1
|
Miłek O, Schwarz K, Miletić A, Reisinger J, Kovar A, Behm C, Andrukhov O. Regulation and functional importance of human periodontal ligament mesenchymal stromal cells with various rates of CD146+ cells. Front Cell Dev Biol 2025; 13:1532898. [PMID: 40123853 PMCID: PMC11925893 DOI: 10.3389/fcell.2025.1532898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) with high expression of CD146 have superior properties for tissue regeneration. However, high variability in the rate of CD146+ cells among donors is observed. In this study, the possible reasons behind this variability in human periodontal ligament MSCs (hPDL-MSCs) were explored. Methods hPDL-MSCs were isolated from 22 different donors, and rates of CD146+ cells were analyzed by flow cytometry. Furthermore, populations with various rates of CD146+ cells were isolated with magnetic separation. The dependency of cell proliferation, viability, cell cycle, and osteogenic differentiation on the rates of CD146+ cells was investigated. Besides, the effects of various factors, like cell density, confluence, and inflammatory environment on the CD146+ rate and expression were analyzed. Results The rate of CD146+ cells exhibited high variability between donors, with the percentage of CD146+ cells ranging from 3% to 67%. Higher percentage of CD146+ cells was associated with higher proliferation, presumably due to the higher percentage of cells in the S-phase, and higher osteogenic differentiation potential. Prolonged cell confluence and higher cell seeding density led to the decline in the rate of CD146+ cells. The surface rate of CD146 in hPDL-MSCs was stimulated by the treatment with interleukin-1β and tumor necrosis factor-α, and inhibited by the treatment with interferon-γ. Conclusion These results suggest that hPDL-MSCs with high rate of CD146+ cells are a promising subpopulation for enhancing the effectiveness of MSC-based regenerative therapies, however the rate of CD146 is affected by various factors, which must be considered for cell propagation and their potential application in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Valencia J, Yáñez RM, Muntión S, Fernández-García M, Martín-Rufino JD, Zapata AG, Bueren JA, Vicente Á, Sánchez-Guijo F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front Immunol 2025; 16:1473788. [PMID: 40034706 PMCID: PMC11872697 DOI: 10.3389/fimmu.2025.1473788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed. Methods We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus. Results Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus. Conclusions Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Collapse
Affiliation(s)
- Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M. Yáñez
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sandra Muntión
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| | - María Fernández-García
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorge Diego Martín-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Agustín G. Zapata
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Juan A. Bueren
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Fermín Sánchez-Guijo
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| |
Collapse
|
4
|
Strecanska M, Sekelova T, Smolinska V, Kuniakova M, Nicodemou A. Automated Manufacturing Processes and Platforms for Large-scale Production of Clinical-grade Mesenchymal Stem/ Stromal Cells. Stem Cell Rev Rep 2025; 21:372-389. [PMID: 39546186 PMCID: PMC11872983 DOI: 10.1007/s12015-024-10812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) hold immense potential for regenerative medicine due to their remarkable regenerative and immunomodulatory properties. However, their therapeutic application requires large-scale production under stringent regulatory standards and Good Manufacturing Practice (GMP) guidelines, presenting significant challenges. This review comprehensively evaluates automated manufacturing processes and platforms for the scalable production of clinical-grade MSCs. Various large-scale culture vessels, including multilayer flasks and bioreactors, are analyzed for their efficacy in MSCs expansion. Furthermore, automated MSCs production platforms, such as Quantum® Cell Expansion System, CliniMACS Prodigy®, NANT001/ XL, CellQualia™, Cocoon® Platform, and Xuri™ Cell Expansion System W25 are reviewed and compared as well. We also underscore the importance of optimizing culture media specifically emphasizing the shift from fetal bovine serum to humanized or serum-free alternatives to meet GMP standards. Moreover, advances in alternative cryopreservation methods and controlled-rate freezing systems, that offer promising improvements in MSCs preservation, are discussed as well. In conclusion, advancing automated manufacturing processes and platforms is essential for realizing the full potential of MSCs-based regenerative medicine and accomplishing the increasing demand for cell-based therapies. Collaborative initiatives involving industry, academia, and regulatory bodies are emphasized to accelerate the translation of MSCs-based therapies into clinical practice.
Collapse
Affiliation(s)
- Magdalena Strecanska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Tatiana Sekelova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia.
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia.
- GAMMA-ZA, Kollarova 8, Trencin, 911 01, Slovakia.
| |
Collapse
|
5
|
Li J, Guo Z, Wu Z, Wang Y, Wang Z, Guo M, Zhang P. Highly precise strategy of polygalacturonic acid microcarriers functionalized with zwitterions and specific peptides for MSC screening. Carbohydr Polym 2024; 345:122564. [PMID: 39227103 DOI: 10.1016/j.carbpol.2024.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Microcarriers for large-scale cell culture have a broader prospect in cell screening compared with the traditional high cost, low efficiency, and cell damaging methods. However, the equal biological affinity to cells has hindered its application. Therefore, based on the antifouling strategy of zwitterionic polymer, we developed a cell-specific microcarrier (CSMC) for shielding non-target cells and capturing mesenchymal stem cells (MSCs), which has characteristics of high biocompatibility, low background noise and high precision. Briefly, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and glycidyl methacrylate were grafted onto polygalacturonic acid, respectively. The former built a hydration layer through solvation to provide an excellent antifouling surface, while the latter provided active sites for the click reaction with sulfhydryl-modified cell-specific peptides, resulting in rapid immobilization of peptides. This method is applicable to the vast majority of polysaccharide materials. The accurate capture ratio of MSCs by CSMC in a mixed multicellular environment is >95 % and the proliferation rate of MSCs on microcarriers is satisfactory. In summary, this grafting strategy of bioactive components lays a foundation for the application of polysaccharide materials in the biomedical field, and the specific adhesive microcarriers also open up new ideas for the development of stem cell screening as well.
