1
|
Wang Q, Zhang X, Han C, Lv Z, Zheng Y, Liu X, Du Z, Liu T, Xue D, Li T, Wang L. Immunodynamic axis of fibroblast-driven neutrophil infiltration in acute pancreatitis: NF-κB-HIF-1α-CXCL1. Cell Mol Biol Lett 2025; 30:57. [PMID: 40335899 PMCID: PMC12060353 DOI: 10.1186/s11658-025-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a sterile inflammation, and 10-20% of cases can progress to severe acute pancreatitis (SAP), which seriously threatens human life and health. Neutrophils and their extracellular traps (NETs) play an important role in the progression of AP. However, the immunodynamic factors between the excessive infiltration of neutrophils during the occurrence of AP have not been fully elucidated. METHODS Adult male C57BL/6 J mice were selected. An AP model was induced by cerulein, and a control group was set up. Single-cell sequencing technology was used to reveal the cell atlas of AP pancreatitis tissue. In vivo, the model mice were treated with anti-Ly6G antibody, DNase I, SC75741, PX-478, and SRT3109 respectively. In vitro, human pancreatic stellate cells were treated with hypoxia, H2O2, NAC, and JSH-2, and co-cultured with neutrophils in Transwell chambers. The severity of inflammation was evaluated, and the molecular mechanism by which fibroblasts exacerbate AP was revealed through techniques such as cell colony formation assay, cell migration assay, cell transfection, immunofluorescence, flow cytometry, Western blot, reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (co-IP). RESULTS The study showed that the elimination of neutrophils and NETs could significantly improve AP. Single-cell RNA sequencing (scRNA-seq) indicated that both neutrophils and fibroblasts in pancreatic tissue exhibited heterogeneity during AP. Among them, neutrophils highly expressed CXCR2, and fibroblasts highly expressed CXCL1. Further experimental results demonstrated that the infiltration of neutrophils in the early stage of AP was related to the activation of fibroblasts. The activation of fibroblasts depended on the nuclear factor kappa B (NF-κB) signaling pathway induced by hypoxia. NF-κB enhanced the activation of pancreatic stellate cells (PSCs) and the secretion of CXCL1 by directly promoting the transcription of HIF-1α and indirectly inhibiting PHD2, resulting in the accumulation of HIF-1α protein. The NF-κB-HIF-1α signal promoted the secretion of CXCL1 by fibroblasts through glycolysis and induced the infiltration of neutrophils. Finally, blocking the NF-κB-HIF-1α-CXCL1 signaling axis in vivo reduced the infiltration of neutrophils and improved AP. CONCLUSIONS This study, for the first time, demonstrated that activation of fibroblasts is one of the immunological driving factors for neutrophil infiltration and elucidated that glycolysis driven by the NF-κB-HIF-1α pathway is the intrinsic molecular mechanism by which fibroblasts secrete CXCL1 to chemotactically attract neutrophils. This finding provides a highly promising target for the treatment of AP.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chenglong Han
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiwei Du
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Liyi Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Lim ST, Zhao X, Liu S, Zhang W, Tan Y, Mullappilly N, Swain SM, Leong ML, Rajarethinam R, Wan KF, Ruedl C, Liddle RA, Li L, Wang X. LRG1 inhibition promotes acute pancreatitis recovery by inducing cholecystokinin Type 1 receptor expression via Akt. Theranostics 2025; 15:4247-4269. [PMID: 40225588 PMCID: PMC11984386 DOI: 10.7150/thno.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Acute pancreatitis (AP) is a common gastrointestinal disease affecting nearly 3 million people annually worldwide. Although AP is typically self-limiting, up to 20% of patients may develop life-threatening complications. Individuals who suffer from AP also have an increased likelihood of developing other exocrine and endocrine pancreatic disorders. However, to date, there are no specific, targeted treatment modalities that can effectively improve the clinical outcomes of AP. Leucine-rich alpha-2 glycoprotein 1 (LRG1) is a multifunctional protein with established roles in inflammation and cell mitosis. This study aims to investigate the functional role of LRG1 in AP progression and develop LRG1-targeted AP therapeutics. Methods: Levels of circulating and tissue LRG1 were determined in human patient samples and mouse models of caerulein-induced AP and pancreatic duct ligation-induced AP. Histopathological grading, amylase assay, real-time polymerase chain reaction analysis and Western blotting were used to evaluate the extent of pancreatic damage and recovery following caerulein-induced AP in both wild-type and Lrg1-/- mice. Primary acinar cells were also isolated from mice for in-vitro mechanistic studies. LRG1 neutralizing antibody was administered post-AP induction to evaluate its therapeutic potential in improving AP outcomes. Results: LRG1 is markedly increased in serum and acinar cells of AP patients and C57BL/6 mice subjected to caerulein-induced AP or pancreatic duct ligation-induced AP. Despite demonstrating no obvious pancreatic dysfunction, Lrg1-/- mice exhibited more severe pancreatic damage and inflammation during the early stages of caerulein-induced AP. However, the resolution of AP was accelerated in the absence of Lrg1, which is at least partially due to LRG1's role in regulating the expression of trophic cholecystokinin (CCK) Type 1 receptor (CCK1R) via the TGFβ/ALK5/AKT pathway in acinar cells. Importantly, the administration of an LRG1-blocking antibody promoted AP recovery, evidenced by reduced overall inflammation and increased acinar cell proliferation. Conclusions: Our data provide compelling evidence for targeting LRG1 as a potential innovative therapy for promoting AP recovery.
