1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Demirhan HK, Omer Oglou E, Aksoy ZB, Kiran F. Evaluation of the anti-inflammatory, antioxidant and regenerative effects of microbiota-derived postbiotics in human periodontal ligament mesenchymal stromal cells. Clin Oral Investig 2025; 29:262. [PMID: 40263129 PMCID: PMC12014813 DOI: 10.1007/s00784-025-06341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE This study investigates the regenerative and protective effects of postbiotics (cell-free supernatant) derived from the Lactiplantibacillus plantarum EIR/IF-1 strain on human periodontal ligament mesenchymal stromal cells (hPDL-MSCs). MATERIALS AND METHODS hPDL-MSCs were isolated from periodontal ligament tissues (PDL) of wisdom teeth using enzymatic digestion and subsequently characterized through immunophenotyping. The effect of postbiotics on the viability of hPDL-MSCs was assessed using the MTT assay and flow cytometry, while their impact on cell migration was evaluated via the scratch assay. Anti-inflammatory effects of postbiotics were investigated on lipopolysaccharide (LPS, derived from Porphyromonas gingivalis)-stimulated hPDL-MSCs through Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, the antioxidant effects of postbiotics were analyzed in hydrogen peroxide (H₂O₂)-induced hPDL-MSCs by measuring reactive oxygen species (ROS) levels using flow cytometry. The expression of collagen type I (COL1A1) gene was further assessed by quantitative reverse transcription PCR and immunofluorescence staining. RESULTS Treatment with postbiotics (250 µg/mL) significantly increased the viability and migration capability of hPDL-MSCs, while enhancing collagen production for PDL repair. Treatment with postbiotics for 24 h resulted in a 54.53 ± 2.01% reduction in intracellular ROS levels compared to untreated H2O2-induced hPDL-MSCs. Furthermore, postbiotics significantly decreased the production of pro-inflammatory cytokines (IL-8, IL-6, and IL-1β), and increased the anti-inflammatory cytokine IL-10 (2.67-fold) compared to untreated LPS-stimulated hPDL-MSCs. CONCLUSION Our findings indicate that postbiotics exhibit biological activity throughout all stages of the healing process, beginning with the modulation of the inflammatory response to LPS stimulation, followed by the promotion of cell migration, proliferation, and collagen synthesis. Given the unmet need for safe and adjuvant therapeutic approaches that promote comprehensive periodontal regeneration in periodontal diseases, this study presents postbiotics as a promising candidate. CLINICAL RELEVANCE Postbiotics could be integrated into regenerative therapies as a novel bioactive material to improve the healing and regenerative outcomes in periodontal defects by both controlling inflammation and stimulating tissue repair processes.
Collapse
Affiliation(s)
- Hazal Kibar Demirhan
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | - Emine Omer Oglou
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, 06110, Turkey
| | | | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
| |
Collapse
|
3
|
Zhang D, Yang Z, Li Z, Pan S, Zhang Y, Zhang K, Wu D, Kang L, Zhao C, Zhang C, Dong X. Human umbilical cord-derived mesenchymal stem/stromal cells via suprachoroidal injection: A novel approach for experimental uveitis treatment. Exp Eye Res 2025; 255:110373. [PMID: 40185384 DOI: 10.1016/j.exer.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Uveitis is a group of vision-threatening inflammatory diseases, and current treatment options are mainly limited to corticosteroids, which often have side effects and do not address the underlying immune dysregulation. Mesenchymal stem/stromal cells cultivated in vitro have gained attention for their immune-regulating, neurotrophic, and tissue-regenerative properties, making them a promising candidate for treating uveitis. This study investigates the safety and efficacy of human umbilical cord derived mesenchymal stem/stromal cells (HUMSCs) combined with a novel suprachoroidal microinjector for targeted delivery in a rabbit model of experimental uveitis (EU). No significant clinical or histological changes were observed following HUMSCs injection in normal Chinichilla rabbit eyes. In the EU model, treatment with HUMSCs and triamcinolone acetonide (TA) significantly alleviated uveitis symptoms compared to phosphate-buffered saline, with notable improvements in anterior chamber inflammation and vitreous opacity scores. Both treatments also reduced the levels of inflammatory cytokines (TNF-α, VEGF, MIP-1α, IL-17A, bFGF) in the aqueous humor. Histological and immunofluorescence analyses showed decreased inflammatory cell infiltration and microglial activation. Additionally, RNA sequencing revealed that HUMSCs injection downregulated key genes in the Th17 differentiation pathway, which plays a critical role in the pathogenesis of EU. These findings establish the safety and efficacy of suprachoroidal injection of HUMSCs, highlighting their potential as an effective, targeted therapeutic approach for uveitis, with results comparable to TA.
Collapse
Affiliation(s)
- Di Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhen Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zihan Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Sitong Pan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yunqi Zhang
- Beijing Hospital, Peking University Fifth Clinical School of Medicine, Beijing, China
| | - Ke Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Defu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Lin Kang
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China; Beijing Visual Science and Translational Eye Research Institute (BERI), Eye Center of Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China.
| | - Xuran Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Chen S, Yoo JJ, Wang M. The application of tissue engineering strategies for uterine regeneration. Mater Today Bio 2025; 31:101594. [PMID: 40070871 PMCID: PMC11894340 DOI: 10.1016/j.mtbio.2025.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Uterine injuries, particularly damages to endometrium, are usually associated with abnormal menstruation, recurrent miscarriage, pregnancy complications, and infertility. Tissue engineering using cell-based, biomolecule-based, or biomaterial and scaffold-based strategies has emerged as a novel and promising approach for uterine regeneration. Stem cells, biomolecules, and porous scaffolds used alone or, very often, used in combination as a more effective treatment means have shown great potential in promoting uterine regeneration. The reported preclinical studies have indicated that appropriate tissue engineering strategies could safely and effectively reconstruct not only endometrium but also partial or even the whole uterine structure. However, the progress in the uterine regeneration area is slow in comparison to that of regenerating many other body tissues and hence it still remains a great challenge to apply uterine tissue engineering for clinical applications. In this review, conventional treatments for uterine-related diseases are briefly reviewed and discussed first. Subsequently, tissue engineering strategies (cell-based, biomolecule-based, biomaterial and scaffold-based, or their combinations) for uterine repair in preclinical studies and clinical trials are presented and analyzed. Finally, the challenges and perspectives in uterine regeneration are pointed and discussed. Despite various limitations and obstacles, the tissue engineering approach is viable and holds high promise for uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Min Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
5
|
Miłek O, Schwarz K, Miletić A, Reisinger J, Kovar A, Behm C, Andrukhov O. Regulation and functional importance of human periodontal ligament mesenchymal stromal cells with various rates of CD146+ cells. Front Cell Dev Biol 2025; 13:1532898. [PMID: 40123853 PMCID: PMC11925893 DOI: 10.3389/fcell.2025.1532898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) with high expression of CD146 have superior properties for tissue regeneration. However, high variability in the rate of CD146+ cells among donors is observed. In this study, the possible reasons behind this variability in human periodontal ligament MSCs (hPDL-MSCs) were explored. Methods hPDL-MSCs were isolated from 22 different donors, and rates of CD146+ cells were analyzed by flow cytometry. Furthermore, populations with various rates of CD146+ cells were isolated with magnetic separation. The dependency of cell proliferation, viability, cell cycle, and osteogenic differentiation on the rates of CD146+ cells was investigated. Besides, the effects of various factors, like cell density, confluence, and inflammatory environment on the CD146+ rate and expression were analyzed. Results The rate of CD146+ cells exhibited high variability between donors, with the percentage of CD146+ cells ranging from 3% to 67%. Higher percentage of CD146+ cells was associated with higher proliferation, presumably due to the higher percentage of cells in the S-phase, and higher osteogenic differentiation potential. Prolonged cell confluence and higher cell seeding density led to the decline in the rate of CD146+ cells. The surface rate of CD146 in hPDL-MSCs was stimulated by the treatment with interleukin-1β and tumor necrosis factor-α, and inhibited by the treatment with interferon-γ. Conclusion These results suggest that hPDL-MSCs with high rate of CD146+ cells are a promising subpopulation for enhancing the effectiveness of MSC-based regenerative therapies, however the rate of CD146 is affected by various factors, which must be considered for cell propagation and their potential application in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Umrath F, Frick SL, Wendt V, Naros A, Zimmerer R, Alexander D. Inhibition of TGF-β signaling enhances osteogenic potential of iPSC-derived MSCs. Sci Rep 2025; 15:7814. [PMID: 40050624 PMCID: PMC11885616 DOI: 10.1038/s41598-025-89370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most commonly utilized type of stem cell in clinical applications. However, variability in quality and quantity between different tissue sources and donors presents a significant challenge to their use. Induced pluripotent stem cells (iPSCs) are a promising and abundant alternative source of MSCs, offering a potential solution to the limitations of adult MSCs. Nevertheless, a standardized protocol for the differentiation of iPSCs into iPSC-derived mesenchymal stem cells (iMSCs) has yet to be established, as the existing methods vary significantly in terms of complexity, duration, and outcome. Many straightforward methods induce differentiation by culturing iPSCs in MSC media which are supplemented with fetal bovine serum (FBS) or human platelet lysate (hPL), followed by selection of MSC-like cells by passaging. However, in our hands, this approach yielded inconsistent quality of iMSCs, particularly in terms of osteogenic potential and premature senescence. This study examines the impact of the selective TGF-β inhibitor SB431542 on iMSC differentiation, demonstrating that TGF-β inhibition enhances osteogenic potential and reduces premature senescence. Additionally, we present a reliable, xeno-free method for producing high-quality iMSCs that can be adapted for Good Manufacturing Practice (GMP) compliance, thus enhancing the potential for clinical applications.
