At present, the detailed molecular mechanism underlying the development of osteoporosis remains to be elucidated. Accumulating evidence shows that non-coding (nc)RNAs, such as microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play significant roles in osteoporosis through the post-transcriptional regulation of gene expression as regulatory factors. Previous studies have demonstrated that ncRNAs participate in maintaining bone homeostasis by regulating physiological and developmental processes in osteoblasts, osteoclasts and bone marrow stromal cells. In the present review, the latest research investigating the involvement of miRNAs, lncRNAs and circRNAs in regulating the differentiation, proliferation, apoptosis and autophagy of cells that maintain the bone microenvironment in osteoporosis is summarized. Deeper insight into the aspects of osteoporosis pathogenesis involving the deregulation of ncRNAs could facilitate the development of therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Haipeng Xue
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Guoqing Tan
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhanwang Xu
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
43
|
Hsa-circ-0007292 promotes the osteogenic differentiation of posterior longitudinal ligament cells via regulating SATB2 by sponging miR-508-3p. Aging (Albany NY) 2021; 13:20192-20217. [PMID: 34483137 PMCID: PMC8436939 DOI: 10.18632/aging.203381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a disorder with multiple pathogenic mechanisms and leads to different degrees of neurological symptoms. Recent studies have revealed that non-coding RNA (ncRNA), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), could influence the development of OPLL. Nevertheless, the molecular mechanisms linking circular RNAs (circRNAs) and the progression of OPLL is still unknown. The current research explored the expression profiles of OPLL-related circRNAs by microarray analysis, and applied qRT-PCR to validate the results. Subsequently, we confirmed the upregulation of hsa_circ_0007292 in OPLL cells by qRT-PCR and validated the circular characteristic of hsa_circ_0007292 by Sanger sequencing. Fluorescence in situ hybridization (FISH) unveiled that hsa_circ_0007292 was predominantly located in the cytoplasm. Functionally, gain-of-function and loss-of-function experiments showed that hsa_circ_0007292 promoted the osteogenic differentiation of OPLL cells. Mechanistically, the interaction of hsa_circ_0007292 and miR-508-3p was predicted and validated by bioinformatics analysis, dual-luciferase reporter assays, and Ago2 RNA immunoprecipitation (RIP). Similarly, we validated the correlation between miR-508-3p and SATB2. Furthermore, rescue experiments were performed to prove that hsa_circ_0007292 acted as a sponge for miR-508-3p, and SATB2 was revealed to be the target gene of miR-508-3p. In conclusion, our research shows that hsa_circ_0007292 regulates OPLL progression by the miR-508-3p/SATB2 pathway. Our results indicate that hsa_circ_0007292 can be used as a promising therapeutic target for patients with OPLL.
Collapse
|
44
|
Zhou R, Miao S, Xu J, Sun L, Chen Y. Circular RNA circ_0000020 promotes osteogenic differentiation to reduce osteoporosis via sponging microRNA miR-142-5p to up-regulate Bone Morphogenetic Protein BMP2. Bioengineered 2021; 12:3824-3836. [PMID: 34266353 PMCID: PMC8806581 DOI: 10.1080/21655979.2021.1949514] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was designed to study functions of Circ_0000020 during osteogenic differentiation. First, we used RT-qPCR to detect the expression of Circ_0000020, miR-142-5p and osteogenesis-related genes, whereas western blot analysis detected the expression of osteogenesis markers after the osteogenic differentiation of primary BMSCs isolated from rats. Alkaline phosphatase (ALP) activity and alizarin red Sstaining validated osteoblast phenotypes. Flow cytometry was used to detect cell apoptosis. Sh-Circ_0000020 was used to study the function of Circ_0000020 in osteogenic differentiation of BMSCs. Luciferase assay and RNA immunoprecipitation were used to validate the interaction between Circ_0000020 and miR-142-5p, and BMP2 and miR-142-5p. Co-transfection of miR-142-5p and sh-Circ_0000020 was used to verify the downstream signaling pathway. Circ_0000020 expression was up-regulated during osteogenic differentiation, whereas miR-142-5p expression was significantly decreased. Silencing Circ_0000020 inhibited osteogenic differentiation and promoted apoptosis, and inhibited ALP activity and mineralization ability. Moreover, Circ_0000020 interacts directly with miR-142-5p which binds to the BMP2 3ʹUTR and inhibits its expression. Additionally, co-transfection of miR-142-5p inhibitors and sh-Circ_0000020 rescued down-regulated BMP2, increased the expression osteogenesis-related gene expressions, and thereby rescued the inhibition of osteogenic differentiation induced by Circ_0000020 silencing. Furthermore, co-transfection of miR-142-5p inhibitors and sh-Circ_0000020 reversed Circ_0000020 silencing-induced downregulation of p-Smad1/5/8, Runx2, and Osterix protein levels. Circ_0000020 regulates BMP2 expression through sponging miR-142-5p as ceRNA, thereby positively regulating BMSCs osteogenic differentiation through Circ_0000020/miR-142-5p/BMP2/SMAD-dependent signaling pathway.