Collapse
Affiliation(s)
- Seok Ting Lim
- Centre for Vision Research, Duke-NUS Medical School, Singapore
- Singapore Eye Research Institute, Singapore
| | - Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, China
| | - Shuqing Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, China
| | - Wenjuan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yuanyang Tan
- School of Medical Technology, Beijing Institute of Technology, 100081, Beijing, China
| | | | - Sandip M Swain
- Department of Medicine, Duke University, Durham, NC, 27710, U.S.A
| | - Mei Ling Leong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory (AMPL), Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Kah Fei Wan
- Antibody Technology Division, Experimental Drug Development Centre, A*STAR, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, NC, 27710, U.S.A
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology
| | - Xiaomeng Wang
- Centre for Vision Research, Duke-NUS Medical School, Singapore
- Singapore Eye Research Institute, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
3
|
Yang X, Ren Y, Li X, Xia L, Wan J. MiR-146a Reduces Inflammation in Experimental Pancreatitis via the TRAF6-NF-κB Signaling Pathway in Mice. Immun Inflamm Dis 2025; 13:e70163. [PMID: 40018991 PMCID: PMC11868994 DOI: 10.1002/iid3.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The initial inflammatory response plays a pivotal role in the development of acute pancreatitis. MiR-146a is believed to play a key role in negatively regulating inflammation and potentially contributes to anti-inflammatory activity in acute pancreatitis, though its mechanism remains largely unexplored. OBJECTIVES This study aimed to explore the effects of miR-146a on AP in mice and clarify its regulatory mechanisms in pancreatic inflammation and damage. METHODS Adult male BALB/C mice were used. Adeno-associated virus (AAV) vectors were used to modulate miR-146a expression in mice via tail vein injection. AP was induced by intraperitoneal injection of caerulein, caerulein + LPS, or l-arginine. Histological analysis, immunohistochemistry staining, immunofluorescence staining, measurements of amylase and lipase activities, and qRT-PCR were performed. RESULTS Overexpression of miR-146a reduced pancreatic damage and inflammation in caerulein-induced AP. It decreased serum amylase and lipase levels, mitigated pathological features such as interstitial edema and inflammatory cell infiltration in the pancreas and lung, and reduced neutrophil infiltration and proinflammatory cytokine expression. MiR-146a attenuated the activation of the NF-κB signaling pathway by inhibiting the degradation of IκBα and the expression of phosphorylated-p65 and reducing the nuclear translocation of NF-κB p65. Similar protective effects of miR-146a were observed in AP models induced by l-arginine and caerulein combined with LPS. CONCLUSIONS MiR-146a alleviates acute pancreatitis in mice by targeting TRAF6 and suppressing the activation of the NF-κB signaling pathway. These findings suggest that miR-146a could be a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yuping Ren
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xueyang Li
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Liang Xia
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianhua Wan
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
4
|
Mavileti SK, Bila G, Utka V, Bilyy R, Bila E, Butoi E, Gupta S, Balyan P, Kato T, Bilyy R, Pandey SS. Squaraine-Peptide Conjugates as Efficient Reporters of Neutrophil Extracellular Traps-Mediated Chronic Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9140-9154. [PMID: 39898628 PMCID: PMC11826884 DOI: 10.1021/acsami.4c20658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The excessive and uncontrolled release of neutrophil extracellular traps (NETs) is increasingly linked to the pathogenesis of various inflammatory diseases, cardiovascular disorders, and cancers. Real-time, non-invasive detection of NETs is crucial for understanding their role in disease progression and developing targeted therapies. Current NETs detection methods often lack the necessary specificity and resolution, particularly in vivo and ex vivo settings. To address this, we have developed novel near-infrared squaraine-peptide conjugates by rational molecular design as reporters of NETosis by targeting the protease activity of neutrophil elastase (NE). These self-quenching, cell-impermeable probes enable the precise real-time detection and imaging of NETs. The Förster resonance energy transfer (FRET)-based probe, Hetero-APA, demonstrated high specificity in detecting NETs in vitro and in vivo, generating strong fluorescence in NETs-rich environments. To overcome the limitations of FRET-based probes for ex vivo imaging, we designed SQ-215-NETP, a non-FRET-based probe that covalently binds to the NE. SQ-215-NETP achieved an unprecedented imaging resolution of 90 nm/pixel in human coronary thrombi, marking the first report of such high resolution with a low molecular weight probe. Additionally, SQ-215-NETP effectively detected NETs by flow cytometry. These results highlight the potential of these probes in NETosis detection, offering promising tools for enhanced diagnostics and therapeutic strategies in managing NET-mediated inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Sai Kiran Mavileti
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Galyna Bila
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Valentyn Utka
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
| | | | - Evgenia Bila
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Organic Chemistry, Ivan Franko National
University of Lviv, Kyrylo
and Mefodiy Street 6, 79005 Lviv, Ukraine
| | - Elena Butoi
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Shekhar Gupta
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Priyanka Balyan
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Tamaki Kato
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Rostyslav Bilyy
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Shyam S. Pandey
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| |
Collapse
|
5
|
Mititelu A, Grama A, Colceriu MC, Pop TL. Overview of the cellular and immune mechanisms involved in acute pancreatitis: In search of new prognosis biomarkers. Expert Rev Mol Med 2025; 27:e9. [PMID: 39757373 PMCID: PMC11879381 DOI: 10.1017/erm.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Acute pancreatitis (AP) is an acute-onset gastrointestinal disease characterized by a significant inflammation of the pancreas. Most of the time, AP does not leave substantial changes in the pancreas after the resolution of the symptoms but the severe forms are associated with local or systemic complications. The pathogenesis of AP has long been investigated and, lately, the importance of intracellular mechanisms and the immune system has been described. The initial modifications in AP take place in the acinar cell. There are multiple mechanisms by which cellular homeostasis is impaired, one of the most important being calcium overload. Necrotic pancreatic cells initiate the inflammatory response by secreting inflammatory mediators and attracting immune cells. From this point on, the inflammation is sustained by the involvement of innate and adaptive immune systems. Multiple studies have demonstrated the importance of the first 48 h for identifying patients at risk for developing severe forms. For this reason, there is a need to find new, easy-to-use and reliable markers for accurate predictions of these forms. This review provides an overview of the main pathogenetic mechanisms involved in AP development and the most promising biomarkers for severity stratification.