Collapse
Affiliation(s)
- Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany.
- Department of Orthopedic Surgery, University Hospital Tübingen, Tübingen, Germany.
| | - Sarah-Lena Frick
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Valerie Wendt
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Andreas Naros
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Rüdiger Zimmerer
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| |
Collapse
|
7
|
Yan K, Ma F, Song X, Wang H, Liu P, Zhang J, Jin X, Han P, Zuo X, Kang YJ. Unveiling distinctions between mesenchymal stromal cells and stem cells by single-cell transcriptomic analysis. Heliyon 2025; 11:e42311. [PMID: 40034318 PMCID: PMC11872483 DOI: 10.1016/j.heliyon.2025.e42311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) and stem cells are distinct types of cells, but they are practically undistinguishable by currently commonly-used identification markers. A single-cell transcriptomic analysis was used to solve this problem. There are eight critical genes involved in self-renewal and differentiation, SOX2, NANOG, POU5F1, SFRP2, DPPA4, SALL4, ZFP42 and MYCN expressed in ESCs, iPSCs and adult stem cells (ASCs), but not in MSCs. There are five functional genes of MSCs, TMEM119, FBLN5, KCNK2, CLDN11 and DKK1, which are not expressed in stem cells. Trajectory analysis displayed clear developmental cliffs from ESCs/iPSCs to ASCs and to MSCs. Adipose-derived MSCs, relative to other types of MSCs, exhibit a more consistent and broader spectrum of gene expression for regulatory and excrete function. This study identifies distinction markers between MSCs and stem cells, providing an alternative approach for quality control of MSCs in their propagation and further mechanistic insights into their action.
Collapse
Affiliation(s)
- Kaijing Yan
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610044, China
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Fei Ma
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Xiaoxi Song
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Huizhen Wang
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Pengchong Liu
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Jinlai Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Xin Jin
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Pengfei Han
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| | - Y. James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610044, China
- Tasly Stem Cell Biology Laboratory, Tasly Group, Tianjin, 300410, China
| |
Collapse
|
8
|
Valencia J, Yáñez RM, Muntión S, Fernández-García M, Martín-Rufino JD, Zapata AG, Bueren JA, Vicente Á, Sánchez-Guijo F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front Immunol 2025; 16:1473788. [PMID: 40034706 PMCID: PMC11872697 DOI: 10.3389/fimmu.2025.1473788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed. Methods We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus. Results Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus. Conclusions Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Collapse
Affiliation(s)
- Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M. Yáñez
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sandra Muntión
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| | - María Fernández-García
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorge Diego Martín-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Agustín G. Zapata
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Juan A. Bueren
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Fermín Sánchez-Guijo
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| |
Collapse
|
9
|
Anatskaya OV, Ponomartsev SV, Elmuratov AU, Vinogradov AE. Transcriptome-Wide Insights: Neonatal Lactose Intolerance Promotes Telomere Damage, Senescence, and Cardiomyopathy in Adult Rat Heart. Int J Mol Sci 2025; 26:1584. [PMID: 40004050 PMCID: PMC11855832 DOI: 10.3390/ijms26041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases (CVD) are the primary cause of mortality globally. A significant aspect of CVD involves their association with aging and susceptibility to neonatal programming. These factors suggest that adverse conditions during neonatal development can disrupt cardiomyocyte differentiation, thereby leading to heart dysfunction. This study focuses on the long-term effects of inflammatory and oxidative stress due to neonatal lactose intolerance (NLI) on cardiomyocyte transcriptome and phenotype. Our recent bioinformatic study focused on toggle genes indicated that NLI correlates with the switch off of some genes in thyroid hormone, calcium, and antioxidant signaling pathways, alongside the switch-on/off genes involved in DNA damage response and inflammation. In the presented study, we evaluated cardiomyocyte ploidy in different regions of the left ventricle (LV), complemented by a transcriptomic analysis of genes with quantitative (gradual) difference in expression. Cytophotometric and morphologic analyses of LV cardiomyocytes identified hyperpolyploidy and bridges between nuclei suggesting telomere fusion. Transcriptomic profiling highlighted telomere damage, aging, and chromatin decompaction, along with the suppression of pathways governing muscle contraction and energy metabolism. Echocardiography revealed statistically significant LV dilation and a decrease in ejection fraction. The estimation of survival rates indicated that NLI shortened the median lifespan by approximately 18% (p < 0.0001) compared with the control. Altogether, these findings suggest that NLI may increase susceptibility to cardiovascular diseases by accelerating aging due to oxidative stress and increased telomere DNA damage, leading to hyperpolyploidization and reduced cardiac contractile function. Collectively, our data emphasize the importance of the early identification and management of neonatal inflammatory and metabolic stressors, such as NLI, to mitigate long-term cardiovascular risks.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia; (S.V.P.); (A.E.V.)
| | | | | | | |
Collapse
|
10
|
Wendland K, Koblin L, Stobbe D, Dahms A, Singer D, Bekeschus S, Wesche J, Schoon J, Aurich K. Lyophilized human platelet lysate: manufacturing, quality control, and application. Front Cell Dev Biol 2025; 13:1513444. [PMID: 39931242 PMCID: PMC11807961 DOI: 10.3389/fcell.2025.1513444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background A significant number of platelet concentrates (PCs) is discarded daily in blood banks due to limited shelf life. Human platelet lysate (HPL), derived from expired PCs, has gained attention as an ethical and sustainable cell culture media supplement in biomedical research and cell therapy production. However, HPL is subject to decisive disadvantages such as batch differences and lack of storage stability. To overcome these limitations and to enhance the applicability of HPL, we developed an HPL manufacturing protocol including a lyophilization process. The aim of this study was to investigate the influence of HPL lyophilization on parameters of quality control, including growth factor concentrations and the culture of human mesenchymal stromal cells (hMSCs). Methods We performed a paired comparison of six batches of HPL and lyophilized HPL (L-HPL) regarding the quality parameters pH, total protein, osmolality, sodium, potassium and chloride concentration. Concentrations of 11 growth factors and cytokines were compared between HPL and L-HPL. Additionally, we determined cell yield, proliferation capacity, viability and trilineage differentiation potential of hMSCs following expansion in HPL- and L-HPL-supplemented cell culture media. Results Quantification of the quality parameters revealed non-altered pH, osmolality and potassium concentrations and slightly lower total protein, sodium and chloride concentrations of L-HPL compared to HPL. Growth factor and cytokine concentrations did not differ between HPL and L-HPL. Cell yield, division cycles and viability of hMSCs cultured in either HPL- or L-HPL-containing media were comparable. Cells differentiated in medium containing L-HPL showed a slightly higher capacity for osteogenic differentiation, while adipogenic differentiation and chondrogenic differentiation potentials remained unchanged. Conclusion We successfully developed a method to produce well-applicable L-HPL. The comparison of L-HPL with HPL did not reveal any relevant differences regarding quality control parameters of routine testing, growth factor concentrations and hMSC functionality, demonstrating the suitability of L-HPL as a cell culture supplement. These results emphasize the potential of L-HPL as a sustainable and ethical alternative to animal-derived serum products in biomedical research and drug development.