Collapse
Affiliation(s)
- Jianchao Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenxv Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zongliang Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peibiao Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Wang X, Wang Q, Xia Z, Yang Y, Dai X, Zhang C, Wang J, Xu Y. Mesenchymal stromal cell therapies for traumatic neurological injuries. J Transl Med 2024; 22:1055. [PMID: 39578845 PMCID: PMC11583761 DOI: 10.1186/s12967-024-05725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
Improved treatment options are urgently needed for neurological injuries resulting from trauma or iatrogenic events causing long-term disabilities that severely impact patients' quality of life. In vitro and animal studies have provided promising proof-of-concept examples of regenerative therapies using mesenchymal stromal cells (MSC) for a wide range of pathological conditions. Over the previous decade, various MSC-based therapies have been investigated in clinical trials to treat traumatic neurological injuries. However, while the safety and feasibility of MSC treatments has been established, the patient outcomes in these studies have not demonstrated significant success in the translation of MSC regenerative therapy for the treatment of human brain and spinal cord injuries. Herein, we have reviewed the literature and ongoing registered trials on the application of MSC for the treatment of traumatic brain injury, traumatic spinal cord injury, and peripheral nerve injury. We have focused on the shortcomings and technological hurdles that must be overcome to further advance clinical research to phase 3 trials, and we discuss recent advancements that represent potential solutions to these obstacles to progress.
Collapse
Affiliation(s)
- Xiujuan Wang
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China
| | - Qian Wang
- HELP Therapeutics Co., Ltd, No. 568 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, E12 Avenida da Universidade, Macau, 519000, SAR, China
| | - Ziyao Xia
- Department of Ophthalmology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ying Yang
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China
| | - Xunan Dai
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Jiaxian Wang
- HELP Therapeutics Co., Ltd, No. 568 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, E12 Avenida da Universidade, Macau, 519000, SAR, China.
| | - Yongsheng Xu
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
7
|
Zhang Q, Shan Y, Shen L, Ni Q, Wang D, Wen X, Xu H, Liu X, Zeng Z, Yang J, Wang Y, Liu J, Su Y, Wei N, Wang J, Sun L, Wang G, Zhou F. Renal remodeling by CXCL10-CXCR3 axis-recruited mesenchymal stem cells and subsequent IL4I1 secretion in lupus nephritis. Signal Transduct Target Ther 2024; 9:325. [PMID: 39557841 PMCID: PMC11574084 DOI: 10.1038/s41392-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have shown potential as a therapeutic option for lupus nephritis (LN), particularly in patients refractory to conventional treatments. Despite extensive translational research on MSCs, the precise mechanisms by which MSCs migrate to the kidney and restore renal function remain incompletely understood. Here, we aim to clarify the spatiotemporal characteristics of hUC-MSC migration into LN kidneys and their interactions with host cells in microenvironment. This study elucidates that the migration of hUC-MSCs to the LN kidney is driven by elevated levels of CXCL10, predominantly produced by glomerular vascular endothelial cells through the IFN-γ/IRF1-KPNA4 pathway. Interestingly, the blockade of CXCL10-CXCR3 axis impedes the migration of hUC-MSCs to LN kidney and negatively impacts therapeutic outcomes. Single cell-RNA sequencing analysis underscores the importance of this axis in mediating the regulatory effects of hUC-MSCs on the renal immune environment. Furthermore, hUC-MSCs have been observed to induce and secrete interleukin 4 inducible gene 1 (IL4I1) in response to the microenvironment of LN kidney, thereby suppressing Th1 cells. Genetically ablating IL4I1 in hUC-MSCs abolishes their therapeutic effects and prevents the inhibition of CXCR3+ Th1 cell infiltration into LN kidneys. This study provides valuable insights into the significant involvement of CXCL10-CXCR3 axis in hUC-MSC migration to the LN kidneys and the subsequent remodeling of renal immune microenvironment. Regulating the CXCL10-CXCR3 axis and IL4I1 secretion may be developed as a novel therapeutic strategy to improve treatment outcomes of LN.
Collapse
Affiliation(s)
- Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Luping Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Ni
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zeng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingwen Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukai Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Melo WGGD, Bezerra DDO, Silva ERDDFS, Campêlo CB, Carvalho MAMD, Argôlo Neto NM. Behavioral dynamics of medicinal signaling cells from porcine bone marrow in long-term culture. Can J Physiol Pharmacol 2024; 102:672-679. [PMID: 39189463 DOI: 10.1139/cjpp-2023-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Medicinal signaling cells (MSC) hold promise for regenerative medicine due to their ability to repair damaged tissues. However, their effectiveness can be affected by how long they are cultured in the lab. This study investigated how passage number influences key properties for regenerative medicine of pig bone marrow MSC. The medicinal signiling cells derived from pig bone marrow (BM-MSC) were cultured in D-MEM High Glucose supplemented with 15% foetal bovine serum until the 25th passage and assessed their growth, viability, ability to differentiate into different cell types (plasticity), and cell cycle activity. Our findings showed that while the cells remained viable until the 25th passage, their ability to grow and differentiate declined after the 5th passage. Additionally, cells in later passages spent more time in a resting phase, suggesting reduced activity. In conclusion, the number of passages is a critical factor for maintaining ideal MSC characteristics. From the 9th passage BM-MSC exhibit decline in proliferation, differentiation potential, and cell cycle activity. Given this, it is possible to suggest that the use of 5th passage cells is the most suitable for therapeutic applications.
Collapse
Affiliation(s)
- Wanderson Gabriel Gomes de Melo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Dayseanny de Oliveira Bezerra
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Camile Benício Campêlo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Napoleão Martins Argôlo Neto
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
9
|
Muniz TDTP, Rossi MC, de Vasconcelos Machado VM, Alves ALG. Mesenchymal Stem Cells and Tissue Bioengineering Applications in Sheep as Ideal Model. Stem Cells Int 2024; 2024:5176251. [PMID: 39465229 PMCID: PMC11511598 DOI: 10.1155/2024/5176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The most common technologies in tissue engineering include growth factor therapies; metal implants, such as titanium; 3D bioprinting; nanoimprinting for ceramic/polymer scaffolds; and cell therapies, such as mesenchymal stem cells (MSCs). Cell therapy is a promising alternative to organ grafts and transplants in the treatment of numerous musculoskeletal diseases. MSCs have increasingly been used in generative medicine due to their specialized self-renewal, immunomodulation, multiplication, and differentiation properties. To further expand the potential of these cells in tissue repair, significant efforts are currently dedicated to the production of biomaterials with desirable short- and long-term biophysical properties that can aid the differentiation and expansion of MSCs. Biomaterials support MSC differentiation by modulating their characteristics, such as composition, mechanical properties, porosity, and topography. This review aimed to describe recent MSC approaches, including those associated with biomaterials, from experimental, clinical, and preclinical studies with sheep models.