Collapse
Affiliation(s)
- Rongkui Zhou
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Shichang Miao
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Jun Xu
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Liping Sun
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Yaofei Chen
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| |
Collapse
|
45
|
Wu H, Xue Y, Zhang Y, Wang Y, Hou J. PTH1-34 promotes osteoblast formation through Beclin1-dependent autophagic activation. J Bone Miner Metab 2021; 39:572-582. [PMID: 33818629 DOI: 10.1007/s00774-021-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 12/08/2022]
Abstract
INTRODUCTION PTH1-34 can stimulate osteoblast formation, which contributes to the improvement of bone loss. PTH1-34 can activate autophagy, and autophagy plays a key role in osteoblast formation. This study aimed to explore the role of autophagy in PTH1-34-regulated osteoblastogenesis. MATERIALS AND METHODS In this study, the mice treated with ovariectomy (OVX mice) were used to observe the effect of PTH1-34 on the formation and autophagy of osteoblasts in trabecular bone in vivo. Osteoblast precursor cell line MC3T3-E1 was treated with PTH1-34, and then the autophagic parameters of osteoblast precursors (including autophagic proteins and autophagosome formation) were detected using Western Blotting and Transmission Electron Microscopy. Next, after using autophagic pharmacological inhibitor (3-MA) and silencing vectors of autophagic molecule Beclin1 to downregulate autophagic activity, the parameters related to osteogenesis (including ALP staining intensity, ALP activity, cell proliferation and osteoblastic protein expression) were evaluated using corresponding assays. RESULTS In vivo results showed that PTH1-34 not only improved bone loss caused by OVX but also restored Beclin1 expression and autophagic activity of immature osteoblasts in bone tissues. In vitro assays also showed that treatment of PTH1-34 enhanced the autophagy in osteoblast precursors. Moreover, under PTH1-34 intervention, the upregulated osteogenic parameters were reversed by autophagic inhibition with 3-MA. Of note, Beclin1 silencing can recover the osteogenic activity enhanced by PTH1-34. CONCLUSION PTH1-34 can enhance the autophagic activity of osteoblast precursors, which is involved in PTH1-34-regulated osteoblast formation. Furthermore, Beclin1, as a key autophagic regulator, plays a pivotal role in PTH1-34-regulated osteoblast precursor autophagy and osteoblastogenesis.