Collapse
Affiliation(s)
- Kerstin Wendland
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lea Koblin
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Stobbe
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Dahms
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Debora Singer
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Konstanze Aurich
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Nair V, Demitri C, Thankam FG. Competitive signaling and cellular communications in myocardial infarction response. Mol Biol Rep 2025; 52:129. [PMID: 39820809 PMCID: PMC11739196 DOI: 10.1007/s11033-025-10236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress. The overlapping communication pathways of Wnt/β-catenin, Notch, and c-Kit exhibit the involvement of important factors in cell competition in the myocardium. Depending on the effects of these pathways on genetic expression and signal amplification, the proliferative capacities of the previously stated cells that make up the myocardium, amplify or diminish. This creates a distinct classification of "fit" and "unfit" cells. Beyond straightforward traits, the intricate metabolite interactions between neighboring cells unveil a complex battle. Strategic manipulation of these pathways holds translational promise for rapid cardiac recovery post-trauma.
Collapse
Affiliation(s)
- Vishnu Nair
- Department of Molecular, Cell, & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
12
|
Efimenko AY, Shmakova AA, Popov VS, Basalova NA, Vigovskiy MA, Grigorieva OA, Sysoeva VY, Klimovich PS, Khabibullin NR, Tkachuk VA, Rubina KA, Semina EV. Mesenchymal stem/stromal cells alleviate early-stage pulmonary fibrosis in a uPAR-dependent manner. Cell Biol Int 2024; 48:1714-1730. [PMID: 39023281 DOI: 10.1002/cbin.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.
Collapse
Affiliation(s)
- Anastasia Yu Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Institut Gustave Roussy, Université Paris Saclay, UMR 9018, CNRS, Villejuif, France
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Basalova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | | | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
13
|
Kord-Parijaee E, Ferdosi-Shahandashti E, Bakhshandeh B, Pournajaf A. Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics. Tissue Eng Part C Methods 2024; 30:512-521. [PMID: 39165236 DOI: 10.1089/ten.tec.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) stand for a unique source of mesenchymal stem cells (MSCs) isolated from a neural crest origin with potential application in regenerative medicine. However, there are some limitations to the usage of these cells in clinical cell therapy such as reduced cell number and undesirable differentiation of the cell throughout frequent passages. Nowadays, studies have applied manipulation strategies to improve MSCs' effectiveness in clinical therapy. Among all of the materials used for this purpose, there is a growing trend for the use of biomaterials such as probiotic extracts or their conditioned media due to their lower toxicity. In the present study, we utilized extracts from Lactobacillus reuteri and Lactobacillus rhamnosus to assess their potential to enhance the function of GMSCs. We compared the effectiveness of these bacterial extracts to determine their relative efficacy. Bacterial extracts of two lactic acid bacteria were prepared using an ultrasonic homogenizing device. The impact of these bacterial extracts on GMSCs was evaluated through Alizarin Red and Oil Red O staining, cell counting by Trypan Blue staining, and real-time polymerase chain reaction. The findings of our study indicate that the administration of 50 μg/mL L. rhamnosus extract resulted in a greater enhancement of stemness marker expression, osteogenic differentiation, and proliferation of GMSCs compared with an equivalent concentration of L. reuteri extract. Neither of these bacterial extracts revealed any effect on the differentiation of the GMSCs into the adipogenic lineage. These findings suggest that L. rhamnosus extract could be more effective at promoting GMSCs' efficacy in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ensiyeh Kord-Parijaee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abazar Pournajaf
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Nakayama Y, Iwai R. Development of Subcutaneous SSEA3- or SSEA4-Positive Cell Capture Device. Bioengineering (Basel) 2024; 11:585. [PMID: 38927821 PMCID: PMC11200914 DOI: 10.3390/bioengineering11060585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Securing high-quality cell sources is important in regenerative medicine. In this study, we developed a device that can accumulate autologous stem cells in the body. When small wire-assembled molds were embedded in the dorsal subcutaneous pouches of beagles for several weeks, collagen-based tissues with minimal inflammation formed inside the molds. At 3 weeks of embedding, the outer areas of the tissues were composed of immature type III collagen with large amounts of cells expressing SSEA3 or SSEA4 markers, in addition to growth factors such as HGF or VEGF. When separated from the tissues by collagenase treatment, approximately four million cells with a proportion of 70% CD90-positive and 20% SSEA3- or SSEA4-positive cells were recovered from the single mold. The cells could differentiate into bone or cartilage cells. The obtained cell-containing tissues are expected to have potential as therapeutic materials or cell sources in regenerative medicine.
Collapse
Affiliation(s)
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| |
Collapse
|
17
|
Hokmabadi A, Ranjbar E, Alipour F, Ebrahimzadeh-Bideskan A, Afshari JT, Rezaei MM, Shafieian R. Protective effect of dental pulp stem cells' conditioned medium against cisplatin-induced testicular damage in rats. Toxicology 2024; 504:153788. [PMID: 38527609 DOI: 10.1016/j.tox.2024.153788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Cisplatin is a highly effective chemotherapy drug used to treat most solid tumors. However, one of its side effects is testicular toxicity, which can lead to fertility abnormalities. This study investigated the effectiveness of dental pulp mesenchymal stem cells conditioned medium (DPSC-CM) on cisplatin-induced testicular toxicity. In this study, 36 eight-week-old male Wistar rats were randomly divided into three groups equally (n = 12). Group 1 control "CTR", which received normal saline (0.5 ml) intraperitoneally (i.p), group 2 "Cis" which received an intraperitoneal dose of cisplatin (7 mg/kg), and group 3 "Cis+CM" which received an i.p injection of DPSC-CM (0.5 mg/kg) after cisplatin injection. Biochemical, histomorphometric, and histopathological studies were performed on the testis. Our results exhibited that cis administration led to a decline in total body weight, testis weight, diameter, and volume. A decrease in testosterone and IL-6 serum levels, as well as a decrease in IL-6 and TNFα levels, the activity of catalase and SOD enzymes, and an increase in MDA in testicular tissue were detected. Testicular tissue damage was associated with a significant decrease in tube diameter, germinal epithelium height, number of spermatogonia and Sertoli cells, along with a noticeable increase in basement membrane thickness, and perivascular fibrosis. DMSC-CM improved all the mentioned parameters. Taken together, our results demonstrated that DMSC-CM due to its antioxidant and anti-inflammatory properties, could be effective in reversing cisplatin-induced testicular toxicity.
Collapse
Affiliation(s)
- Afsaneh Hokmabadi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Ranjbar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Morteza Rezaei
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Romano IR, D’Angeli F, Gili E, Fruciano M, Lombardo GAG, Mannino G, Vicario N, Russo C, Parenti R, Vancheri C, Giuffrida R, Pellitteri R, Lo Furno D. Melatonin Enhances Neural Differentiation of Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:4891. [PMID: 38732109 PMCID: PMC11084714 DOI: 10.3390/ijms25094891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | | | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (E.G.); (M.F.); (C.V.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy;
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.); (D.L.F.)
| |
Collapse
|
19
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
20
|
Lee YS, Jun YH, Lee J. Oral administration of bone marrow-derived mesenchymal stem cells attenuates intestinal injury in necrotizing enterocolitis. Clin Exp Pediatr 2024; 67:152-160. [PMID: 38369803 PMCID: PMC10915455 DOI: 10.3345/cep.2023.01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a major cause of morbidity in premature infants. However, effective treatment options for NEC are currently lacking. PURPOSE This study aimed to determine the optimal dose of intraperitoneally administered bone marrow-derived mesenchymal stem cells (BM-MSCs) and investigate the therapeutic potential of orally administered BM-MSCs in NEC. METHODS Neonatal mice were fed maternal breast milk for the first 2 days of life. On day 3, the neonatal mice were randomly divided into control, negative control, and BM-MSC-treated groups. Lipopolysaccharide (LPS) was administered for 3 days, and cold stress (4°C, 10 minutes) was applied 3 times a day to induce NEC. High-dose (1×106 cells) or low-dose (1×105 cells) BM-MSCs were administered intraperitoneally 1 or 3 times between days 6 and 8 to treat the NEC. The orally administered group received a low dose of BM-MSCs on day 6. Furthermore, except for the control group, intraepithelial cells (IECs) of the small intestine of neonatal mice were treated with LPS and exposed to 5% O2/95% N2 hypoxic stress for 2 hours. Thereafter, each was treated with BM-MSCs. RESULTS Tissue injury, apoptosis, and inflammatory marker levels were significantly reduced after BM-MSC administration. Oral administration was as effective as intraperitoneal administration, even at a low dose (1×105 cells) of BM-MSCs. The efficacy of high (1×106 cells) or multiple divided doses of BM-MSCs did not differ from that of low-dose treatment. Significantly improved wound healing was observed after BM-MSC administration to injured IECs. CONCLUSION The oral administration of BM-MSCs is a promising treatment option for NEC in infants. Further human studies of BM-MSCs are necessary to determine the optimal dose required to achieve safe and effective outcomes.
