1
|
Vroman R, de Lichtervelde L, Singh Dolt K, Robertson G, Kriek M, Barbato M, Cholewa-Waclaw J, Kunath T, Downey P, Zagnoni M. A high-fidelity microfluidic platform reveals retrograde propagation as the main mechanism of α-Synuclein spread in human neurons. NPJ Parkinsons Dis 2025; 11:80. [PMID: 40254612 PMCID: PMC12009960 DOI: 10.1038/s41531-025-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
α-Synuclein (αSyn) is a major component of Lewy bodies and Lewy neurites, which are a pathological hallmark of Parkinson's disease (PD). Pathologically aggregated forms of αSyn can spread along neurites and induce the misfolding of normal αSyn. To elucidate how αSyn pathology propagates between brain areas, we developed a novel in vitro microfluidic platform to study the intracellular transport of preformed fibrils and the induction and spread of αSyn aggregates. Patient-derived midbrain dopaminergic (mDA) neurons were cultured in microfluidic devices designed to maintain unidirectional axonal connections between fluidically isolated mDA neuronal cultures for over 3 months. Using αSyn preformed fibrils to induce Lewy-like pathology, we found that anterograde spread of αSyn fibrils was slow and occurred at low levels, while retrograde spread was significantly more efficient. This is in line with observations in animal models and shows that the platform provides an innovative new tool for studying PD in vitro.
Collapse
Affiliation(s)
- Rozan Vroman
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Graham Robertson
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Michela Barbato
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Patrick Downey
- UCB Biopharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Michele Zagnoni
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Kim JJ, Hebisch M, Kwak SS, Zheng M, Nuli S, Bae JS, Brand E, Tanzi RE, Irimia D, Kim DY. Cryopreserving 3D cell culture models of Alzheimer's disease in hydrogel microbeads. Sci Rep 2025; 15:12543. [PMID: 40216831 PMCID: PMC11992178 DOI: 10.1038/s41598-025-94810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Long-term preservation of fully differentiated human neurons poses a longstanding challenge in neuroscience research. Numerous cellular disease models have been established using cultured human neuronal cells, including our three-dimensional (3D) human neural cell culture model of Alzheimer's disease (AD). However, the absence of a reliable method for preserving fully differentiated human neural cell cultures for a long time has hindered the sharing and standardization of these models. To address this critical limitation, we focused on cryopreservation, which is the gold standard for long-term preservation, and combined this with three key technological advancements. First, we employed parallelized microfluidic devices for the efficient generation of 3D cell cultures within uniform hydrogel microbeads (~ 220 μm), which facilitate the rapid exchange of media ingredients and cryoprotectants. Second, we implemented a cytophobic microwell system to safeguard neuron-encapsulated microbeads from fusion and aggregation. Third, we developed a novel inducible AD cell model optimized for cryopreservation and AD drug testing. We have successfully maintained encapsulated control and AD neural progenitor cells in microwells during differentiation for 12 days. Notably, fully differentiated human neural cells can be cryopreserved within Matrigel microbeads while retaining intact and mature neuronal processes, exhibiting no signs of damage to neurites following freeze/thaw cycles. Furthermore, we have demonstrated the successful cryopreservation, thawing, and induction of pathogenic Amyloid-β 42 (Aβ42) generation in fully differentiated AD neural progenitor cells. Our study offers a solution for one of the major challenges in neuroscience research, utilizing porous hydrogel microbead structures to facilitate rapid delivery of cryoprotectants and protect complex neuronal structures without undergoing damaging cell dissociation steps. The inducible "3D human microbead model of AD" enhances the speed, efficacy, and reproducibility of AD drug screening.