Collapse
Affiliation(s)
- Talita D'Paula Tavares Pereira Muniz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Mariana Correa Rossi
- Materials Engineering Department (DEMa), São Carlos Federal University (UFSCar), 13.565-905, São Carlos, Sao Paulo, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Veterinary Surgery and Animal Reproduction, Imaging Diagnostic Sector, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
10
|
Rodríguez-Sosa MR, Del Castillo LM, Belarra A, Zapata AG, Alfaro D. The lack of EphB3 receptor prevents bone loss in mouse models of osteoporosis. J Bone Miner Res 2024; 39:1008-1024. [PMID: 38739682 DOI: 10.1093/jbmr/zjae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7. To clarify the underlying molecular mechanisms, we found that the lack of EphB3 signaling alters the genetic profile of differentiating MSCs, reducing the expression of many inhibitory molecules and antagonists of the BMP signaling pathway, and increasing Bmp7 expression, a robust bone inductor. Then, to confirm the osteogenic role of EphB3 in vivo, we studied the condition of 2 mouse models of induced bone loss (ovariectomy or long-term glucocorticoid treatment). Interestingly, in both models, both WT and EphB2-/- mice equally developed the disease but EphB3-/- mice did not exhibit the typical bone loss, nor an increase in urine Ca2+ or blood serum CTX-1. This phenotype in EphB3-KO mice could be due to their significantly higher proportions of osteoprogenitor cells and preosteoblasts, and their lower number of osteoclasts, as compared with WT and EphB2-KO mice. Thus, we conclude that EphB3 acts as a negative regulator of the osteogenic differentiation, and its absence prevents bone loss in mice subjected to ovariectomy or dexamethasone treatment.
Collapse
Affiliation(s)
- Mariano R Rodríguez-Sosa
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
- Research Institute Hospital "12 de Octubre" (imas12), C.P. 28041, Madrid, Spain
| | - Luis M Del Castillo
- Reproductive Medicine Research Group, IVI Foundation, Health Research Institute Hospital La Fe (IIS La Fe), C.P. 46026, Valencia, Spain
| | - Adrián Belarra
- Micro-CT Laboratory, Central Radioactive Facility, Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| | - David Alfaro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, C.P. 28040, Madrid, Spain
| |
Collapse
|
11
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
12
|
Atia GA, Rashed F, Taher ES, Cho SG, Dayem AA, Soliman MM, Shalaby HK, Mohammed NA, Taymour N, El-Sherbiny M, Ebrahim E, Ramadan MM, Abdelkader A, Abdo M, Aldarmahi AA, Atwa AM, Bafail DA, Abdeen A. Challenges of therapeutic applications and regenerative capacities of urine based stem cells in oral, and maxillofacial reconstruction. Biomed Pharmacother 2024; 177:117005. [PMID: 38945084 DOI: 10.1016/j.biopha.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt.
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea
| | - Magdalen M Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez 43512, Egypt
| | - Nourelhuda A Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21582, Saudi Arabia; National Guard, Health Affairs, King Abdullah International Medical Research Centre, Jeddah 21582, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Duaa A Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 11829, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
13
|
Huang Y, Hu R, Liu Z, Geng Y, Li F, Song Y, Ma W, Dong H, Xu L, Zhang M, Song K. Bushen Huoxue recipe ameliorates ovarian function via promoting BMSCs proliferation and homing to ovaries in POI mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155630. [PMID: 38678952 DOI: 10.1016/j.phymed.2024.155630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a tricky puzzle in the field of female reproductive medicine. Bushen Huoxue recipe (BHR), a traditional Chinese medicine compound based on the combination of kidney-tonifying and blood-activating functions, has shown excellent efficacy in improving female irregular menstruation, POI, and infertility. However, the potential mechanism of BHR in POI treatment has not yet been elucidated. Bone marrow mesenchymal stem cells (BMSCs), a type of pluripotent stem cells, have received increasing attention for their significant role in improving ovarian function and restoring fertility in women with POI. PURPOSE This study aimed to evaluate the therapeutic effect of BHR in POI mice and explore its potential mechanism. METHODS A POI mouse model was established with a single intraperitoneal injection of 120 mg/kg cyclophosphamide (CTX). Distilled water, BHR, or dehydroepiandrosterone was administered via gavage for 28 consecutive days. The effect of BHR on ovarian function in POI mice was evaluated by assessing the estrous cycle, ovarian morphology, follicular development, hormone levels, and angiogenesis. The proportion of BMSCs in bone marrow, peripheral blood, and ovary was analyzed via flow cytometry, and the level of molecules mediating migration and homing in ovary was measured. Cell viability assays, scratch healing assays and transwell migration assays were performed to explore the effect of BHR on BMSCs proliferation and migration in vitro, and its potential mechanism was explored. RESULTS BHR significantly ameliorated estrous cycle disorders, hormone disorders, ovarian morphology, ovarian microvascular formation, and ovarian reserve in POI mice. Meanwhile, the number of BMSCs number in the bone marrow, peripheral blood, and ovary was apparently increased. Of note, BHR increased the level of hepatocyte growth factor (HGF)/cellular mesenchymal epithelial transition factor (cMET) and stromal cell-derived factor-1(SDF-1)/CXC chemokine receptor 4 (CXCR4) in the ovaries of POI mice. Moreover, BHR treatment promoted BMSCs proliferation and migration in vitro, with a significant increase in the level of proliferating cell nuclear antigen, cMET, and CXCR4. CONCLUSIONS BHR effectively restored ovarian reserve, ovarian function, and ovarian angiogenesis in CTX-induced POI mice. In addition, BHR promoted BMSCs proliferation, migration, and homing to the ovary, which was mediated by the SDF-1/CXCR4 and HGF/cMET signaling axis. Finally, the amelioration of ovarian reserve and ovarian function in CTX-induced POI mice by BHR may be related to its promotion of endogenous BMSCs proliferation and homing.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lijun Xu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mingmin Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Kunkun Song
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
15
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
16
|
Abdel-Tawab MS, Fouad H, Sedeak AY, Doudar NA, Rateb EE, Faruk E, Reyad HR. Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma. Mol Biol Rep 2024; 51:740. [PMID: 38874802 DOI: 10.1007/s11033-024-09613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC. METHODS, AND RESULTS The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology. CONCLUSIONS In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.