Collapse
Affiliation(s)
- Yeong Seok Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
- Department of Medicine, Yesan Public Health Center, Yesan, Korea
| | - Yong Hoon Jun
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Juyoung Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
21
|
Saadh MJ, Alhuthali HM, Gonzales Aníbal O, Asenjo-Alarcón JA, Younus DG, Alhili A, Adhab ZH, Alsalmi O, Gharib AF, Pecho RDC, Akhavan-Sigari R. Mesenchymal stem cells and their extracellular vesicles in urological cancers: Prostate, bladder, and kidney. Cell Biol Int 2024; 48:3-19. [PMID: 37947445 DOI: 10.1002/cbin.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized for their remarkable ability to differentiate into multiple cell types. They are also known to possess properties that can fight cancer, leading to attempts to modify MSCs for use in anticancer treatments. However, MSCs have also been found to participate in pathways that promote tumor growth. Many studies have been conducted to explore the potential of MSCs for clinical applications, but the results have been inconclusive, possibly due to the diverse nature of MSC populations. Furthermore, the conflicting roles of MSCs in inhibiting tumors and promoting tumor growth hinder their adaptation to anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in urological cancers such as bladder, prostate, and renal are not as well established, and data comparing them are still limited. MSCs hold significant promise as a vehicle for delivering anticancer agents and suicide genes to tumors. Presently, numerous studies have concentrated on the products derived from MSCs, such as extracellular vesicles (EVs), as a form of cell-free therapy. This work aimed to review and discuss the current knowledge of MSCs and their EVs in urological cancer therapy.
Collapse
Affiliation(s)
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | | | | | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
22
|
Lalegül-Ülker Ö, Şeker Ş, Elçin AE, Murat Elçin Y. Encapsulation of MSCs in PRP-Derived Fibrin Microbeads. Methods Mol Biol 2024; 2736:85-93. [PMID: 37219812 DOI: 10.1007/7651_2023_484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Platelet-rich plasma (PRP) is a highly concentrated platelet-containing blood plasma that incorporates a significant amount of growth factors and cytokines needed to accelerate the tissue repair process. PRP has been used effectively for many years in the treatment of various wounds by direct injection into the target tissue or impregnation with scaffold or graft materials. Since autologous PRP can be obtained by simple centrifugation, it is an attractive and inexpensive product for use in repairing damaged soft tissues. Cell-based regenerative approaches, which draw attention in the treatment of tissue and organ injuries, are based on the principle of delivering stem cells to damaged sites by various means, including encapsulation. Current biopolymers used in cell encapsulation have some advantages with some limitations. By adjusting its physicochemical properties, PRP-derived fibrin can become an efficient matrix material for encapsulating stem cells. This chapter covers the fabrication protocol of PRP-derived fibrin microbeads and their use to encapsulate stem cells as a general bioengineering platform for prospective regenerative medical applications.
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Şükran Şeker
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Ayşe Eser Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
| | - Yaşar Murat Elçin
- Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
23
|
Primak AL, Skryabina MN, Dzhauari SS, Tkachuk VA, Karagyaur MN. [The secretome of mesenchymal stromal cells as a new hope in the treatment of acute brain tissue injuries]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:83-91. [PMID: 38512099 DOI: 10.17116/jnevro202412403283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy. Particular attention is paid to promising therapeutic approaches, such as therapy using cells and their secretion products: an analysis of the accumulated experimental data, the advantages and limitations of these approaches in the treatment of brain damage was carried out. The review may be of interest both to specialists in the field of neurology, neurosurgery and neurorehabilitation, and to readers who want to learn more about the progress of regenerative biomedicine in the treatment of brain pathologies.
Collapse
Affiliation(s)
- A L Primak
- Lomonosov Moscow State University, Moscow, Russia
| | | | - S S Dzhauari
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
24
|
Suwanmanee G, Tantrawatpan C, Kheolamai P, Paraoan L, Manochantr S. Fucoxanthin diminishes oxidative stress damage in human placenta-derived mesenchymal stem cells through the PI3K/Akt/Nrf-2 pathway. Sci Rep 2023; 13:22974. [PMID: 38151503 PMCID: PMC10752906 DOI: 10.1038/s41598-023-49751-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Placenta-derived mesenchymal stem cells (PL-MSCs) have therapeutic potential in various clinical contexts due to their regenerative and immunomodulatory properties. However, with increasing age or extensive in vitro culture, their viability and function are gradually lost, thus restricting their therapeutic application. The primary cause of this deterioration is oxidative injury from free radicals. Therefore, enhancing cell viability and restoring cellular repair mechanisms of PL-MSCs in an oxidative stress environment are crucial in this context. Fucoxanthin, a carotenoid derived from brown seaweed, demonstrates antioxidant activity by increasing the production of antioxidant enzymes and lowering the levels of reactive oxygen species (ROS). This study aimed to determine whether fucoxanthin protects PL-MSCs from hydrogen peroxide (H2O2)-induced oxidative stress. After characterization, PL-MSCs were co-treated with fucoxanthin and H2O2 for 24 h (co-treatment) or pre-treated with fucoxanthin for 24 h followed by H2O2 for 24 h (pre-treatment). The effects of fucoxanthin on cell viability and proliferation were examined using an MTT assay. The expression of antioxidant enzymes, PI3K/Akt/Nrf-2 and intracellular ROS production were investigated in fucoxanthin-treated PL-MSCs compared to the untreated group. The gene expression and involvement of specific pathways in the cytoprotective effect of fucoxanthin were investigated by high-throughput NanoString nCounter analysis. The results demonstrated that co-treatment and pre-treatment with fucoxanthin restored the viability and proliferative capacity of PL-MSCs. Fucoxanthin treatment increased the expression of antioxidant enzymes in PL-MSCs cultured under oxidative stress conditions and decreased intracellular ROS accumulation. Markedly, fucoxanthin treatment could restore PI3K/Akt/Nrf-2 expression in H2O2-treated PL-MSCs. High-throughput analysis revealed up-regulation of genes involved in cell survival pathways, including cell cycle and proliferation, DNA damage repair pathways, and down-regulation of genes in apoptosis and autophagy pathways. This study demonstrated that fucoxanthin protects and rescues PL-MSCs from oxidative stress damage through the PI3K/Akt/Nrf-2 pathway. Our data provide the supporting evidence for the use of fucoxanthin as an antioxidant cytoprotective agent to improve the viability and proliferation capacity of PL-MSCs both in vitro and in vivo required to increase the effectiveness of MSC expansion for therapeutic applications.