Collapse
Affiliation(s)
- Jae Jung Kim
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard School of Medicine, Shriners Children's Boston, Boston, MA, 02129, USA
- Department of Chemical Engineering, Hongik University, Seoul, 04066, South Korea
| | - Matthias Hebisch
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Monica Zheng
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shreya Nuli
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jun-Seok Bae
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Emma Brand
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard School of Medicine, Shriners Children's Boston, Boston, MA, 02129, USA.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Dobruskin M, Toner G, Kander R. Optimizing cryopreservation strategies for scalable cell therapies: A comprehensive review with insights from iPSC-derived therapies. Biotechnol Prog 2024; 40:e3504. [PMID: 39268839 DOI: 10.1002/btpr.3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Off-the-shelf cell therapies hold significant curative potential for conditions, such as Parkinson's disease and heart failure. However, these therapies face unique cryopreservation challenges, especially when novel routes of administration, such as intracerebral or epicardial injection, require cryopreservation media that are safe for direct post-thaw administration. Current practices often involve post-thaw washing to remove dimethyl sulfoxide (Me2SO), a cytotoxic cryoprotective agent, which complicates the development and clinical translation of off-the-shelf therapies. To overcome these obstacles, there is a critical need to explore Me2SO-free cryopreservation methods. While such methods typically yield suboptimal post-thaw viability with conventional slow-freeze protocols, optimizing freezing profiles offers a promising strategy to enhance their performance. This comprehensive review examines the latest advancements in cryopreservation techniques across various cell therapy platforms, with a specific case study of iPSC-derived therapies used to illustrate the scalability challenges. By identifying key thermodynamic and biochemical phenomena that occur during freezing, this review aims to identify cell-type independent approaches to improve the efficiency and efficacy of cryopreservation strategies, thereby supporting the widespread adoption and clinical success of off-the-shelf cell therapies.
Collapse
Affiliation(s)
- Michael Dobruskin
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Geoffrey Toner
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Ronald Kander
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| |
Collapse
|
4
|
Whye D, Norabuena EM, Srinivasan GR, Wood D, Polanco TJ, Makhortova NR, Sahin M, Buttermore ED. A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs. Curr Protoc 2024; 4:e70022. [PMID: 39400999 DOI: 10.1002/cpz1.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Erika M Norabuena
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Gayathri Rajaram Srinivasan
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Taryn J Polanco
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Narasimhan K, Hakami A, Comini G, Patton T, Newland B, Dowd E. Cryogel microcarriers loaded with glial cell line-derived neurotrophic factor enhance the engraftment of primary dopaminergic neurons in a rat model of Parkinson's disease. J Neural Eng 2024; 21:056011. [PMID: 39231475 DOI: 10.1088/1741-2552/ad7761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective.Cryogel microcarriers made of poly(ethylene glycol) diacrylate and 3-sulfopropyl acrylate have the potential to act as delivery vehicles for long-term retention of neurotrophic factors (NTFs) in the brain. In addition, they can potentially enhance stem cell-derived dopaminergic (DAergic) cell replacement strategies for Parkinson's disease (PD), by addressing the limitations of variable survival and poor differentiation of the transplanted precursors due to neurotrophic deprivation post-transplantation in the brain. In this context, to develop a proof-of-concept, the aim of this study was to determine the efficacy of glial cell line-derived NTF (GDNF)-loaded cryogel microcarriers by assessing their impact on the survival of, and reinnervation by, primary DAergic grafts after intra-striatal delivery in Parkinsonian rat brains.Approach.Rat embryonic day 14 ventral midbrain cells were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, or with GDNF, or with unloaded cryogel microcarriers, or with GDNF-loaded cryogel microcarriers.Post-mortem, GDNF and tyrosine hydroxylase immunostaining were used to identify retention of the delivered GDNF within the implanted cryogel microcarriers, and to identify the transplanted DAergic neuronal cell bodies and fibres in the brains, respectively.Main results.We found an intact presence of GDNF-stained cryogel microcarriers in graft sites, indicating their ability for long-term retention of the delivered GDNF up to 4 weeks in the brain. This resulted in an enhanced survival (1.9-fold) of, and striatal reinnervation (density & volume) by, the grafted DAergic neurons, in addition to an enhanced sprouting of fibres within graft sites.Significance.This data provides an important proof-of-principle for the beneficial effects of neurotrophin-loaded cryogel microcarriers on engraftment of cells in the context of cell replacement therapy in PD. For clinical translation, further studies will be needed to assess the impact of cryogel microcarriers on the survival and differentiation of stem cell-derived DAergic precursors in Parkinsonian rat brains.