Collapse
Affiliation(s)
- Alexandra Mititelu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Grama
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Marius-Cosmin Colceriu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor L. Pop
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, Novacescu D, Pantea S. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines 2024; 12:2627. [PMID: 39595191 PMCID: PMC11591934 DOI: 10.3390/biomedicines12112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disorder with significant morbidity and mortality. This review aims to integrate the current knowledge of pancreatic morphology and immunology with the pathogenesis of acute pancreatitis, providing a comprehensive understanding of this critical condition. We conducted an extensive literature review, synthesizing data from recent studies and authoritative sources on pancreatic anatomy, histology, immunology, and the pathophysiology of acute pancreatitis. We also incorporated epidemiological data, clinical features, diagnostic criteria, and prognostic factors. The pancreas exhibits a complex morphology with intricate interactions between its exocrine and endocrine components. Its unique immunological landscape plays a crucial role in maintaining homeostasis and orchestrating responses to pathological conditions. In acute pancreatitis, the disruption of intracellular calcium signaling leads to premature enzyme activation, triggering a cascade of events including mitochondrial dysfunction, ATP depletion, and the release of proinflammatory mediators. This process can escalate from localized inflammation to systemic complications. The interplay between pancreatic morphology, immune responses, and pathophysiological mechanisms contributes to the varied clinical presentations and outcomes observed in acute pancreatitis. Understanding the intricate relationships between pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis is crucial for developing more effective diagnostic and therapeutic strategies. This integrated approach provides new insights into the complex nature of acute pancreatitis and may guide future research directions in pancreatic disorders.
Collapse
Affiliation(s)
- Tudorel Mihoc
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Cosmin-Ciprian Secasan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Vlad Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Mircea Selaru
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Catalin Alexandru Pirvu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Andrei Paul Valceanu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| |
Collapse
|
7
|
Zhang H, Wang Z, Li J, Jia Y, Li F. Timing, initiation and function: An in-depth exploration of the interaction network among neutrophil extracellular traps related genes in acute pancreatitis. Int Immunopharmacol 2024; 141:112923. [PMID: 39137629 DOI: 10.1016/j.intimp.2024.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Exogenous inhibition of neutrophil extracellular traps (NETs) was believed to alleviate acute pancreatitis (AP). This study aimed to comprehensively explore the key biological behavior of NETs including timing and pathogenesis in AP by integrating of single cell RNA sequencing(scRNA-seq) and bulk RNA-seq. METHODS Differentially expressed NETs-related genes and the hub genes of NETs were screened by bulk RNA-seq. ScRNA-seq was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in neutrophils. The mouse AP models were build to verify the timing of initiation of NETs and underlying pathogenesis of damage on pancreas acinar cells. RESULTS Tlr4 and Ccl3 were screened for hub genes by bulk RNA-seq. The trajectory analysis of neutrophils showed that high expression of Ccl3, Cybb and Padi4 can be observed in the middle stage during AP. Macrophages might be essential in the biological behavior of neutrophils and NETs. Through animal models, we presented that extensive NETs structures were formed at mid-stage of inflammation, accompanied by more serious pancreas and lung damage. NETs might promote necroptosis and macrophage infiltration in AP, and the damage on pancreatic injury could be regulated by Tlr4 pathway. Ccl3 was considered to recruit neutrophils and promote NETs formation. CONCLUSION The findings explored the underlying timing and pathogenesis of NETs in AP for the first time, which provided gene targets for further studies.