Collapse
Affiliation(s)
- Gunticha Suwanmanee
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
25
|
Fioretti D, Ledda M, Iurescia S, Carletti R, Di Gioia C, Lolli MG, Marchese R, Lisi A, Rinaldi M. Severely Damaged Freeze-Injured Skeletal Muscle Reveals Functional Impairment, Inadequate Repair, and Opportunity for Human Stem Cell Application. Biomedicines 2023; 12:30. [PMID: 38275391 PMCID: PMC10813063 DOI: 10.3390/biomedicines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The regeneration of severe traumatic muscle injuries is an unsolved medical need that is relevant for civilian and military medicine. In this work, we produced a critically sized nonhealing muscle defect in a mouse model to investigate muscle degeneration/healing phases. MATERIALS AND METHODS We caused a freeze injury (FI) in the biceps femoris of C57BL/6N mice. From day 1 to day 25 post-injury, we conducted histological/morphometric examinations, an analysis of the expression of genes involved in inflammation/regeneration, and an in vivo functional evaluation. RESULTS We found that FI activates cytosolic DNA sensing and inflammatory responses. Persistent macrophage infiltration, the prolonged expression of eMHC, the presence of centrally nucleated myofibers, and the presence of PAX7+ satellite cells at late time points and with chronic physical impairment indicated inadequate repair. By looking at stem-cell-based therapeutic protocols of muscle repair, we investigated the crosstalk between M1-biased macrophages and human amniotic mesenchymal stem cells (hAMSCs) in vitro. We demonstrated their reciprocal paracrine effects where hAMSCs induced a shift of M1 macrophages into an anti-inflammatory phenotype, and M1 macrophages promoted an increase in the expression of hAMSC immunomodulatory factors. CONCLUSIONS Our findings support the rationale for the future use of our injury model to exploit the full potential of in vivo hAMSC transplantation following severe traumatic injuries.
Collapse
Affiliation(s)
- Daniela Fioretti
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Mario Ledda
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Sandra Iurescia
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Grazia Lolli
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Rodolfo Marchese
- Department of Clinical Pathology, FBF S. Peter Hospital, 00189 Rome, Italy;
| | - Antonella Lisi
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| | - Monica Rinaldi
- Department Biomedical Sciences, Institute of Translational Pharmacology, National Research Council, Area di Ricerca Roma2 Tor Vergata, 00133 Rome, Italy; (M.L.); (S.I.); (M.G.L.); (A.L.)
| |
Collapse
|
26
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Zayed M, Kook SH, Jeong BH. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023; 12:2413. [PMID: 37830627 PMCID: PMC10571911 DOI: 10.3390/cells12192413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly. The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC). PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion, differentiation, and neural development. Prion protein is expressed on the membrane surface of a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore, due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs are prospective cell treatments in many neurodegenerative conditions, including prion diseases. Regenerative medicine has become a new revolution in disease treatment in recent years, particularly with the introduction of SC therapy. Here, we review the data demonstrating prion diseases' biology and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in prion diseases.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
28
|
Kaushik A, Metkari SM, Ali S, Bhartiya D. Preventing/Reversing Adverse Effects of Endocrine Disruption on Mouse Testes by Normalizing Tissue Resident VSELs. Stem Cell Rev Rep 2023; 19:2525-2540. [PMID: 37561284 DOI: 10.1007/s12015-023-10601-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Reproductive health of men is declining in today's world due to increased developmental exposure to endocrine-disrupting chemicals (EDCs). We earlier reported that neonatal exposure to endocrine disruption resulted in reduced numbers of seminiferous tubules in Stage VIII, decreased sperm count, and infertility along with testicular tumors in 65% of diethylstilbestrol (DES) treated mice. Epigenetic changes due to EDCs, pushed the VSELs out of a quiescent state to enter cell cycle and undergo excessive self-renewal while transition of c-KIT- stem cells into c-KIT + germ cells was blocked due to altered MMR axis (Np95, Pcna, Dnmts), global hypomethylation (reduced expression of 5-methylcytosine) and loss of imprinting at Igf2-H19 and Dlk1-Meg3 loci. The present study was undertaken to firstly show similar defects in FACS sorted VSELs from DES treated testis and to further explore the reversal of these testicular pathologies by (i) oral administration of XAR (a nano-formulation of resveratrol) or (ii) inter-tubular transplantation of mesenchymal stromal cells (MSCs). Similar defects as reported earlier in the testes were evident, based on RNAseq data, on FACS sorted VSELs from DES treated mice. Both strategies were found effective, improved spermatogenesis, increased number of tubules in Stage VIII, normalized numbers of VSELs and c-KIT + cells, improved epigenetic status of VSELs to restore quiescent state, and reduced cancer incidence from 65% after DES to 13.33% and 20% after XAR treatment or MSCs transplantation respectively. Results provide a basis for initiating clinical studies and the study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Subhan Ali
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India.
| |
Collapse
|
29
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
30
|
Sagaradze G, Monakova A, Efimenko A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24119379. [PMID: 37298329 DOI: 10.3390/ijms24119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Adult stem cells maintaining tissue homeostasis and regeneration are tightly regulated by their specific microenvironments or stem cell niches. The dysfunction of niche components may alter the activity of stem cells and ultimately lead to intractable chronic or acute disorders. To overcome this dysfunction, niche-targeting regenerative medicine treatments such as gene, cell, and tissue therapy are actively investigated. Here, multipotent mesenchymal stromal cells (MSCs), and particularly their secretomes, are of high interest due to their potency to recover and reactivate damaged or lost stem cell niches. However, a workflow for the development of MSC secretome-based products is not fully covered by regulatory authorities, and and this issue significantly complicates their clinical translation and has possibly been expressed in a huge number of failed clinical trials. One of the most critical issues in this regard relates to the development of potency assays. In this review, guidelines for biologicals and cell therapies are considered to be applied for the development of potency assays for the MSC secretome-based products that aim for tissue regeneration. Specific attention is paid to their possible effects on stem cell niches and to a spermatogonial stem cell niche in particular.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anna Monakova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| |
Collapse
|
31
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
32
|
Markina E, Andreeva E, Buravkova L. Stromal Lineage Precursors from Rodent Femur and Tibia Bone Marrows after Hindlimb Unloading: Functional Ex Vivo Analysis. Int J Mol Sci 2023; 24:ijms24108594. [PMID: 37239936 DOI: 10.3390/ijms24108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rodent hindlimb unloading (HU) model was developed to elucidate responses/mechanisms of adverse consequences of space weightlessness. Multipotent mesenchymal stromal cells (MMSCs) were isolated from rat femur and tibia bone marrows and examined ex vivo after 2 weeks of HU and subsequent 2 weeks of restoration of load (HU + RL). In both bones, decrease of fibroblast colony forming units (CFU-f) after HU with restoration after HU + RL detected. In CFU-f and MMSCs, levels of spontaneous/induced osteocommitment were similar. MMSCs from tibia initially had greater spontaneous mineralization of extracellular matrix but were less sensitive to osteoinduction. There was no recovery of initial levels of mineralization in MMSCs from both bones during HU + RL. After HU, most bone-related genes were downregulated in tibia or femur MMSCs. After HU + RL, the initial level of transcription was restored in femur, while downregulation persisted in tibia MMSCs. Therefore, HU provoked a decrease of osteogenic activity of BM stromal precursors at transcriptomic and functional levels. Despite unidirectionality of changes, the negative effects of HU were more pronounced in stromal precursors from distal limb-tibia. These observations appear to be on demand for elucidation of mechanisms of skeletal disorders in astronauts in prospect of long-term space missions.