Collapse
Affiliation(s)
- Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Comini G, Kelly R, Jarrin S, Patton T, Narasimhan K, Pandit A, Drummond N, Kunath T, Dowd E. Survival and maturation of human induced pluripotent stem cell-derived dopaminergic progenitors in the parkinsonian rat brain is enhanced by transplantation in a neurotrophin-enriched hydrogel. J Neural Eng 2024; 21:024002. [PMID: 38479026 DOI: 10.1088/1741-2552/ad33b2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.
Collapse
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Rachel Kelly
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Jarrin
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Tommy Patton
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Nicola Drummond
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilís Dowd
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Cardo LF, Monzón-Sandoval J, Li Z, Webber C, Li M. Single-Cell Transcriptomics and In Vitro Lineage Tracing Reveals Differential Susceptibility of Human iPSC-Derived Midbrain Dopaminergic Neurons in a Cellular Model of Parkinson's Disease. Cells 2023; 12:2860. [PMID: 38132179 PMCID: PMC10741976 DOI: 10.3390/cells12242860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.
Collapse
Affiliation(s)
- Lucia F. Cardo
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Jimena Monzón-Sandoval
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Zongze Li
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Caleb Webber
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
8
|
Alasmar S, Huang J, Chopra K, Baumann E, Aylsworth A, Hewitt M, Sandhu JK, Tauskela JS, Ben RN, Jezierski A. Improved Cryopreservation of Human Induced Pluripotent Stem Cell (iPSC) and iPSC-derived Neurons Using Ice-Recrystallization Inhibitors. Stem Cells 2023; 41:1006-1021. [PMID: 37622655 PMCID: PMC10631806 DOI: 10.1093/stmcls/sxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Collapse
Affiliation(s)
- Salma Alasmar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Karishma Chopra
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph S Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
9
|
Sheta R, Teixeira M, Idi W, Oueslati A. Optimized protocol for the generation of functional human induced-pluripotent-stem-cell-derived dopaminergic neurons. STAR Protoc 2023; 4:102486. [PMID: 37515763 PMCID: PMC10400954 DOI: 10.1016/j.xpro.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Generation of functional human dopaminergic (DA) neurons from human induced pluripotent stem cells (hiPSCs) is a crucial tool for modeling dopamine-related human diseases and cell replacement therapies. Here, we present a protocol to combine neuralizing transcription factor (NGN2) programming and DA patterning to differentiate hiPSCs into mature and functional induced DA (iDA) neurons. We describe steps from transduction of hiPSCs and neural induction through to differentiation and maturation of near-pure, fully functional iDA neurons within 3 weeks. For complete details on the use and execution of this protocol, please refer to Sheta et al. (2022).1.