Collapse
Affiliation(s)
- Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China.
| |
Collapse
|
8
|
Wu Z, Wang S, Wu Z, Tao J, Li L, Zheng C, Xu Z, Du Z, Zhao C, Liang P, Xu A, Wang Z. Altered immune cell in human severe acute pancreatitis revealed by single-cell RNA sequencing. Front Immunol 2024; 15:1354926. [PMID: 39372399 PMCID: PMC11449708 DOI: 10.3389/fimmu.2024.1354926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Shijie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhiheng Wu
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Junjie Tao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhipeng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaohui Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengpu Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Pengzhen Liang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Aman Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Institute of Acute and Critical Care, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Dao YHT, Huynh TM, Tran DT, Ho PT, Vo TD. Clinical value of the Systemic Inflammatory Response Index for predicting acute pancreatitis severity in Vietnamese setting. JGH Open 2024; 8:e13101. [PMID: 38882631 PMCID: PMC11177285 DOI: 10.1002/jgh3.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIM Accurate prediction of severe acute pancreatitis (SAP) is crucial for timely intervention. This study focuses on the Systemic Inflammatory Response Index (SIRI) to assess its clinical value in predicting the severity of AP in the Vietnamese context. METHODS A cross-sectional prospective study was conducted with acute pancreatitis patients at a national hospital in Ho Chi Minh City. The patients were classified into nonsevere and severe groups, and the clinical characteristics were analyzed. The predictive abilities of SIRI, calculated using neutrophil × monocyte/lymphocyte, was assessed for predictive abilities. Multivariate regression and receiver operating characteristics (ROC) curves evaluated the prognostic factors and predictive accuracy. RESULTS Among 207 patients, 78.7% had nonsevere AP, and 21.3% had SAP. The severe group exhibited a significantly higher median SIRI (12.0) than the nonsevere group (4.9) (P < 0.001). Multivariate regression identified SIRI (odds ratio [OR] = 1.623) as an independent predictor of SAP. The ROC curve determined a SIRI cutoff of 7.82 with an area under the curve (AUC) of 0.737. Combining the SIRI and Bedside Index for Severity in Acute Pancreatitis (BISAP) score improved the predictive ability (AUC = 0.820) with increased sensitivity (90.91%) (P < 0.001). CONCLUSION SIRI, particularly when combined with the BISAP score, shows significant potential to predict SAP severity in the Vietnamese clinical setting, providing valuable information for effective patient management.
Collapse
Affiliation(s)
- Yen H T Dao
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Tien M Huynh
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- University Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | | | - Phat T Ho
- Cho Ray HospitalHo Chi Minh CityVietnam
| | - Thong D Vo
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- University Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| |
Collapse
|
10
|
Gu X, Huang Z, Ying X, Liu X, Ruan K, Hua S, Zhang X, Jin H, Liu Q, Yang J. Ferroptosis exacerbates hyperlipidemic acute pancreatitis by enhancing lipid peroxidation and modulating the immune microenvironment. Cell Death Discov 2024; 10:242. [PMID: 38773098 PMCID: PMC11109150 DOI: 10.1038/s41420-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Abnormal activation of ferroptosis worsens the severity of acute pancreatitis and intensifies the inflammatory response and organ damage, but the detailed underlying mechanisms are unknown. Compared with other types of pancreatitis, hyperlipidemic acute pancreatitis (HLAP) is more likely to progress to necrotizing pancreatitis, possibly due to peripancreatic lipolysis and the production of unsaturated fatty acids. Moreover, high levels of unsaturated fatty acids undergo lipid peroxidation and trigger ferroptosis to further exacerbate inflammation and worsen HLAP. This paper focuses on the malignant development of hyperlipidemic pancreatitis with severe disease combined with the core features of ferroptosis to explore and describe the mechanism of this phenomenon and shows that the activation of lipid peroxidation and the aberrant intracellular release of many inflammatory mediators during ferroptosis are the key processes that regulate the degree of disease development in patients with HLAP. Inhibiting the activation of ferroptosis effectively reduces the intensity of the inflammatory response, thus reducing organ damage in patients and preventing the risk of HLAP exacerbation. Additionally, this paper summarizes the key targets and potential therapeutic agents of ferroptosis associated with HLAP deterioration to provide new ideas for future clinical applications.
Collapse
Affiliation(s)
- Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhicheng Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzhiye Ying
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, China.
| |
Collapse
|
11
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
12
|
Sahin A. Neutrophil-Creatinine Index: A New Prognostic Factor for Severity of Acute Pancreatitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:607. [PMID: 38674253 PMCID: PMC11051984 DOI: 10.3390/medicina60040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Determining the severity of acute pancreatitis (AP) is the main goal in the early stage of AP. The aim of this study was to compare laboratory parameters and indices, including the neutrophil to lymphocyte ratio (NLR) and the neutrophil-creatinine index (NCI), at admission in order to predict the severity of AP. Materials and Methods: Data from 421 patients who were admitted with a diagnosis of AP were collected retrospectively. Disease severity was assessed using the Bedside Index of Severity in Acute Pancreatitis (BISAP) and the revised Atlanta classification (RAC). BISAP was graded as mild and severe, and RAC was graded as mild (MAP), moderately severe (MSAP), and severe (SAP). The laboratory parameters and indices, including the NLR and NCI, were compared. Results: Of the patients, 70 (16.6%) had severe AP according to BISAP; the AP subgroups according to the RAC were as follows: MAP (n = 213), MSAP (n = 158), and SAP (n = 50). The NCI had the highest area under the receiver operator characteristic (AUROC) curve value (0.862), demonstrating severe disease according to BISAP, with a sensitivity of 78.6% and a specificity of 79.8%. Age (OR:1.046), white blood cell count (WBC) (OR:1.141), hematocrit (OR:1.081), blood urea nitrogen (BUN) (OR:1.040), and NCI (OR:1.076) were independently associated with severe disease, according to the multivariate analysis results, and were determined as components of the newly developed nomogram. The AUROC of the nomogram (0.891) was superior to the AUROCs of all the components of the nomogram except the NCI. Moreover, the NCI was the only parameter to distinguish MSAP from MAP (OR:1.119, 95% CI: 1.015-1.235, p = 0.023) and SAP from MSAP (OR:1.095, 95% CI: 1.031-1.162, p = 0.003). Conclusions: The present study enabled the identification of the neutrophil-creatinine index as a new prognostic tool for the assessment of AP severity at hospital admission.