Collapse
Affiliation(s)
- Elena Markina
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Elena Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| |
Collapse
|
33
|
Provitera L, Tomaselli A, Raffaeli G, Crippa S, Arribas C, Amodeo I, Gulden S, Amelio GS, Cortesi V, Manzoni F, Cervellini G, Cerasani J, Menis C, Pesenti N, Tripodi M, Santi L, Maggioni M, Lonati C, Oldoni S, Algieri F, Garrido F, Bernardo ME, Mosca F, Cavallaro G. Human Bone Marrow-Derived Mesenchymal Stromal Cells Reduce the Severity of Experimental Necrotizing Enterocolitis in a Concentration-Dependent Manner. Cells 2023; 12:cells12050760. [PMID: 36899900 PMCID: PMC10000931 DOI: 10.3390/cells12050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gut disease in preterm neonates. In NEC animal models, mesenchymal stromal cells (MSCs) administration has reduced the incidence and severity of NEC. We developed and characterized a novel mouse model of NEC to evaluate the effect of human bone marrow-derived MSCs (hBM-MSCs) in tissue regeneration and epithelial gut repair. NEC was induced in C57BL/6 mouse pups at postnatal days (PND) 3-6 by (A) gavage feeding term infant formula, (B) hypoxia/hypothermia, and (C) lipopolysaccharide. Intraperitoneal injections of PBS or two hBM-MSCs doses (0.5 × 106 or 1 × 106) were given on PND2. At PND 6, we harvested intestine samples from all groups. The NEC group showed an incidence of NEC of 50% compared with controls (p < 0.001). Severity of bowel damage was reduced by hBM-MSCs compared to the PBS-treated NEC group in a concentration-dependent manner, with hBM-MSCs (1 × 106) inducing a NEC incidence reduction of up to 0% (p < 0.001). We showed that hBM-MSCs enhanced intestinal cell survival, preserving intestinal barrier integrity and decreasing mucosal inflammation and apoptosis. In conclusion, we established a novel NEC animal model and demonstrated that hBM-MSCs administration reduced the NEC incidence and severity in a concentration-dependent manner, enhancing intestinal barrier integrity.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Arribas
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Sant’Anna Hospital, 22042 Como, Italy
| | - Giacomo Simeone Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jacopo Cerasani
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Camilla Menis
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Pesenti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, 20126 Milan, Italy
- Revelo Datalabs S.R.L., 20142 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Algieri
- Research and Development Unit, Postbiotica S.R.L., 20123 Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit, BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Maternal and Child Department, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| |
Collapse
|
34
|
Volkova MV, Shen N, Polyanskaya A, Qi X, Boyarintsev VV, Kovaleva EV, Trofimenko AV, Filkov GI, Mezentsev AV, Rybalkin SP, Durymanov MO. Tissue-Oxygen-Adaptation of Bone Marrow-Derived Mesenchymal Stromal Cells Enhances Their Immunomodulatory and Pro-Angiogenic Capacity, Resulting in Accelerated Healing of Chemical Burns. Int J Mol Sci 2023; 24:4102. [PMID: 36835513 PMCID: PMC9963537 DOI: 10.3390/ijms24044102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) provides a powerful tool for the management of multiple tissue injuries. However, poor survival of exogenous cells at the site of injury is a major complication that impairs MSC therapeutic efficacy. It has been found that tissue-oxygen adaptation or hypoxic pre-conditioning of MSCs could improve the healing process. Here, we investigated the effect of low oxygen tension on the regenerative potential of bone-marrow MSCs. It turned out that incubation of MSCs under a 5% oxygen atmosphere resulted in increased proliferative activity and enhanced expression of multiple cytokines and growth factors. Conditioned growth medium from low-oxygen-adapted MSCs modulated the pro-inflammatory activity of LPS-activated macrophages and stimulated tube formation by endotheliocytes to a much higher extent than conditioned medium from MSCs cultured in a 21% oxygen atmosphere. Moreover, we examined the regenerative potential of tissue-oxygen-adapted and normoxic MSCs in an alkali-burn injury model on mice. It has been revealed that tissue-oxygen adaptation of MSCs accelerated wound re-epithelialization and improved the tissue histology of the healed wounds in comparison with normoxic MSC-treated and non-treated wounds. Overall, this study suggests that MSC adaptation to 'physiological hypoxia' could be a promising approach for facilitating skin injuries, including chemical burns.
Collapse
Affiliation(s)
- Marina V. Volkova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Ningfei Shen
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Anna Polyanskaya
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Xiaoli Qi
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Valery V. Boyarintsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Elena V. Kovaleva
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Alexander V. Trofimenko
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Gleb I. Filkov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Alexandre V. Mezentsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Sergey P. Rybalkin
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Mikhail O. Durymanov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| |
Collapse
|
35
|
Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan YF, Abd Aziz NH. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. BIOLOGY 2023; 12:108. [PMID: 36671799 PMCID: PMC9855776 DOI: 10.3390/biology12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Infertility could be associated with a few factors including problems with physical and mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern about the rise of infertility globally, increased focus has been given to its treatment for the last several decades. Traditional assisted reproductive technology (ART) has been the prime option for many years in solving various cases of infertility; however, it contains significant risks and does not solve the fundamental problem of infertility such as genetic disorders. Attention toward the utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-based infertility treatments. This narrative review briefly presents the challenges in the current ART treatment of infertility and the various potential applications of autologous MSCs in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Zahirrah Begam Mohamed Rasheed
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, WPKL, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Research Laboratory of UKM Specialist Children’s Hospital, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
36
|
Mesenchymal stem cells support human vascular endothelial cells to form vascular sprouts in human platelet lysate-based matrices. PLoS One 2022; 17:e0278895. [PMID: 36520838 PMCID: PMC9754269 DOI: 10.1371/journal.pone.0278895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
During tissue regeneration, mesenchymal stem cells can support endothelial cells in the process of new vessel formation. For a functional interaction of endothelial cells with mesenchymal stem cells a vascular inductive microenvironment is required. Using a cellular model for neo-vessel formation, we could show that newly formed vascular structures emanated from the embedded aggregates, consisting of mesenchymal stem cells co-cultured with autologous human umbilical vein endothelial cells, into avascular human platelet lysate-based matrices, bridging distances up to 5 mm to join with adjacent aggregates with the same morphology forming an interconnected network. These newly formed vascular sprouts showed branch points and generated a lumen, as sign of mature vascular development. In two-dimensional culture, we detected binding of mesenchymal stem cells to laser-damaged endothelial cells under flow conditions, mimicking the dynamics in blood vessels. In conclusion, we observed that mesenchymal stem cells can support human umbilical vein endothelial cells in their vitality and functionality. In xeno-free human platelet lysate-based matrices, endothelial cells form complex vascular networks in a primarily avascular scaffold with the aid of mesenchymal stem cells, when co-cultured in three-dimensional spherical aggregates. Under dynamic conditions, representing the flow rate of venous vessel, mesenchymal stem cells preferably bind to damaged endothelial cells presumably assisting in the healing process.
Collapse
|
37
|
Chen YC, Fu YS, Tsai SW, Wu PK, Chen CM, Chen WM, Chen CF. IL-1b in the Secretomes of MSCs Seeded on Human Decellularized Allogeneic Bone Promotes Angiogenesis. Int J Mol Sci 2022; 23:ijms232315301. [PMID: 36499629 PMCID: PMC9737155 DOI: 10.3390/ijms232315301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis plays an important role in the development of bone and bone regeneration to provide the required molecules. Mesenchymal stem cells (MSCs) are pluripotent, self-renewing, and spindle-shaped cells, which can differentiate into multiple lineages such as chondrocytes, osteocytes, and adipocytes. MSCs derived from bone marrow (BMMSCs), adipose tissue (ADMSCs), and Wharton's jelly (UCMSCs) are popular in the field of tissue regeneration. MSCs have been proposed that can promote bone regeneration by enhancing vascularization. In this study, the angiogenic potential of secretomes of undifferentiated and osteo-differentiated BMMSCs, ADMSCs, and UCMSCs seeded on human decellularized allogeneic bone were compared. Human umbilical vein endothelial cells (HUVECs) were treated with MSC secretomes. Cell growth, cell migration, and angiogenesis of HUVECs were analyzed by MTT, wound healing, and tube formation assays. Angiogenic gene expression levels of MSCs were evaluated using real-time quantitative PCR. Antibody neutralization was performed to validate the candidate target. Our study demonstrates that the angiogenic gene expression profile is tissue-dependent and the angiogenic ability of secretomes is independent of the state of differentiation. We also explore that IL-1b is important for MSC angiogenic potential. Taken together, this study proves that IL-1b in the secretomes plays a vital role in angiogenesis.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shang-Wen Tsai
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
39
|
The Use of Mesenchymal Stem Cells in the Complex Treatment of Kidney Tuberculosis (Experimental Study). Biomedicines 2022; 10:biomedicines10123062. [PMID: 36551818 PMCID: PMC9775022 DOI: 10.3390/biomedicines10123062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, the application of mesenchymal stem cells (MSCs) has been recognized as a promising method for treatment of different diseases associated with inflammation and sclerosis, which include nephrotuberculosis. The aim of our study is to investigate the effectiveness of MSCs in the complex therapy of experimental rabbit kidney tuberculosis and to evaluate the effect of cell therapy on the reparative processes. Methods: To simulate kidney tuberculosis, a suspension of the standard strain Mycobacterium tuberculosis H37Rv (106 CFU) was used, which was injected into the cortical layer of the lower pole parenchyma of the left kidney under ultrasound control in rabbits. Anti-tuberculosis therapy (aTBT) was started on the 18th day after infection. MSCs (5 × 107 cells) were transplanted intravenously after the start of aTBT. Results: 2.5 months after infection, all animals showed renal failure. Conducted aTBT significantly reduced the level of albumin, ceruloplasmin, elastase and the severity of disorders in the proteinase/inhibitor system and increased the productive nature of inflammation. A month after MSC transplantation, the level of inflammatory reaction activity proteins decreased, the area of specific and destructive inflammation in kidneys decreased and the formation of mature connective tissue was noted, which indicates the reparative reaction activation.