Collapse
Affiliation(s)
- Marwa Sayed Abdel-Tawab
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Hanan Fouad
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, POB 12613, Cairo, Egypt
- Faculty of Medicine, Galala University, POB 43711, Attaka, Suez Governorate, Egypt
| | - Ahmed Yahia Sedeak
- Anatomy and Embryology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Doudar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Ezzat Rateb
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hoda Ramadan Reyad
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Lee S, Tejesvi MV, Hurskainen E, Aasmets O, Plaza-Díaz J, Franks S, Morin-Papunen L, Tapanainen JS, Ruuska TS, Altmäe S, Org E, Salumets A, Arffman RK, Piltonen TT. Gut bacteriome and mood disorders in women with PCOS. Hum Reprod 2024; 39:1291-1302. [PMID: 38614956 PMCID: PMC11145006 DOI: 10.1093/humrep/deae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
STUDY QUESTION How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S Lee
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - M V Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - E Hurskainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - O Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - J Plaza-Díaz
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - S Franks
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of and University of Fribourg, Fribourg, Switzerland
| | - T S Ruuska
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - S Altmäe
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - E Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - A Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - R K Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Garcia SG, Sanroque-Muñoz M, Clos-Sansalvador M, Font-Morón M, Monguió-Tortajada M, Borràs FE, Franquesa M. Hollow fiber bioreactor allows sustained production of immortalized mesenchymal stromal cell-derived extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:201-220. [PMID: 39698535 PMCID: PMC11648467 DOI: 10.20517/evcna.2023.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 12/20/2024]
Abstract
Aim: Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been reported to hold great potential as cell-free therapies due to their low immunogenicity and minimal toxicity. However, the large doses of MSC-EVs that are required for their clinical application highlight the urgency of finding a large-scale system for MSC-EV manufacture. In this study, we aimed to set up a hollow fiber bioreactor system for the continuous homogenous production of functional and high-quality MSC-EVs. Methods: MSC lines from two donors were immortalized (iMSC) and inoculated into hollow fiber bioreactors. Throughout 4 weeks, conditioned medium was daily harvested. iMSC-EVs were purified and characterized for content, immunophenotype, size, and functionality and compared to 2D cultured iMSC. Results: The iMSC inoculated into the bioreactor remained viable during the whole culture period, and they maintained their MSC phenotype at the end of EV production. Our results showed that the bioreactor system allows to obtain 3D-cultured iMSC-derived EVs (3D-EVs) that are comparable to flask (2D)-cultured iMSC-derived EVs (2D-EVs) in terms of protein and lipid content, size, and phenotype. We also confirm that 3D-derived EVs exhibit comparable functionality to 2D-EVs, showing pro-angiogenic potential in a dose-dependent manner. Conclusions: These findings suggest that setting up a hollow fiber bioreactor system inoculating immortalized MSC lines facilitates the large-scale, functional, and high-quality production of iMSC-EVs. Our results emphasize the great potential of this production methodology to standardize EV production in the pursuit of clinical applications.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Biochemistry and Cell Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Marta Monguió-Tortajada
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| |
Collapse
|
19
|
Gil-Chinchilla JI, Bueno C, Martínez CM, Ferrández-Múrtula A, García-Hernández AM, Blanquer M, Molina-Molina M, Zapata AG, Sackstein R, Moraleda JM, García-Bernal D. Optimizing cryopreservation conditions for use of fucosylated human mesenchymal stromal cells in anti-inflammatory/immunomodulatory therapeutics. Front Immunol 2024; 15:1385691. [PMID: 38605955 PMCID: PMC11007032 DOI: 10.3389/fimmu.2024.1385691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Carlos Bueno
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Carlos M. Martínez
- Experimental Pathology Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia, Murcia, Spain
| | - Ana Ferrández-Múrtula
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Ana M. García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Medicine, University of Murcia, Murcia, Spain
| | - Mar Molina-Molina
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | - Robert Sackstein
- Department of Translational Medicine, and the Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Medicine, University of Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Biochemistry, Molecular Biology, and Immunology, University of Murcia, Murcia, Spain
| |
Collapse
|
20
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
21
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
22
|
Kheder RK, Darweesh O, Hussen BM, Abdullah SR, Basiri A, Taheri M. Mesenchymal stromal cells (MSCs) as a therapeutic agent of inflammatory disease and infectious COVID-19 virus: live or dead mesenchymal? Mol Biol Rep 2024; 51:295. [PMID: 38340168 DOI: 10.1007/s11033-023-09174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
The COVID-19 infection is a worldwide disease that causes numerous immune-inflammatory disorders, tissue damage, and lung dysfunction. COVID-19 vaccines, including those from Pfizer, AstraZeneca, and Sinopharm, are available globally as effective interventions for combating the disease. The severity of COVID-19 can be most effectively reduced by mesenchymal stromal cells (MSCs) because they possess anti-inflammatory activity and can reverse lung dysfunction. MSCs can be harvested from various sources, such as adipose tissue, bone marrow, peripheral blood, inner organs, and neonatal tissues. The regulation of inflammatory cytokines is crucial in inhibiting inflammatory diseases and promoting the presence of anti-inflammatory cytokines for infectious diseases. MSCs have been employed as therapeutic agents for tissue damage, diabetes, autoimmune diseases, and COVID-19 patients. Our research aimed to determine whether live or dead MSCs are more suitable for the treatment of COVID-19 patients. Our findings concluded that dead MSCs, when directly administered to the patient, offer advantages over viable MSCs due to their extended presence and higher levels of immune regulation, such as T-reg, B-reg, and IL-10, compared to live MSCs. Additionally, dead and apoptotic MSCs are likely to be more readily captured by monocytes and macrophages, prolonging their presence compared to live MSCs.