Collapse
Affiliation(s)
- Abdurrahman Sahin
- Gastroenterology Department, Faculty of Medicine, Tokat Gaziosmanpasa University, 60030 Tokat, Turkey
| |
Collapse
|
13
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
14
|
Liu J, Zhong L, Zhang Y, Ma J, Xie T, Chen X, Zhang B, Shang D. Identification of novel biomarkers based on lipid metabolism-related molecular subtypes for moderately severe and severe acute pancreatitis. Lipids Health Dis 2024; 23:1. [PMID: 38169383 PMCID: PMC10763093 DOI: 10.1186/s12944-023-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an unpredictable and potentially fatal disorder. A derailed or unbalanced immune response may be the root of the disease's severe course. Disorders of lipid metabolism are highly correlated with the occurrence and severity of AP. We aimed to characterize the contribution and immunological characteristics of lipid metabolism-related genes (LMRGs) in non-mild acute pancreatitis (NMAP) and identify a robust subtype and biomarker for NMAP. METHODS The expression mode of LMRGs and immune characteristics in NMAP were examined. Then LMRG-derived subtypes were identified using consensus clustering. The weighted gene co-expression network analysis (WGCNA) was utilized to determine hub genes and perform functional enrichment analyses. Multiple machine learning methods were used to build the diagnostic model for NMAP patients. To validate the predictive effectiveness, nomograms, receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA) were used. Using gene set variation analysis (GSVA) and single-cell analysis to study the biological roles of model genes. RESULTS Dysregulated LMRGs and immunological responses were identified between NMAP and normal individuals. NMAP individuals were divided into two LMRG-related subtypes with significant differences in biological function. The cluster-specific genes are primarily engaged in the regulation of defense response, T cell activation, and positive regulation of cytokine production. Moreover, we constructed a two-gene prediction model with good performance. The expression of CARD16 and MSGT1 was significantly increased in NMAP samples and positively correlated with neutrophil and mast cell infiltration. GSVA results showed that they are mainly upregulated in the T cell receptor complex, immunoglobulin complex circulating, and some immune-related routes. Single-cell analysis indicated that CARD16 was mainly distributed in mixed immune cells and macrophages, and MGST1 was mainly distributed in exocrine glandular cells. CONCLUSIONS This study presents a novel approach to categorizing NMAP into different clusters based on LMRGs and developing a reliable two-gene biomarker for NMAP.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tong Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
16
|
Steiner JM, Lainesse C, Noshiro Y, Domen Y, Sedlacek H, Bienhoff SE, Doucette KP, Bledsoe DL, Shikama H. Fuzapladib in a randomized controlled multicenter masked study in dogs with presumptive acute onset pancreatitis. J Vet Intern Med 2023; 37:2084-2092. [PMID: 37811705 PMCID: PMC10658511 DOI: 10.1111/jvim.16897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Currently, no specific treatment is available for acute onset pancreatitis (AP), and management relies on symptomatic and supportive standard of care (SOC). Fuzapladib is a novel leukocyte function-associated antigen type-1 (LFA-1) activation inhibitor, blocking activation and subsequent adhesion and migration of neutrophils, potentially decreasing the risk of pancreatitis progression and systemic inflammation. OBJECTIVE Evaluate the safety and clinical response of dogs with AP after 3 days of administration of fuzapladib. ANIMALS Sixty-one client-owned dogs with presumptive AP. METHODS Randomized, masked, and placebo controlled multicenter study. Sixty-one dogs with AP were included for safety assessment, whereas 35 evaluable cases (fuzapladib, n = 16; placebo, n = 19) were included for clinical evaluation. Clinical improvement was assessed based on the change in the modified clinical activity index (MCAI) score on Day 3 compared to Day 0. Secondary variables included canine acute pancreatitis clinical severity index (CAPCSI) scores and serum concentrations of canine pancreatic lipase immunoreactivity, cytokines, and C-reactive protein. RESULTS Fuzapladib was well tolerated by all treated dogs. Mean change in MCAI scores was significantly higher in the fuzapladib-treated (-7.75) than the placebo group (-5.68; P = .02, 95% confidence interval [CI] for the difference, -4.33, -0.35), suggesting clinical improvement in fuzapladib-treated dogs. No significant difference was found in any of the secondary variables between groups. CONCLUSIONS AND CLINICAL RELEVANCE Administration of fuzapladib to dogs was safe, and a favorable response was detected in 2 clinical activity scores. Effects of fuzapladib on survival and duration of hospitalization were not studied.