Collapse
|
40
|
Do XH, Hoang MHT, Vu AT, Nguyen LT, Bui DTT, Dinh DT, Nguyen XH, Than UTT, Mai HT, To TT, Nguyen TNH, Hoang NTM. Differential Cytotoxicity of Curcumin-Loaded Micelles on Human Tumor and Stromal Cells. Int J Mol Sci 2022; 23:ijms232012362. [PMID: 36293215 PMCID: PMC9604151 DOI: 10.3390/ijms232012362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.
Collapse
Affiliation(s)
- Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - My Hanh Thi Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Anh-Tuan Vu
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Lai-Thanh Nguyen
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Dung Thi Thuy Bui
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Duy-Thanh Dinh
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Laboratory for Organogenesis and Regeneration, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, Vin University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Hien Thi Mai
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Thuy Thanh To
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Tra Ngoc Huong Nguyen
- Department of Biology, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Correspondence: ; Tel.: +84-947440249
| |
Collapse
|
41
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
42
|
Mesenchyme Stem Cell-Derived Conditioned Medium as a Potential Therapeutic Tool in Idiopathic Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10092298. [PMID: 36140399 PMCID: PMC9496127 DOI: 10.3390/biomedicines10092298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchyme Stem Cells (MSCs) are the most used types of stem cells in regenerative medicine. Regenerative medicine is a rapidly emerging medicine section that creates new methods to regrow, restore, and replace diseased and damaged tissues, organs, and cells. Scholars have shown a positive correlation between MSCs-based therapies and successful treatment of diseases like cardiac ischemia, cartilage problems, bone diseases, diabetes, and even neurological disorders. Although MSCs have several varying features that make them unique, their immuno-regulatory effects in tissue repair emerge from their secretion of paracrine growth factors, exosomes, and cytokines. These cells secrete a secretome, which has regenerative and reparative properties that lead to injury amelioration, immune modulation, or fibrosis reduction. Recent studies have shown that the administration MCSs derived conditioned medium (MSCs-CM) in acute doses in humans is safe and well-tolerated. Studies from animal models and human clinical trials have also shown that they are efficacious tools in regenerative medicine. In this review, we will explore the therapeutic potential of MSCs-CM in pulmonary fibrosis, with further insight into the treatment of Idiopathic Pulmonary Fibrosis (IPF).
Collapse
|
43
|
Regenerative Medicine: Pharmacological Considerations and Clinical Role in Pain Management. Curr Pain Headache Rep 2022; 26:751-765. [PMID: 36074255 PMCID: PMC9453705 DOI: 10.1007/s11916-022-01078-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Purpose of Review Low back pain affects at least 80% of individuals at some point in their lifetime and is the fifth most common reason for physician visits in the USA. Treatment of an acute episode of LBP generally includes rest, activity modification, physical therapy, NSAIDs, and patient education. Recent Findings A small percentage of patients will develop chronic pain lasting > 6 months duration. Platelet-rich plasma (PRP) is one of the main pillars of regenerative medicine, as its release of bioactive proteins supports the aim of RM of restoring the anatomical function in degenerative conditions. Mesenchymal stem cells (MSCs) are multipotent stem cells, multipotent progenitor cells, or marrow stromal cells found in various body tissues, including bone marrow, lung, and adipose tissue. Evidence from well-designed case–control or cohort studies for the use of PRP and MSCs in lumbar facet joint, lumbar epidural, and sacroiliac joint injections is currently described as level IV evidence. PRP and MSCs are used autogenously to help facilitate the healing process, and their injection has been studied in the long-term management of discogenic low back pain. PRP has been compared to steroid injections in the sacroiliac joint for chronic low back pain, with favorable results. MSCs have also been shown to be useful in intervertebral disc regeneration and treatment of chronic low back pain associated with degenerative disc disease. Summary Currently, the price for these treatments is extremely high, and thus the standard of care continues to be steroid injections and other treatments. This could change, however, with more robust data and research on the safety and long-term efficacy of biologics compared to other interventional management.
Collapse
|
44
|
Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int J Mol Sci 2022; 23:ijms23169414. [PMID: 36012677 PMCID: PMC9409465 DOI: 10.3390/ijms23169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic male infertility is a highly prevalent diagnosis in developed countries with no specific treatment options. Although empirical medical treatment is widely used to restore male fertility, its efficacy remains limited and inconclusively proven. Therefore, the development of novel therapeutic approaches in this field is a high-priority task. Since the failure of testicular microenvironment components might be involved in the pathogenesis of idiopathic male infertility, application of mesenchymal stromal cells (MSCs) as well as the MSC secretome is worth considering. Previously, we showed that the intratesticular injection of MSCs or the MSC secretome led to the recovery of spermatogenesis at least through replenishing the testicular microenvironment and its maintenance by MSC-secreted paracrine factors. However, the clinical use of such products has been limited to single trials to date. This may be due to the lack of relevant potency tests reflecting mechanisms of action of the MSC secretome in male infertility models. Based on the presumptive MSC secretome mode of action on the testicular microenvironment, we suggest a novel approach to test the potential efficacy of the MSC secretome for idiopathic male infertility treatment. It represents a potency assay based on evaluation of testosterone production by isolated Leydig cells. We demonstrated that the MSC secretome stimulated testosterone secretion by Leydig cells in vitro. We then hypothesized that among the major factors of the MSC secretome, vascular endothelial growth factor (VEGF) could be responsible for the observed effects, which we confirmed by the revealed correlation between the extent of stimulated testosterone production and VEGF concentration in the MSC secretome. The pilot results obtained from the doxorubicin-induced male infertility murine model also indicate the important impact of VEGF in the MSC secretome’s regenerative effects. Utilizing VEGF as a surrogate factor, a novel approach to study the potency of MSC secretome-based products for idiopathic male infertility treatment is suggested. Further validation is required for its implementation into the biopharmaceutical manufacturing process.