Collapse
Affiliation(s)
- Haojie Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ying Xue
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Internal Medicine, Fujian Provincial Hospital South Branch, Fuzhou, 350001, Fujian, China
| | - Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, No.134 Dong Jie Road, Fuzhou, 350001, Fujian, China
| | - Yongxuan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrine, Sanming First Hospital, The Affiliated Sanming First Hospital of Fujian Medical University, Sanming, 365000, Fujian, China
| | - Jianming Hou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, No.134 Dong Jie Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
46
|
Xu Y, Sun L, Hu J, Xu S. Knockdown of hsa_circ_0001275 reverses dexamethasone-induced osteoblast growth inhibition via mediation of miR-377/CDKN1B axis. PLoS One 2021; 16:e0252126. [PMID: 34043680 PMCID: PMC8158950 DOI: 10.1371/journal.pone.0252126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis affects the quality of life among middle-aged and elderly individuals. In addition, dysfunction of osteoblasts can lead to the progression of osteoporosis. Circular (circ)RNAs are involved in various types of diseases, including osteoporosis. Moreover, it has been reported that hsa_circ_0001275 expression is upregulated in osteoporosis. However, the effects of hsa_circ_0001275 on the growth of osteoblasts remain unclear. METHODS In the present study, the gene and protein expression levels in hFOB1.19 cells were detected via reverse transcription-quantitative (RT-qPCR) and western blot analyses, respectively. In addition, alkaline phosphatase (ALP) activity and calcium nodules were examined by ALP and alizarin red staining, respectively. Cell proliferation was measured using the Cell Counting Kit-8 assay. Cell apoptosis and cell cycle were analyzed by flow cytometry. Furthermore, dual luciferase reporter and RNA pull-down assay were used to confirm the association among hsa_circ_0001275, microRNA (miR)-377 and CDKN1B. RESULTS DEX-induced hFOB1.19 cell growth inhibition was significantly reversed by silencing hsa_circ_0001275. Moreover, DEX significantly increased ALP activity and calcium nodules in hFOB1.19 cells, while this effect was significantly reversed in the presence of hsa_circ_0001275 small interfering RNA. In addition, miR-377 was sponged by hsa_circ_0001275 and CDKN1B was directly targeted by miR-377 in hFOB1.19 cells. Furthermore, the therapeutic effect of hsa_circ_0001275 knockdown on osteoporosis was notably reversed by miR-377 antagomir. CONCLUSION The data demonstrated that knockdown of hsa_circ_0001275 reversed DEX-induced osteoblast growth inhibition via activation of the miR-377/CDKN1B axis. Therefore, this study might shed new lights on the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yan Xu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
- * E-mail:
| | - Liqin Sun
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| | - Juncheng Hu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| | - Sai Xu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Jiao K, Walsh LJ, Ivanovski S, Han P. The Emerging Regulatory Role of Circular RNAs in Periodontal Tissues and Cells. Int J Mol Sci 2021; 22:ijms22094636. [PMID: 33924932 PMCID: PMC8124626 DOI: 10.3390/ijms22094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5' cap and a 3' tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA-miRNA-mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.
Collapse
Affiliation(s)
- Kexin Jiao
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Laurence J. Walsh
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Sašo Ivanovski
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| | - Pingping Han
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| |
Collapse
|
48
|
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, Wu X, Xiang B, Zhou M, Li Y, Li G, Li X, Zeng Z, Guo C, Xiong W. The influence of circular RNAs on autophagy and disease progression. Autophagy 2021; 18:240-253. [PMID: 33904341 DOI: 10.1080/15548627.2021.1917131] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that have attracted considerable attention in recent years. Owing to their distinct circular structure, circRNAs are stable in cells. Autophagy is a catabolic process that helps in the degradation and recycling of harmful or inessential biological macromolecules in cells and enables cells to adapt to stress and changes in the internal and external environments. Evidence has shown that circRNAs influence the course of a disease by regulating autophagy, which indicates that autophagy is involved in the onset and development of various diseases and can affect drug resistance (for example, it affects cisplatin resistance in tumors). In this review, we summarized the role of circRNAs in autophagy and their influence on disease onset and progression as well as drug resistance. The review will expand our understanding of tumors as well as cardiovascular and neurological diseases and also suggest novel therapeutic strategies.Abbreviations: ACR: autophagy-related circRNA; ADSCs: adipogenic mesenchymal stem cells; AMPK: AMP-activated protein kinase; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; ceRNA: competing endogenous RNA; circRNA: circular RNA; CMA: chaperone-mediated autophagy; EPCs: endothelial progenitor cells; LE/MVBs: late endosomes/multivesicular bodies; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSCLC: non-small cell lung cancer; PDLSCs: periodontal ligament stem cells; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate 1,2-dipalmitoyl; PTEN: phosphatase and tensin homolog; RBPs: RNA-binding proteins; SiO2: silicon dioxide; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Lin Z, Tang X, Wan J, Zhang X, Liu C, Liu T. Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol 2021; 18:2136-2149. [PMID: 33896374 DOI: 10.1080/15476286.2021.1913551] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cells are a class of undifferentiated cells with great self-renewal and differentiation capabilities that can differentiate into mature cells in specific tissue types. Stem cell differentiation plays critical roles in body homoeostasis, injury repair and tissue generation. The important functions of stem cell differentiation have resulted in numerous studies focusing on the complex molecular mechanisms and various signalling pathways controlling stem cell differentiation. Circular RNAs (circRNAs) are a novel class of noncoding RNAs with a covalently closed structure present in eukaryotes. Numerous studies have highlighted important biological functions of circRNAs, and they play multiple regulatory roles in various physiological and pathological processes. Importantly, multiple lines of evidence have shown the abnormal expression of numerous circRNAs during stem cell differentiation, and some play a role in regulating stem cell differentiation, highlighting the role of circRNAs as novel biomarkers of stem cell differentiation and novel targets for stem cell-based therapy. In this review, we systematically summarize and discuss recent advances in our understanding of the roles and underlying mechanisms of circRNAs in modulating stem cell differentiation, thus providing guidance for future studies to investigate stem cell differentiation and stem cell-based therapy.Abbreviations: CircRNAs: circular RNAs; ESCs: embryonic stem cells; ADSCs: adipose-derived mesenchymal stem cells; ecircRNAs: exonic circRNAs; EIciRNAs: exon-intron circRNAs; eiRNAs: circular intronic RNAs; tricRNAs: tRNA intronic circRNAs; pol II: polymerase II; snRNP: small nuclear ribonucleoprotein; m6A: N6-methyladenosine; AGO2: Argonaute 2; RBPs: RNA-binding proteins; MBNL: muscleblind-like protein 1; MSCs: mesenchymal stem cells; hiPSCs: human induced pluripotent stem cells; hiPSC-CMs: hiPSC-derived cardiomyocytes; hBMSCs: human bone marrow mesenchymal stem cells; hADSCs: human adipose-derived mesenchymal stem cells; hDPSCs: human dental pulp stem cells; RNA-seq: high-throughput RNA sequencing; HSCs: haematopoietic stem cells; NSCs: neural stem cells; EpSCs: epidermal stem cells; hESCs: human embryonic stem cells; mESCs: murine embryonic stem cells; MNs: motor neurons; SSUP: small subunit processome; BMSCs: bone marrow-derived mesenchymal stem cells; OGN: osteoglycin; GIOP: glucocorticoid‑induced osteoporosis; CDR1as: cerebellar degeneration-related protein 1 transcript; SONFH: steroid-induced osteogenesis of the femoral head; rBMSCs: rat bone marrow-derived mesenchymal stem cells; QUE: quercetin; AcvR1b: activin A receptor type 1B; BSP: bone sialoprotein; mADSCs: mouse ADSCs; PTBP1: polypyrimidine tract-binding protein; ER: endoplasmic reticulum; hUCMSCs: MSCs derived from human umbilical cord; MSMSCs: maxillary sinus membrane stem cells; SCAPs: stem cells from the apical papilla; MyoD: myogenic differentiation protein 1; MSTN: myostatin; MEF2C: myocyte enhancer factor 2C; BCLAF1: BCL2-associated transcription factor 1; EpSCs: epidermal stem cells; ISCs: intestinal stem cells; NSCs: neural stem cells; Lgr5+ ISCs: crypt base columnar cells; ILCs: innate lymphoid cells.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunfeng Liu
- Department of Orthopedics, Suzhou Kowloon Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Suzhou, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Chen G, Tang W, Wang S, Long C, He X, Yang D, Peng S. Promising diagnostic and therapeutic circRNAs for skeletal and chondral disorders. Int J Biol Sci 2021; 17:1428-1439. [PMID: 33867856 PMCID: PMC8040475 DOI: 10.7150/ijbs.57887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a highly conserved subtype of non-coding RNAs, produced by the back-splicing of specific regions of pre-mRNA. CircRNAs have wide-ranging effects on eukaryotic physiology and pathology by acting as transcription regulators, miRNA sponges, protein sponges, and templates for translation. Skeletal and chondral disorders are the leading causes of pain and disability, especially for elders, affecting hundreds of millions of people worldwide. Plenty of evidence have shown that circRNAs are dysregulated and play vital roles in the occurrence and progression of skeletal and chondral disorders. Herein, we systematically summarize the emerging roles and underlying molecular mechanisms of hub circRNAs in the pathogenesis of several representative skeletal and chondral disorders. Our findings may provide further insight into the mechanistic details of the role of circRNA in bone or cartilage metabolism, and highlight the promising application of circRNAs in serving as potential diagnostic or therapeutic targets for the prevention and treatment of skeletal and chondral disorders.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Shang Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Canling Long
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Xiaoqin He
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| |
Collapse
|