Collapse
Affiliation(s)
- Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesSchool of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| | - Chantal Lainesse
- IntegRxal Consulting Strategies, Inc.SaskatoonSaskatchewanCanada
| | - Yuya Noshiro
- Ishihara Sangyo Kaisha (ISK) Animal Health LLCConcordOhioUSA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen K, Zhang Z, Fang Z, Zhang J, Liu Q, Dong W, Liu Y, Wang Y, Wang J. Aged-Signal-Eliciting Nanoparticles Stimulated Macrophage-Mediated Programmed Removal of Inflammatory Neutrophils. ACS NANO 2023; 17:13903-13916. [PMID: 37458397 DOI: 10.1021/acsnano.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Excessive infiltration of activated neutrophils is regarded as a predominant cause of tissue injury in neutrophilic inflammation. Although programmed cell death like apoptosis maintains the homeostasis of activated neutrophils, this process is disrupted by an abnormal inflammatory response. Unlike endogenous calreticulin exposed during apoptosis, exogenous calreticulin acts as an "aged" signal and initiates premature macrophage-mediated programmed cell removal (PrCR), which is independent of apoptosis. Here, we report a nano-mediated strategy to stimulate the precise clearance of activated neutrophils initiated with artificial aged signal and alleviated inflammation. Polymeric nanoparticles PC@PLGA were fabricated by cloaking poly(lactic-co-glycolic acid) (PLGA) with a hybrid membrane derived from platelet-derived extracellular vesicles (PEVs, denoted by P) and the calreticulin-expressed membrane obtained from doxorubicin-treated cells (denoted by C). P-selectin in PEVs favors PC@PLGA to anchor activated neutrophils, while calreticulin mimics exogenous "aged" signal secreted by macrophages to trigger PrCR. We showed that PC@PLGA specifically targeted activated neutrophils and misled macrophages to recognize them as "aged" neutrophils and then initiated premature PrCR and prevented proinflammatory response and tissue damage in a mouse model of acute lung injury and severe acute pancreatitis. The collective findings indicate the efficiency of specific elimination of activated neutrophils with exogenous aged signal in improving inflammation therapy.
Collapse
Affiliation(s)
- Kaige Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Ziyuan Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiachen Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qian Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| |
Collapse
|
18
|
Werawatganon D, Vivatvakin S, Somanawat K, Tumwasorn S, Klaikeaw N, Siriviriyakul P, Chayanupatkul M. Effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. BMC Complement Med Ther 2023; 23:166. [PMID: 37217916 DOI: 10.1186/s12906-023-03998-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Severe acute pancreatitis is a potentially life-threatening disease. Despite being a common disorder, acute pancreatitis lacks a specific treatment. The present study aimed to examine the effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. METHODS Male ICR mice were randomly divided into 4 groups (n = 6 per group). The control group received two intraperitoneal (i.p.) injections of normal saline as a vehicle control. The acute pancreatitis (AP) group received two i.p. injections of L-arginine 450 mg/100 g body weight. AP plus probiotics groups received L-arginine to induce acute pancreatitis as above. In the single-strain and mixed-strain groups, mice received 1 mL of Lactobacillus plantarum B7 1 × 108 CFU/mL and 1 mL of Lactobacillus rhamnosus L34 1 × 108 CFU/mL and Lactobacillus paracasei B13 1 × 108 CFU/mL by oral gavage, respectively for 6 days starting 3 days prior to the AP induction. All mice were sacrificed 72 h after L-arginine injection. Pancreatic tissue was obtained for histological evaluation and immunohistochemical studies for myeloperoxidase, whereas ileal tissue was used for immunohistochemical studies for occludin, and claudin-1. Blood samples were collected for amylase analysis. RESULTS Serum amylase levels and pancreatic myeloperoxidase levels in the AP group were significantly higher than in controls and significantly decreased in probiotic groups compared with the AP group. Ileal occludin and claudin-1 levels were significantly lower in the AP group than in controls. Ileal occludin levels significantly increased, whereas ileal claudin-1 levels did not significantly change in both probiotic groups as compared with the AP group. The pancreatic histopathology showed significantly higher degree of inflammation, edema, and fat necrosis in the AP group, and these changes improved in mixed-strained probiotic groups. CONCLUSIONS Probiotics, particularly the mixed-strain ones, attenuated AP via the reduction of inflammation and the maintenance of intestinal integrity.
Collapse
Affiliation(s)
- Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Vivatvakin
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Siggins RW, McTernan PM, Simon L, Souza-Smith FM, Molina PE. Mitochondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. Int J Mol Sci 2023; 24:8650. [PMID: 37239997 PMCID: PMC10218577 DOI: 10.3390/ijms24108650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alcohol misuse, directly or indirectly as a result of its metabolism, negatively impacts most tissues, including four with critical roles in energy metabolism regulation: the liver, pancreas, adipose, and skeletal muscle. Mitochondria have long been studied for their biosynthetic roles, such as ATP synthesis and initiation of apoptosis. However, current research has provided evidence that mitochondria participate in myriad cellular processes, including immune activation, nutrient sensing in pancreatic β-cells, and skeletal muscle stem and progenitor cell differentiation. The literature indicates that alcohol impairs mitochondrial respiratory capacity, promoting reactive oxygen species (ROS) generation and disrupting mitochondrial dynamics, leading to dysfunctional mitochondria accumulation. As discussed in this review, mitochondrial dyshomeostasis emerges at a nexus between alcohol-disrupted cellular energy metabolism and tissue injury. Here, we highlight this link and focus on alcohol-mediated disruption of immunometabolism, which refers to two distinct, yet interrelated processes. Extrinsic immunometabolism involves processes whereby immune cells and their products influence cellular and/or tissue metabolism. Intrinsic immunometabolism describes immune cell fuel utilization and bioenergetics that affect intracellular processes. Alcohol-induced mitochondrial dysregulation negatively impacts immunometabolism in immune cells, contributing to tissue injury. This review will present the current state of literature, describing alcohol-mediated metabolic and immunometabolic dysregulation from a mitochondrial perspective.