Collapse
|
45
|
Sagaradze G, Monakova A, Basalova N, Popov V, Balabanyan V, Efimenko A. Regenerative medicine for male infertility: A focus on stem cell niche injury models. Biomed J 2022; 45:607-614. [PMID: 35123107 PMCID: PMC9486244 DOI: 10.1016/j.bj.2022.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023] Open
Abstract
Stem and progenitor cells located within stem cell niches maintain the renewal and regeneration of tissues and organs throughout the life of an adult organism. Stem cell niche component dysfunction might alter the activity of stem cells and ultimately lead to the development of difficult-to-treat chronic or acute disorders. Of note, some cases of idiopathic male infertility, a highly prevalent diagnosis with no specific treatment options, might be associated with a spermatogonial stem cell(SSC) niche disturbance. To overcome this disease entity, approaches aiming at launching the regeneration of an altered stem cell niche are worth considering. Particularly, mesenchymal stromal cells (MSCs) or their secretome might fulfill this task due to their promising contribution in recovering injured stem cell niches. However, the successful application of MSC-based treatment is limited by the uncovered mechanisms of action of MSCs and their secretome. Specific animal models should be developed or adapted to reveal the role of MSCs and their secretome in a stem cell niche recovery. In this review, in a bid to consider MSCs and their secretome as a therapeutic regenerative approach for idiopathic male infertility we focus on the rationale of SSC niche injury modeling.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Monakova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Balabanyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
46
|
Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res Ther 2022; 13:301. [PMID: 35841027 PMCID: PMC9284747 DOI: 10.1186/s13287-022-02990-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose The fundamental cause of intrauterine adhesions (IUAs) is the destruction and reduction in stem cells in endometrial basal layer, resulting in endometrial reconstruction very difficult. The purpose of this study was to investigate the effects and underlying mechanism of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) on the endometrial reconstruction after transplantation. Methods hUCB-MSCs were isolated and identified by flow cytometry, osteogenic, adipogenic and chondrogenic differentiation assays. The rabbit IUA models were established and set five groups (control, 14/28th day after surgery, estrogen and hUCB-MSCs treatment). The number of endometrial glands and the fibrosis rate were evaluated using HE and Masson staining, respectively. Endometrial proliferation, angiogenesis and inflammation were evaluated by immunohistochemical staining of ER, Ki-67and TGF-β1, respectively. Single-cell RNA sequencing (scRNA-seq) was applied to explore the cell differentiation trajectory after hUCB-MSCs transplanted into IUA endometrium. Finally, molecular mechanism of hUCB-MSCs repairing damaged endometrium was investigated by RNA sequencing, qRT-PCR and Western blot assays. Results After transplantation of the hUCB-MSCs, the increase in endometrial gland number, estrogen receptor (ER) and Ki-67 expression, and the decrease in fibrosis rate and TGF-β expression (P < 0.05), suggested the endometrial repair, angiogenesis and inflammatory suppression. The therapeutic effect of hUCB-MSCs was significantly improved compared with 28th day after surgery and estrogen group. ScRNA-seq demonstrated that the transplanted hUCB-MSCs can trans-differentiate into endometrial cells: epithelial, fibroblast and macrophage. RNA sequencing of six IUA samples combined with qRT-PCR and Western blot assays further revealed that hUCB-MSCs may regulate Th17/Treg balance through NF-κB signaling, thus inhibiting the immune response of damaged endometrium. Conclusions Our study demonstrated that hUCB-MSCs can repair damaged endometrium through trans-differentiation, immunomodulatory capacities and NF-κB signaling, suggesting the treatment value of hUCB-MSCs in IUA. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02990-1.
Collapse
|
47
|
Papadopoulou A, Kalodimou VE, Mavrogonatou E, Karamanou K, Yiacoumettis AM, Panagiotou PN, Pratsinis H, Kletsas D. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life 2022; 74:969-981. [PMID: 35833571 DOI: 10.1002/iub.2659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Radiotherapy is widely used for the treatment of breast cancer. However, we have shown that ionizing radiation can provoke premature senescence in breast stromal cells. In particular, breast stromal fibroblasts can become senescent after irradiation both in vitro and in vivo and they express an inflammatory phenotype and an altered profile of extracellular matrix components, thus facilitating tumor progression. Adipose-derived stem cells (ASCs) represent another major component of the breast tissue stroma. They are multipotent cells and due to their ability to differentiate in multiple cell lineages they play an important role in tissue maintenance and repair in normal and pathologic conditions. Here, we investigated the characteristics of human breast ASCs that became senescent prematurely after their exposure to ionizing radiation. We found decreased expression levels of the specific mesenchymal cell surface markers CD105, CD73, CD44, and CD90. In parallel, we demonstrated a significantly reduced expression of transcription factors regulating osteogenic (i.e., RUNX2), adipogenic (i.e., PPARγ), and chondrogenic (i.e., SOX9) differentiation; this was followed by an analogous reduction in their differentiation capacity. Furthermore, they overexpress inflammatory markers, that is, IL-6, IL-8, and ICAM-1, and a catabolic phenotype, marked by the reduction of collagen type I and the increase of MMP-1 and MMP-13 expression. Finally, we detected changes in proteoglycan expression, for example, the upregulation of syndecan 1 and syndecan 4 and the downregulation of decorin. Notably, all these alterations, when observed in the breast stroma, represent poor prognostic factors for tumor development. In conclusion, we showed that ionizing radiation-mediated prematurely senescent human breast ASCs have a decreased differentiation potential and express specific changes adding to the formation of a permissive environment for tumor growth.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki E Kalodimou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantina Karamanou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Andreas M Yiacoumettis
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Petros N Panagiotou
- Department of Plastic Surgery and Burns Unit, KAT General Hospital of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
48
|
Li YE, Ajoolabady A, Dhanasekaran M, Ren J. Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacol Res 2022; 182:106334. [PMID: 35779816 PMCID: PMC9242686 DOI: 10.1016/j.phrs.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.
Collapse
Affiliation(s)
- Yiran E Li
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Park JS, Kim D, Hong HS. Priming with a Combination of FGF2 and HGF Restores the Impaired Osteogenic Differentiation of Adipose-Derived Stem Cells. Cells 2022; 11:cells11132042. [PMID: 35805126 PMCID: PMC9265418 DOI: 10.3390/cells11132042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Classical aging-associated diseases include osteoporosis, diabetes, hypertension, and arthritis. Osteoporosis causes the bone to become brittle, increasing fracture risk. Among the various treatments for fractures, stem cell transplantation is currently in the spotlight. Poor paracrine/differentiation capacity, owing to donor age or clinical history, limits efficacy. Lower levels of fibroblast growth factor 2 (FGF2) and hepatocyte growth factor (HGF) are involved in cell repopulation, angiogenesis, and bone formation in the elderly ADSCs (ADSC-E) than in the young ADSCs (ADSC-Y). Here, we study the effect of FGF2/HGF priming on the osteogenic potential of ADSC-E, determined by calcium deposition in vitro and ectopic bone formation in vivo. Age-induced FGF2/HGF deficiency was confirmed in ADSCs, and their supplementation enhanced the osteogenic differentiation ability of ADSC-E. Priming with FGF2/HGF caused an early shift of expression of osteogenic markers, including Runt-related transcription factor 2 (Runx-2), osterix, and alkaline phosphatase (ALP) during osteogenic differentiation. FGF2/HGF priming also created an environment favorable to osteogenesis by facilitating the secretion of bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). Bone tissue of ADSC-E origin was observed in mice transplanted with FGF/HGF-primed ADSC-E. Collectively, FGF2/HGF priming could enhance the bone-forming capacity in ADSC-E. Therefore, growth factor-mediated cellular priming can enhance ADSC differentiation in bone diseases and thus contributes to the increased efficacy in vivo.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Doyoung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-958-1828
| |
Collapse
|
50
|
Jabbarpour Z, Aghayan S, Arjmand B, Fallahzadeh K, Alavi-Moghadam S, Larijani B, Aghayan HR. Xeno-free protocol for GMP-compliant manufacturing of human fetal pancreas-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:268. [PMID: 35729640 PMCID: PMC9210668 DOI: 10.1186/s13287-022-02946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been suggested as an appropriate source for diabetes cell-based therapies. The high proliferation and differentiation capacity of fetal MSCs and the role of fetal pancreatic-derived MSCs (FPMSCs) in islet generation make them good candidates for diabetes treatment. To manufacture clinical-grade MSCs, animal-free culture protocols are preferred. The current study aimed to establish a xeno-free/GMP-compliant protocol for FPMSCs manufacturing. The focus was on the effects of fetal bovine serum (FBS) replacement with pooled human serum (HS). MATERIAL AND METHODS FPMSCs were isolated and expanded from the pancreas of legally aborted fetuses with few modifications in our previously established protocol. The cells were expanded in two different culture media, including DMEM supplemented with 10% FBS or 10% pooled HS. A side-by-side comparison was made to evaluate the effect of each serum on proliferation rate, cell cycle, senescence, multi-lineage differentiation capacity, immunophenotype, and tumorigenesis of FPMSCs. RESULTS Flow cytometry analysis and three-lineage differentiation ability demonstrated that fibroblast-like cells obtained from primary culture had MSCs' characteristics. The FPMSCs displayed similar morphology and CD markers expression in both sera. HS had a higher proliferative effect on FPMSCs than FBS. In FBS, the cells reached senescence earlier. In addition to normal karyotypes and anchorage-dependent growth, in vivo tumor formation was not seen. CONCLUSION Our results demonstrated that HS was a better serum alternative than FBS for in vitro expansion of FPMSCs. Compared with FBS, HS increased FPMSCs' proliferation rate and decreased their senescence. In conclusion, HS can effectively replace FBS for clinical-grade FPMSCs manufacturing.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Khadijeh Fallahzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran.
| |
Collapse
|