Collapse
Affiliation(s)
- Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Scineces, Tehran, Iran
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
23
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
24
|
Wu Y, Iwasaki K, Hashimoto Y. Induction of mesenchymal stem cell (MSC) differentiation from iPS cells using MSC medium. Dent Mater J 2024; 43:20-27. [PMID: 38008439 DOI: 10.4012/dmj.2023-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Mesenchymal stem cells (MSCs) and induced pluripotent stem (iPS) cells have great potential as cell sources for tissue engineering and regenerative medicine. This study aimed to investigate whether iPS cells can be differentiated into MSCs using MSCGM, a commercially available MSC culture system. The cells were characterized by flow cytometry, immunostaining, and gene expression analyses. We also examined their potential to differentiate into osteoblasts and chondrocytes. Our results showed that iPS cells cultured in MSCGM (iPS-MSCGM) exhibited a fibroblast-like morphology and expressed CD73 and CD90 genes, as well as positive markers for CD73, CD90, and CD105. Moreover, iPS-MSCGM cells demonstrated the ability to differentiate into osteoblasts and chondrocytes in vitro. This study demonstrates a new and simple method for inducing the differentiation of iPS cells to MSCs using MSCGM.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Biomaterials, Osaka Dental University
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medical Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University
| | | |
Collapse
|
25
|
Slautin V, Konyshev K, Gavrilov I, Beresneva O, Maklakova I, Grebnev D. Fucoxanthin Enhances the Antifibrotic Potential of Placenta-derived Mesenchymal Stem Cells in a CCl4-induced Mouse Model of Liver. Curr Stem Cell Res Ther 2024; 19:1484-1496. [PMID: 38204245 DOI: 10.2174/011574888x279940231206100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The effectiveness of fucoxanthin (Fx) in liver diseases has been reported due to its anti-inflammatory and antifibrotic effects. Mesenchymal stem cells (MSCs)-based therapy has also been proposed as a promising strategy for liver fibrosis treatment. Recent studies have shown that the co-administration of MSCs and drugs demonstrates a pronounced effect on liver fibrosis. AIM This study aimed to determine the therapeutic potential of placenta-derived MSCs (PD-MSCs) in combination with Fx to treat liver fibrosis and evaluate their impact on the main links of liver fibrosis pathogenesis. METHODS After PD-MSCs isolation and identification, outbred ICR/CD1 mice were divided into five groups: Control group, CCl4 group (CCl4), Fx group (CCl4+Fx), PD-MSCs group (CCl4+MSCs) and cotreatment group (CCl4+MSCs+Fx). Biochemical histopathological investigations were performed. Semiquantitative analysis of the alpha-smooth muscle actin (α-SMA+), matrix metalloproteinases (MMP-9+, MMP-13+), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1+) areas, and the number of positive cells in them were studied by immunohistochemical staining. Transforming growth factor-beta (TGF-β), hepatic growth factor (HGF), procollagen-1 (COL1α1) in liver homogenate and proinflammatory cytokines in blood serum were determined using an enzyme immunoassay. RESULTS Compared to the single treatment with PD-MSCs or Fx, their combined administration significantly reduced liver enzyme activity, the severity of liver fibrosis, the proinflammatory cytokine levels, TGF-β level, α-SMA+, TIMP-1+ areas and the number of positive cells in them, and increased HGF level, MMP-13+, and MMP-9+ areas. CONCLUSION Fx enhanced the therapeutic potential of PD-MSCs in CCl4-induced liver fibrosis, but more investigations are necessary to understand the mutual impact of PD-MSCs and Fx.
Collapse
Affiliation(s)
- Vasilii Slautin
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
| | - Konstantin Konyshev
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russia
| | - Ilya Gavrilov
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russia
| | - Olga Beresneva
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
| | - Irina Maklakova
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russia
| | - Dmitry Grebnev
- Department of Pathophysiology , Ural State Medical University, 3, Repin Street, 620028, Yekaterinburg, Russia
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russia
| |
Collapse
|
26
|
Cavallero S, Dekali S, Guitard N, Théry H, Hélissey C, François S. Effects of preconditioning with TNFα and IFNγ in angiogenic potential of mesenchymal stromal cell-derived extracellular vesicles. Front Cell Dev Biol 2023; 11:1291016. [PMID: 38178868 PMCID: PMC10764498 DOI: 10.3389/fcell.2023.1291016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: Mesenchymal stromal cells (MSCs) have demonstrated therapeutic properties both in vitro and in vivo to treat various diseases, including anti-inflammatory, immunomodulatory and pro-angiogenic effects. These therapeutic effects are mediated by their secretome composed of soluble factors and extracellular vesicles (EVs). The composition of EVs reflects the molecular and functional characteristics of parental cells. MSC preconditioning can alter the composition of EVs, thereby influencing their therapeutic potential. Methods: MSCs were subjected to preconditioning with two cytokines, TNFα and IFNγ. Following 24 h of preconditioning, MSC-EVs secreted into the culture supernatant were isolated through tangential filtration. Particle concentration and size distribution were measured by nanoparticle tracking analysis, and the surface antigen expression of the EV-specific CD63 was quantified via Enzyme Linked ImmunoSorbent Assay. The angiogenic potential of MSCEVs obtained after preconditioning MSCs was assessed by the analysis of their protein composition and their influence on human umbilical vein endothelial cell (HUVECs) proliferation, migration, and tube-forming ability. Results: Preconditioning with TNFα and IFNγ did not influence the MSC-EV profile but did induce changes in their protein content. Indeed, the expression of pro-angiogenic proteins increased in EVs from preconditioned MSCs compared to EVs from no-preconditioned MSCs. EVs from preconditioned MSCs tend to stimulate HUVEC migration, proliferation and tubeforming ability. These observations imply the presence of a pro-angiogenic potential in EVs obtained after preconditioning of MSCs with TNFα and IFNγ. Discussion: In conclusion, it appears that the pro-angiogenic potential of EVs is enhanced through preconditioning of MSCs with TNFα and IFNγ. The use of these MSCs-EVs in therapy would circumvent the limitations of current cell-based therapies. Indeed, the therapeutic potential of MSC-EVs presents an attractive strategy for exploiting the clinical benefits of MSC therapy. For example, in the field of regenerative medicine, the exploitation of cell-free therapy using highly pro-angiogenic MSC-EVs is of great interest.