Collapse
Affiliation(s)
- Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Lu Y, Qiu M, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside. J Clin Med 2023; 12:jcm12051729. [PMID: 36902516 PMCID: PMC10003000 DOI: 10.3390/jcm12051729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is well known that hypercholesterolemia in the body has pro-inflammatory effects through the formation of inflammasomes and augmentation of TLR (Toll-like receptor) signaling, which gives rise to cardiovascular disease and neurodegenerative diseases. However, the interaction between cholesterol-related lipids and acute pancreatitis (AP) has not yet been summarized before. This hinders the consensus on the existence and clinical importance of cholesterol-associated AP. This review focuses on the possible interaction between AP and cholesterol-related lipids, which include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) A1, from the bench to the bedside. With a higher serum level of total cholesterol, LDL-C is associated with the severity of AP, while the persistent inflammation of AP is allied with a decrease in serum levels of cholesterol-related lipids. Therefore, an interaction between cholesterol-related lipids and AP is postulated. Cholesterol-related lipids should be recommended as risk factors and early predictors for measuring the severity of AP. Cholesterol-lowering drugs may play a role in the treatment and prevention of AP with hypercholesterolemia.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20–24, 51429 Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, 66539 Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: ; Tel./Fax: +86-0577-55579122
| |
Collapse
|
21
|
O'Brien BJ, Faraoni EY, Strickland LN, Ma Z, Mota V, Mota S, Chen X, Mills T, Eltzschig HK, DelGiorno KE, Bailey‐Lundberg JM. CD73-generated extracellular adenosine promotes resolution of neutrophil-mediated tissue injury and restrains metaplasia in pancreatitis. FASEB J 2023; 37:e22684. [PMID: 36468677 PMCID: PMC9753971 DOI: 10.1096/fj.202201537r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Collapse
Affiliation(s)
- Baylee J. O'Brien
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Erika Y. Faraoni
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lincoln N. Strickland
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Zhibo Ma
- Gene Expression LaboratoryThe Salk Institute for Biological SciencesSan DiegoCaliforniaUSA
| | - Victoria Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Samantha Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xuebo Chen
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Holger K. Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jennifer M. Bailey‐Lundberg
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
22
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
23
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
24
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
25
|
Identification of ceRNA regulatory network in acute pancreatitis and acute recurrent pancreatitis. Eur J Gastroenterol Hepatol 2022; 34:1031-1041. [PMID: 36052691 DOI: 10.1097/meg.0000000000002421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The aim of this study was to find differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs and related signaling pathways, contributing to understanding the molecular mechanism of acute recurrent pancreatitis (ARP). METHODS First, peripheral whole blood samples from five acute pancreatitis (AP) patients, five ARP patients and five healthy individuals ( N ) were collected for RNA sequencing. Second, differentially/specifically expressed lncRNAs, miRNAs and mRNAs were identified in AP vs. N , ARP vs. N and ARP. Third, the ceRNA (lncRNA-miRNA-mRNA) networks of common/specifical lncRNAs, miRNAs and mRNAs were constructed in AP vs. N , ARP vs. N and ARP. Finally, functional analysis of common mRNAs in AP vs. N and ARP vs. N was performed. RESULTS A total of 315 common lncRNAs, 12 common miRNAs and 909 common mRNAs were identified between AP and ARP. Ninety-four specifically expressed lncRNAs, one specifically expressed miRNAs and 286 specifically expressed mRNAs were found in ARP. Some interaction pairs were identified in AP and ARP, such as LUCAT1/NEAT1-hsa-miR-16-2-3p-HK2, CHRM3-AS2-hsa-miR-122-5p/hsa-miR-145-3p-DBH/CACNA1C, CHRM3-AS2-hsa-miR-200a-3p-PDGFD, RBM26-AS1-hsa-miR-200b-3p-FHIT and LINC00891/KTN1-AS1-hsa-miR-143-3p-tyrosine kinase (TXK). ASAP1-IT2/DGCR9-hsa-miR-342-5p-ABCC5/MAP2K6 was the only one specific interaction pair identified in ARP. Four significantly enriched signaling pathways were identified in AP vs. N and ARP vs. N , including amino sugar and nucleotide sugar metabolism (involved NPL and HK2), MAPK signaling pathway (involved CACNA1C and PDGFD), metabolic pathways (involved DBH and FHIT) and leukocyte transendothelial migration (involved TXK). CONCLUSION The identified altered lncRNAs, miRNAs, mRNAs and related signaling pathways may be involved in the AP development and recurrence.