Collapse
Affiliation(s)
- Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
10
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
11
|
Monogue B, Chen Y, Sparks H, Behbehani R, Chai A, Rajic AJ, Massey A, Kleinschmidt-Demasters BK, Vermeren M, Kunath T, Beckham JD. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue. Brain 2022; 145:3622-3636. [PMID: 35858675 PMCID: PMC10233298 DOI: 10.1093/brain/awac192] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023] Open
Abstract
The protein alpha-synuclein is predominantly expressed in neurons and is associated with neurodegenerative diseases like Parkinson's disease and dementia with Lewy bodies. However, the normal function of alpha-synuclein in neurons is not clearly defined. We have previously shown that mice lacking alpha-synuclein expression exhibit markedly increased viral growth in the brain, increased mortality and increased neuronal cell death, implicating alpha-synuclein in the neuronal innate immune response. To investigate the mechanism of alpha-synuclein-induced immune responses to viral infections in the brain, we challenged alpha-synuclein knockout mice and human alpha-synuclein knockout dopaminergic neurons with RNA virus infection and discovered that alpha-synuclein is required for neuronal expression of interferon-stimulated genes. Furthermore, human alpha-synuclein knockout neurons treated with type 1 interferon failed to induce a broad range of interferon stimulated genes, implying that alpha-synuclein interacts with type 1 interferon signalling. We next found that alpha-synuclein accumulates in the nucleus of interferon-treated human neurons after interferon treatment and we demonstrated that interferon-mediated phosphorylation of STAT2 is dependent on alpha-synuclein expression in human neurons. Next, we found that activated STAT2 co-localizes with alpha-synuclein following type 1 interferon stimulation in neurons. Finally, we found that brain tissue from patients with viral encephalitis expresses increased levels of phospho-serine129 alpha-synuclein in neurons. Taken together, our results show that alpha-synuclein expression supports neuron-specific interferon responses by localizing to the nucleus, supporting STAT2 activation, co-localizing with phosphorylated STAT2 in neurons and supporting expression of interferon-stimulated genes. These data provide a novel mechanism that links interferon activation and alpha-synuclein function in neurons.
Collapse
Affiliation(s)
- Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yixi Chen
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hadrian Sparks
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ranya Behbehani
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew Chai
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alexander J Rajic
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aaron Massey
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - B K Kleinschmidt-Demasters
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Departments of Pathology and Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthieu Vermeren
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine and the School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Sheta R, Teixeira M, Idi W, Pierre M, de Rus Jacquet A, Emond V, Zorca CE, Vanderperre B, Durcan TM, Fon EA, Calon F, Chahine M, Oueslati A. Combining NGN2 programming and dopaminergic patterning for a rapid and efficient generation of hiPSC-derived midbrain neurons. Sci Rep 2022; 12:17176. [PMID: 36229560 PMCID: PMC9562300 DOI: 10.1038/s41598-022-22158-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023] Open
Abstract
The use of human derived induced pluripotent stem cells (hiPSCs) differentiated to dopaminergic (DA) neurons offers a valuable experimental model to decorticate the cellular and molecular mechanisms of Parkinson's disease (PD) pathogenesis. However, the existing approaches present with several limitations, notably the lengthy time course of the protocols and the high variability in the yield of DA neurons. Here we report on the development of an improved approach that combines neurogenin-2 programming with the use of commercially available midbrain differentiation kits for a rapid, efficient, and reproducible directed differentiation of hiPSCs to mature and functional induced DA (iDA) neurons, with minimum contamination by other brain cell types. Gene expression analysis, associated with functional characterization examining neurotransmitter release and electrical recordings, support the functional identity of the iDA neurons to A9 midbrain neurons. iDA neurons showed selective vulnerability when exposed to 6-hydroxydopamine, thus providing a viable in vitro approach for modeling PD and for the screening of small molecules with neuroprotective proprieties.