Collapse
Affiliation(s)
- Sophie Cavallero
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Radiobiology Unit, Brétigny-sur-Orge, France
| | - Samir Dekali
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Emerging Technologies Risk Unit, Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Radiobiology Unit, Brétigny-sur-Orge, France
| | - Héléne Théry
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Radiobiology Unit, Brétigny-sur-Orge, France
| | - Carole Hélissey
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Radiobiology Unit, Brétigny-sur-Orge, France
- Clinical Unit Research, HIA Begin, Paris, France
| | - Sabine François
- Armed Forces Biomedical Research Institute (IRBA), Department of Biological Effects of Radiation, Radiobiology Unit, Brétigny-sur-Orge, France
| |
Collapse
|
27
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
28
|
Kråkenes T, Wergeland S, Al-Sharabi N, Mohamed-Ahmed S, Fromreide S, Costea DE, Mustafa K, Bø L, Kvistad CE. The neuroprotective potential of mesenchymal stem cells from bone marrow and human exfoliated deciduous teeth in a murine model of demyelination. PLoS One 2023; 18:e0293908. [PMID: 37943848 PMCID: PMC10635499 DOI: 10.1371/journal.pone.0293908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is characterized by chronic inflammation, demyelination, and axonal degeneration within the central nervous system (CNS), for which there is no current treatment available with the ability to promote neuroprotection or remyelination. Some aspects of the progressive form of MS are displayed in the murine cuprizone model, where demyelination is induced by the innate immune system without major involvement of the adaptive immune system. Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory and neuroprotective potential. In this study, we aimed to assess the neuroprotective potential of MSCs from bone marrow (BM-MSCs) and stem cells from human exfoliated deciduous teeth (SHED) in the cuprizone model. METHODS Human BM-MSCs and SHED were isolated and characterized. Nine-week-old female C57BL/6 mice were randomized to receive either human BM-MSCs, human SHED or saline intraperitoneally. Treatments were administered on day -1, 14 and 21. Outcomes included levels of local demyelination and inflammation, and were assessed with immunohistochemistry and histology. RESULTS BM-MSCs were associated with increased myelin content and reduced microglial activation whereas mice treated with SHED showed reduced microglial and astroglial activation. There were no differences between treatment groups in numbers of mature oligodendrocytes or axonal injury. MSCs were identified in the demyelinated corpus callosum in 40% of the cuprizone mice in both the BM-MSC and SHED group. CONCLUSION Our results suggest a neuroprotective effect of MSCs in a toxic MS model, with demyelination mediated by the innate immune system.
Collapse
Affiliation(s)
- Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Siren Fromreide
- Center for Cancer Biomarkers CCBIO and Gades Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Daniela-Elana Costea
- Center for Cancer Biomarkers CCBIO and Gades Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
29
|
Strutt JPB, Natarajan M, Lee E, Teo DBL, Sin WX, Cheung KW, Chew M, Thazin K, Barone PW, Wolfrum JM, Williams RBH, Rice SA, Springs SL. Machine learning-based detection of adventitious microbes in T-cell therapy cultures using long-read sequencing. Microbiol Spectr 2023; 11:e0135023. [PMID: 37646508 PMCID: PMC10580871 DOI: 10.1128/spectrum.01350-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/01/2023] Open
Abstract
Assuring that cell therapy products are safe before releasing them for use in patients is critical. Currently, compendial sterility testing for bacteria and fungi can take 7-14 days. The goal of this work was to develop a rapid untargeted approach for the sensitive detection of microbial contaminants at low abundance from low volume samples during the manufacturing process of cell therapies. We developed a long-read sequencing methodology using Oxford Nanopore Technologies MinION platform with 16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial species. Reads are classified metagenomically to predict the microbial species. We used an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if a sample is contaminated, and second, determine whether the predicted contaminant is correctly classified or misclassified. The model was used to make a final decision on the sterility status of the input sample. An optimized experimental and bioinformatics pipeline starting from spiked species through to sequenced reads allowed for the detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic classification. Machine learning can be coupled with long-read sequencing to detect and identify sample sterility status and microbial species present in T-cell cultures, including the USP <71> organisms to 10 CFU/mL. IMPORTANCE This research presents a novel method for rapidly and accurately detecting microbial contaminants in cell therapy products, which is essential for ensuring patient safety. Traditional testing methods are time-consuming, taking 7-14 days, while our approach can significantly reduce this time. By combining advanced long-read nanopore sequencing techniques and machine learning, we can effectively identify the presence and types of microbial contaminants at low abundance levels. This breakthrough has the potential to improve the safety and efficiency of cell therapy manufacturing, leading to better patient outcomes and a more streamlined production process.
Collapse
Affiliation(s)
- James P. B. Strutt
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | | | - Elizabeth Lee
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Denise Bei Lin Teo
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Wei-Xiang Sin
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Ka-Wai Cheung
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Marvin Chew
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Khaing Thazin
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Paul W. Barone
- MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Boston, USA
| | - Jacqueline M. Wolfrum
- MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Boston, USA
| | - Rohan B. H. Williams
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- CSIRO Microbiomes for One Systems Health, Agriculture and Food, Westmead, Australia
| | - Stacy L. Springs
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- MIT Center for Biomedical Innovation, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
30
|
Shou Y, Liu L, Liu Q, Le Z, Lee KL, Li H, Li X, Koh DZ, Wang Y, Liu TM, Yang Z, Lim CT, Cheung C, Tay A. Mechano-responsive hydrogel for direct stem cell manufacturing to therapy. Bioact Mater 2023; 24:387-400. [PMID: 36632503 PMCID: PMC9817177 DOI: 10.1016/j.bioactmat.2022.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cell (MSC) is one of the most actively studied cell types due to its regenerative potential and immunomodulatory properties. Conventional cell expansion methods using 2D tissue culture plates and 2.5D microcarriers in bioreactors can generate large cell numbers, but they compromise stem cell potency and lack mechanical preconditioning to prepare MSC for physiological loading expected in vivo. To overcome these challenges, in this work, we describe a 3D dynamic hydrogel using magneto-stimulation for direct MSC manufacturing to therapy. With our technology, we found that dynamic mechanical stimulation (DMS) enhanced matrix-integrin β1 interactions which induced MSCs spreading and proliferation. In addition, DMS could modulate MSC biofunctions including directing MSC differentiation into specific lineages and boosting paracrine activities (e.g., growth factor secretion) through YAP nuclear localization and FAK-ERK pathway. With our magnetic hydrogel, complex procedures from MSC manufacturing to final clinical use, can be integrated into one single platform, and we believe this 'all-in-one' technology could offer a paradigm shift to existing standards in MSC therapy.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, 430070, Wuhan, China
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Dion Zhanyun Koh
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Tong Ming Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119288, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
31
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
32
|
Uwazie CC, Faircloth TU, Parr RN, Reddy YU, Hematti P, Rajan D, Chinnadurai R. Contrariety of Human Bone Marrow Mesenchymal Stromal Cell Functionality in Modulating Circulatory Myeloid and Plasmacytoid Dendritic Cell Subsets. BIOLOGY 2023; 12:biology12050725. [PMID: 37237538 DOI: 10.3390/biology12050725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Mesenchymal Stromal Cells (MSCs) derived from bone marrow are widely tested in clinical trials as a cellular therapy for potential inflammatory disorders. The mechanism of action of MSCs in mediating immune modulation is of wide interest. In the present study, we investigated the effect of human bone-marrow-derived MSCs in modulating the circulating peripheral blood dendritic cell responses through flow cytometry and multiplex secretome technology upon their coculture ex vivo. Our results demonstrated that MSCs do not significantly modulate the responses of plasmacytoid dendritic cells. However, MSCs dose-dependently promote the maturation of myeloid dendritic cells. Mechanistic analysis showed that dendritic cell licensing cues (Lipopolysaccharide and Interferon-gamma) stimulate MSCs to secret an array of dendritic cell maturation-associated secretory factors. We also identified that MSC-mediated upregulation of myeloid dendritic cell maturation is associated with the unique predictive secretome signature. Overall, the present study demonstrated the dichotomy of MSC functionality in modulating myeloid and plasmacytoid dendritic cells. This study provides clues that clinical trials need to investigate if circulating dendritic cell subsets in MSC therapy can serve as potency biomarkers.