Collapse
|
26
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
27
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
28
|
Cave EM, Bhola S, Crowther NJ, Padoa CJ. The association of vitamin D binding protein levels and genotypes with type 1 diabetes in the black South African population. BMC Endocr Disord 2022; 22:182. [PMID: 35843941 PMCID: PMC9290305 DOI: 10.1186/s12902-022-01097-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Vitamin D deficiency and the vitamin D pathway have previously been associated with type 1 diabetes (T1D). The majority of vitamin D is transported through the blood bound to the vitamin D binding protein (VDBP). Two polymorphisms in the VDBP gene (rs4588 and rs7041) result in different VDBP variants and have been associated with T1D, however the results are not consistent. The association of VDBP levels and its polymorphisms with T1D have not been investigated in the black South African population. Therefore, this study aimed to determine whether rs4588, rs7041 or serum VDBP levels were associated with T1D in this population. METHODS Participants with type 1 diabetes and controls were recruited from the greater Johannesburg area, South Africa. Participants were genotyped for rs4588 and rs7041 using PCR-RFLP and serum VDBP levels were determined by ELISA. RESULTS There was no difference in VDBP allelic or genotypic frequencies between participants with T1D and controls (rs4588 C allele frequency 0.92 vs. 0.94; p = 0.390 and rs7041 T allele frequency 0.95 vs. 0.95; p = 0.890). In univariate analysis, the rs4588 CC genotype was associated with increased serum VDBP levels, however, this association was lost with multivariate analysis. The VDBP genotypes were not associated with any other study variables. In logistic regression analysis, higher VBDP levels were associated with T1D (OR: (95% CI): 6.58 (1.45-29.9); p = 0.015), and within a linear regression analysis, T1D disease status was found to be associated with 0.044 mg/ml higher VDBP levels (p = 0.028). CONCLUSIONS These data suggest that serum VDBP levels are positively associated with the presence of T1D in the African population. Whether VDBP lies in the causal pathway or its elevation is an effect of T1D is uncertain and requires further investigation.
Collapse
Affiliation(s)
- Eleanor M Cave
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sureka Bhola
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - Carolyn J Padoa
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
29
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
30
|
Cridge H, Lim SY, Algül H, Steiner JM. New insights into the etiology, risk factors, and pathogenesis of pancreatitis in dogs: Potential impacts on clinical practice. J Vet Intern Med 2022; 36:847-864. [PMID: 35546513 PMCID: PMC9151489 DOI: 10.1111/jvim.16437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
While most cases of pancreatitis in dogs are thought to be idiopathic, potential risk factors are identified. In this article we provide a state‐of‐the‐art overview of suspected risk factors for pancreatitis in dogs, allowing for improved awareness and detection of potential dog‐specific risk factors, which might guide the development of disease prevention strategies. Additionally, we review important advances in our understanding of the pathophysiology of pancreatitis and potential areas for therapeutic manipulation based thereof. The outcome of pathophysiologic mechanisms and the development of clinical disease is dependent on the balance between stressors and protective mechanisms, which can be evaluated using the critical threshold theory.
Collapse
Affiliation(s)
- Harry Cridge
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sue Yee Lim
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| | - Hana Algül
- Gastrointestinal Cancer and Inflammatory Research Laboratory, Technical University of Munich, Munich, Germany
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| |
Collapse
|
31
|
Allawadhi P, Beyer G, Mahajan UM, Mayerle J. Novel Insights Into Macrophage Diversity During the Course of Pancreatitis. Gastroenterology 2021; 161:1802-1805. [PMID: 34587487 DOI: 10.1053/j.gastro.2021.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Prince Allawadhi
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany
| | - Ujjwal M Mahajan
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany.
| |
Collapse
|
32
|
Li G, Chen H, Liu L, Xiao P, Xie Y, Geng X, Zhang T, Zhang Y, Lu T, Tan H, Li L, Sun B. Role of Interleukin-17 in Acute Pancreatitis. Front Immunol 2021; 12:674803. [PMID: 34594321 PMCID: PMC8476864 DOI: 10.3389/fimmu.2021.674803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by systemic manifestations that are generally associated with a poor prognosis. Many cytokines contribute to pancreatic tissue damage and cause systemic injury. Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has important effects on the immune response and causes interactions between different inflammatory mediators in the AP-related microenvironment. In this literature review, we will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The clinical significance and potential mechanisms of IL-17 on AP deterioration are emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could alleviate the pathogenic process of AP, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in acute pancreatitis.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
33
|
Khan U, Chowdhury S, Billah MM, Islam KMD, Thorlacius H, Rahman M. Neutrophil Extracellular Traps in Colorectal Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22147260. [PMID: 34298878 PMCID: PMC8307027 DOI: 10.3390/ijms22147260] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophils form sticky web-like structures known as neutrophil extracellular traps (NETs) as part of innate immune response. NETs are decondensed extracellular chromatin filaments comprising nuclear and cytoplasmic proteins. NETs have been implicated in many gastrointestinal diseases including colorectal cancer (CRC). However, the regulatory mechanisms of NET formation and potential pharmacological inhibitors in the context of CRC have not been thoroughly discussed. In this review, we intend to highlight roles of NETs in CRC progression and metastasis as well as the potential of targeting NETs during colon cancer therapy.
Collapse
Affiliation(s)
- Umama Khan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Sabrina Chowdhury
- Biochemistry and Biotechnology, North South University, Dhaka 1229, Bangladesh;
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh; (U.K.); (M.M.B.); (K.M.D.I.)
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden;
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28 Malmö, Sweden;
- Correspondence:
| |
Collapse
|
34
|
Zhang Q, Zhou J, Zhou J, Fang RH, Gao W, Zhang L. Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis. Nat Commun 2021; 12:4136. [PMID: 34230486 PMCID: PMC8260623 DOI: 10.1038/s41467-021-24447-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in 'lure and kill' mechanism (denoted 'MΦ-NP(L&K)') for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Qiangzhe Zhang
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Julia Zhou
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jiarong Zhou
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of Nanoengineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|