Collapse
Affiliation(s)
- Razan Sheta
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Maxime Teixeira
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marion Pierre
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada
| | - Aurelie de Rus Jacquet
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Vincent Emond
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
| | - Cornelia E. Zorca
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoît Vanderperre
- grid.38678.320000 0001 2181 0211Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC Canada ,Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Montreal, Canada
| | - Thomas M. Durcan
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A. Fon
- grid.14709.3b0000 0004 1936 8649McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Frédéric Calon
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - Mohamed Chahine
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, 2601, rue de La Canardière, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- grid.411081.d0000 0000 9471 1794CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada ,grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
13
|
Hiramatsu S, Morizane A, Kikuchi T, Doi D, Yoshida K, Takahashi J. Cryopreservation of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurospheres for Clinical Application. JOURNAL OF PARKINSON'S DISEASE 2022; 12:871-884. [PMID: 34958047 PMCID: PMC9108593 DOI: 10.3233/jpd-212934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pluripotent stem cell (PSC)-derived dopaminergic (DA) neurons are an expected source of cell therapy for Parkinson's disease. The transplantation of cell aggregates or neurospheres, instead of a single cell suspension has several advantages, such as keeping the 3D structure of the donor cells and ease of handling. For this PSC-based therapy to become a widely available treatment, cryopreservation of the final product is critical in the manufacturing process. However, cryopreserving cell aggregates is more complicated than cryopreserving single cell suspensions. Previous studies showed poor survival of the DA neurons after the transplantation of cryopreserved fetal ventral-mesencephalic tissues. OBJECTIVE To achieve the cryopreservation of induced pluripotent stem cell (iPSC)-derived DA neurospheres toward clinical application. METHODS We cryopreserved iPSC-derived DA neurospheres in various clinically applicable cryopreservation media and freezing protocols and assessed viability and neurite extension. We evaluated the population and neuronal function of cryopreserved cells by the selected method in vitro. We also injected the cells into 6-hydroxydopamine (6-OHDA) lesioned rats, and assessed their survival, maturation and function in vivo. RESULTS The iPSC-derived DA neurospheres cryopreserved by Proton Freezer in the cryopreservation medium Bambanker hRM (BBK) showed favorable viability after thawing and had equivalent expression of DA-specific markers, dopamine secretion, and electrophysiological activity as fresh spheres. When transplanted into 6-OHDA-lesioned rats, the cryopreserved cells survived and differentiated into mature DA neurons, resulting in improved abnormal rotational behavior. CONCLUSION These results show that the combination of BBK and Proton Freezer is suitable for the cryopreservation of iPSC-derived DA neurospheres.
Collapse
Affiliation(s)
- Satoe Hiramatsu
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Regenerative and Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenji Yoshida
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Regenerative and Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Elabi OF, Pass R, Sormonta I, Nolbrant S, Drummond N, Kirkeby A, Kunath T, Parmar M, Lane EL. Human Embryonic Stem Cell-Derived Dopaminergic Grafts Alleviate L-DOPA Induced Dyskinesia. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1881-1896. [PMID: 35466951 DOI: 10.3233/jpd-212920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND First-in-human studies to test the efficacy and safety of human embryonic stem cells (hESC)-derived dopaminergic cells in the treatment of Parkinson's disease (PD) are imminent. Pre-clinical studies using hESC-derived dopamine neuron transplants in rat models have indicated that the benefits parallel those shown with fetal tissue but have thus far failed to consider how ongoing L-DOPA administration might impact on the graft. OBJECTIVE To determine whether L-DOPA impacts on survival and functional recovery following grafting of hESC-derived dopaminergic neurons. METHODS Unilateral 6-OHDA lesioned rats were administered with either saline or L-DOPA prior to, and for 18 weeks following surgical implantation of dopaminergic neural progenitors derived from RC17 hESCs according to two distinct protocols in independent laboratories. RESULTS Grafts from both protocols elicited reduction in amphetamine-induced rotations. Reduced L-DOPA-induced dyskinesia preceded the improvement in amphetamine-induced rotations. Furthermore, L-DOPA had no effect on overall survival (HuNu) or dopaminergic neuron content of the graft (TH positive cells) but did lead to an increase in the number of GIRK2 positive neurons. CONCLUSION Critically, we found that L-DOPA was not detrimental to graft function, potentially enhancing graft maturation and promoting an A9 phenotype. Early improvement of L-DOPA-induced dyskinesia suggests that grafts may support the handling of exogenously supplied dopamine earlier than improvements in amphetamine-induced behaviours indicate. Given that one of the protocols will be employed in the production of cells for the European STEM-PD clinical trial, this is vital information for the management of patients and achieving optimal outcomes following transplantation of hESC-derived grafts for PD.