Collapse
Affiliation(s)
- Crystal C Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Rhett N Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Yenamala U Reddy
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| |
Collapse
|
33
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
34
|
Sanz-Serrano D, Sánchez-de-Diego C, Mercade M, Ventura F. Dental Stem Cells SV40, a new cell line developed in vitro from human stem cells of the apical papilla. Int Endod J 2023; 56:502-513. [PMID: 36585930 DOI: 10.1111/iej.13887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
AIM To establish and fully characterize a new cell line from human stem cells of the apical papilla (SCAPs) through immortalization with an SV40 large T antigen. METHODOLOGY Human SCAPs were isolated and transfected with an SV40 large T antigen and treated with puromycin to select the infected population. Expression of human mesenchymal surface markers CD73, CD90 and CD105 was assessed in the new cell line named Dental Stem Cells SV40 (DSCS) by flow cytometry at early and late passages. Cell contact inhibition and proliferation were also analysed. To evaluate trilineage differentiation, quantitative polymerase chain reaction and histological staining were performed. RESULTS DSCS cell flow cytometry confirmed the expression of mesenchymal surface markers even in late passages [100% positive for CD73 and CD90 and 98.9% for CD105 at passage (P) 25]. Fewer than 0.5% were positive for haematopoietic cell markers (CD45 and CD34). DSCS cells also showed increased proliferation when compared to the primary culture after 48 h, with a doubling time of 23.46 h for DSCS cells and 40.31 h for SCAPs, and retained the capacity to grow for >45 passages (150 population doubling) and their spindle-shaped morphology. Trilineage differentiation potential was confirmed through histochemical staining and gene expression of the chondrogenic markers SOX9 and COL2A1, adipogenic markers CEBPA and LPL, and osteogenic markers COL1A1 and ALPL. CONCLUSIONS The new cell line derived from human SCAPs has multipotency, retains its morphology and expression of mesenchymal surface markers and shows higher proliferative capacity even at late passages (P45). DSCS cells can be used for in vitro study of root development and to achieve a better understanding of the regenerative mechanisms.
Collapse
Affiliation(s)
- Diana Sanz-Serrano
- Department of Dentistry, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Montse Mercade
- Department of Dentistry, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.,Researcher at IDIBELL Institute, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Researcher at IDIBELL Institute, L'Hospitalet de Llobregat, Spain.,Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
35
|
Scattini G, Pellegrini M, Severi G, Cagiola M, Pascucci L. The Stromal Vascular Fraction from Canine Adipose Tissue Contains Mesenchymal Stromal Cell Subpopulations That Show Time-Dependent Adhesion to Cell Culture Plastic Vessels. Animals (Basel) 2023; 13:ani13071175. [PMID: 37048431 PMCID: PMC10093060 DOI: 10.3390/ani13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (MSCs) are extensively studied in both human and veterinary medicine. Their isolation is usually performed by collagenase digestion followed by filtration and removal of nonadherent tissue remnants 48 h after seeding. We observed that waste tissue fragments contain cells that adhere belatedly to the plastic. We aimed to investigate their basic properties to speculate on the possible existence of MSC subpopulations. Adipose tissue from three dogs was enzymatically digested. Three cell populations that adhered to the culture plastic 48, 96, and 144 h after seeding were obtained. After expansion, they were analyzed by flow cytometry for MSC-positive (CD90, CD44, and CD29) and -negative (CD14, MHCII, and CD45) markers as well as for endothelial, pericyte, and smooth muscle cell markers (CD31, CD146, and alpha-SMA). Furthermore, cells were assessed for viability, doubling time, and trilineage differentiation ability. No significant differences were found between the three subpopulations. As a result, this procedure has proven to be a valuable method for dramatically improving MSCs yield. As a consequence of cell recovery optimization, the amount of tissue harvested could be reduced, and the time required to obtain sufficient cells for clinical applications could be shortened. Further studies are needed to uncover possible different functional properties.
Collapse
Affiliation(s)
- Gabriele Scattini
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| | - Giulio Severi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
- Correspondence: (M.P.); (L.P.); Tel.: +39-075-3431 (M.P.); +39-075-585-7632 (L.P.)