Collapse
Affiliation(s)
- Osama F Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Rachel Pass
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Irene Sormonta
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Nicola Drummond
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neuroscience and The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Sun Y, Feng L, Liang L, Stacey GN, Wang C, Wang Y, Hu B. Neuronal cell-based medicines from pluripotent stem cells: Development, production, and preclinical assessment. Stem Cells Transl Med 2021; 10 Suppl 2:S31-S40. [PMID: 34724724 PMCID: PMC8560198 DOI: 10.1002/sctm.20-0522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Brain degeneration and damage is difficult to cure due to the limited endogenous repair capability of the central nervous system. Furthermore, drug development for treatment of diseases of the central nervous system remains a major challenge. However, it now appears that using human pluripotent stem cell-derived neural cells to replace degenerating cells provides a promising cell-based medicine for rejuvenation of brain function. Accordingly, a large number of studies have carried out preclinical assessments, which have involved different neural cell types in several neurological diseases. Recent advances in animal models identify the transplantation of neural derivatives from pluripotent stem cells as a promising path toward the clinical application of cell therapies [Stem Cells Transl Med 2019;8:681-693; Drug Discov Today 2019;24:992-999; Nat Med 2019;25:1045-1053]. Some groups are moving toward clinical testing in humans. However, the difficulty in selection of valuable critical quality criteria for cell products and the lack of functional assays that could indicate suitability for clinical effect continue to hinder neural cell-based medicine development [Biologicals 2019;59:68-71]. In this review, we summarize the current status of preclinical studies progress in this area and outline the biological characteristics of neural cells that have been used in new developing clinical studies. We also discuss the requirements for translation of stem cell-derived neural cells in examples of stem cell-based clinical therapy.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
| | - Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lingmin Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Glyn N Stacey
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- International Stem Cell Banking Initiative, Barley, Hertfordshire, UK
| | - Chaoqun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Testing the Stability of Drug Resistance on Cryopreserved, Gene-Engineered Human Induced Pluripotent Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14090919. [PMID: 34577619 PMCID: PMC8466661 DOI: 10.3390/ph14090919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for in vitro modelling of diseases with broad application in drug development or toxicology testing. These assays usually require large quantities of hiPSC, which can entail long-term storage via cryopreservation of the same cell charges. However, it is essential that cryopreservation does not oppose durable changes on the cells. In this project, we characterize one parameter of functionality of one that is well established in the field, in a different research context, an applied hiPSC line (iPS11), namely their resistance to a medium size library of chemo interventions (>160 drugs). We demonstrate that cells, before and after cryopreservation, do not change their relative overall drug response phenotypes, as defined by identification of the top 20 interventions causing dose-dependent reduction of cell growth. Importantly, also frozen cells that are exogenously enforced for stable overexpression of oncogenes myelocytomatosis (cMYC) or tumor protein 53 mutation (TP53R175H), respectively, are not changed in their relative top 20 drugs response compared to their non-frozen counterparts. Taken together, our results support iPSCs as a reliable in vitro platform for in vitro pharmacology, further raising hopes that this technology supports biomarker-associated drug development. Given the general debate on ethical and economic problems associated with the reproducibly crisis in biomedicine, our results may be of interest to a wider audience beyond stem cell research.
Collapse
|
17
|
Sarrafha L, Parfitt GM, Reyes R, Goldman C, Coccia E, Kareva T, Ahfeldt T. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells. STAR Protoc 2021; 2:100463. [PMID: 33997803 PMCID: PMC8086141 DOI: 10.1016/j.xpro.2021.100463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here, we describe a high-throughput 3D differentiation protocol for deriving midbrain dopaminergic neurons from human pluripotent stem cells. The use of organoids has become prevalent in disease modeling, but there is a high demand for more homogeneous cultures. Our approach is advantageous for large-scale production of uniform midbrain organoids that can be maintained in diverse formats, and our reporters allow for sorting of dopaminergic neurons. The maturing long-term organoid cultures can be used as a model for the entire midbrain. For complete details on the use and execution of this protocol, please refer to Ahfeldt et al. (2020).
Collapse
Affiliation(s)
- Lily Sarrafha
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Gustavo M. Parfitt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Elena Coccia
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA
- Department of Neurology at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|