| |
Collapse
|
36
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
37
|
Armitage AJ, Miller JM, Sparks TH, Georgiou AE, Reid J. Efficacy of autologous mesenchymal stromal cell treatment for chronic degenerative musculoskeletal conditions in dogs: A retrospective study. Front Vet Sci 2023; 9:1014687. [PMID: 36713862 PMCID: PMC9880336 DOI: 10.3389/fvets.2022.1014687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The objective of this study was to retrospectively analyze clinical data from a referral regenerative medicine practice, to investigate the efficacy of autologous mesenchymal stromal cells (MSC) in 245 dogs deemed unresponsive to conventional treatment by their referring vet. Methods Diagnostic imaging [radiology and musculoskeletal ultrasound (MSK-US)] identified musculoskeletal pathology holistically. MSCs, produced according to current guidelines, were initially administered with PRP by targeted injection to joints and/or tendons, with a second MSC monotherapy administered 12 weeks later to dogs with severe pathology and/or previous elbow arthroscopic interventions. Dogs with lumbosacral disease received epidural MSCs with additional intravenous MSCs administered to dogs with spondylosis of the cervical, thoracic and lumbar spine. All dogs received laser therapy at 10 J/cm2 at the time of treatment and for 5 sessions thereafter. Objective outcome measures (stance analysis, range of joint motion, pressure algometry) and validated subjective outcome measures (owner reported VetMetrica HRQL™ and veterinary pain and quality of life impact scores) were used to investigate short and long-term (6-104 weeks) efficacy. Outcome data were collected at predetermined time windows (0-6, 7-12, 13-18, 19-24, 25-48, 49-78, 79-104) weeks after initial treatment. Results There were statistically significant improvements in post compared with pre-treatment measures at all time windows in stance analysis, shoulder and hip range of motion, lumbosacral pressure algometry, and to 49-78 weeks in carpus and elbow range of motion. Improvements in 4 domains of quality of life as measured by VetMetricaTM were statistically significant, as were scores in vet-assessed pain and quality of life impact. In dogs receiving one initial treatment the mean time before a second treatment was required to maintain improvements in objective measures was 451 days. Diagnostic imaging confirmed the regenerative effects of MSCs in tendinopathies by demonstrating resolution of abnormal mineralization and restoration of normal fiber patterns. Discussion This represents the first study using "real-world" data to show that cell-based therapies, injected into multiple areas of musculoskeletal pathology in a targeted holistic approach, resulted in rapid and profound positive effects on the patient's pain state and quality of life which was maintained with repeat treatment for up to 2 years.
Collapse
Affiliation(s)
- Andrew J. Armitage
- Greenside Veterinary Practice, Part of Linnaeus Veterinary Limited, Melrose, United Kingdom
| | | | - Tim H. Sparks
- Waltham Petcare Science Institute, Melton Mowbray, United Kingdom
| | - Alex E. Georgiou
- Cell Therapy Sciences Ltd., Coventry, United Kingdom
- Coventry University, Coventry, United Kingdom
| | - Jacqueline Reid
- University of Glasgow, Glasgow, United Kingdom
- NewMetrica Research Ltd., Glasgow, United Kingdom
| |
Collapse
|
38
|
Chinnadurai R, Viswanathan S, Moll G. Editorial: Next generation MSC therapy manufacturing, potency and mechanism of action analysis. Front Immunol 2023; 14:1192636. [PMID: 37153609 PMCID: PMC10161792 DOI: 10.3389/fimmu.2023.1192636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
- *Correspondence: Raghavan Chinnadurai, ; Sowmya Viswanathan, ; Guido Moll,
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Raghavan Chinnadurai, ; Sowmya Viswanathan, ; Guido Moll,
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- *Correspondence: Raghavan Chinnadurai, ; Sowmya Viswanathan, ; Guido Moll,
| |
Collapse
|
39
|
Miclau K, Hambright WS, Huard J, Stoddart MJ, Bahney CS. Cellular expansion of MSCs: Shifting the regenerative potential. Aging Cell 2023; 22:e13759. [PMID: 36536521 PMCID: PMC9835588 DOI: 10.1111/acel.13759] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.
Collapse
Affiliation(s)
- Katherine Miclau
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - William S. Hambright
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Martin J. Stoddart
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
40
|
Hervás-Salcedo R, Fernández-García M, Hernando-Rodríguez M, Suárez-Cabrera C, Bueren JA, Yáñez RM. Improved efficacy of mesenchymal stromal cells stably expressing CXCR4 and IL-10 in a xenogeneic graft versus host disease mouse model. Front Immunol 2023; 14:1062086. [PMID: 36817457 PMCID: PMC9929539 DOI: 10.3389/fimmu.2023.1062086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Previous clinical trials have shown that mesenchymal stromal cells (MSCs) can modulate graft versus host disease (GvHD) after allogeneic hematopoietic transplantation, although with variable efficacy. To improve the anti-GvHD effect of these cells, adipose tissue derived-human MSCs (Ad-MSCs) were transduced with a lentiviral vector conferring stable expression of CXCR4, a molecule involved in cell migration to inflamed sites, and IL-10, a cytokine with potent anti-inflammatory properties. In vitro experiments showed that the expression of these molecules in Ad-MSCs (named CXCR4-IL10-MSCs) efficiently enhanced their migration towards SDF-1α and also improved their immunomodulatory properties compared to unmodified Ad-MSCs (WT-MSCs). Moreover, using a humanized GvHD mouse model, CXCR4-IL10-MSCs showed improved therapeutic effects, which were confirmed by histopathologic analysis in the target organs. Additionally, compared to WT-MSCs, CXCR4-IL10-MSCs induced a more marked reduction in the number of pro-inflammatory Th1 and Th17 cells, a higher polarization towards an anti-inflammatory T cell profile (CD3+-IL10+ cells), and increased the number of regulatory T and B cells. Our in vitro and in vivo studies strongly suggest that CXCR4-IL10-MSCs should constitute an important new generation of MSCs for the treatment of GvHD in patients transplanted with allogeneic hematopoietic grafts.
Collapse
Affiliation(s)
- Rosario Hervás-Salcedo
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, Madrid, Spain
| | - María Fernández-García
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, Madrid, Spain
| | - Cristian Suárez-Cabrera
- Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de 8 Cancer (CIBERONC), Madrid, Spain.,Biomedical Research Institute I + 12, Hospital 12 de Octubre, Madrid, Spain
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, Madrid, Spain
| | - Rosa M Yáñez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
41
|
Argentati C, Dominici F, Morena F, Rallini M, Tortorella I, Ferrandez-Montero A, Pellegrino RM, Ferrari B, Emiliani C, Lieblich M, Torre L, Martino S, Armentano I. Thermal treatment of magnesium particles in polylactic acid polymer films elicits the expression of osteogenic differentiation markers and lipidome profile remodeling in human adipose stem cells. Int J Biol Macromol 2022; 223:684-701. [PMID: 36356880 DOI: 10.1016/j.ijbiomac.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The efficacy of polylactic acid (PLA)/Magnesium (Mg)-based materials for driving stem cells toward bone tissue engineering applications requires specific Mg surface properties to modulate the interface of stem cells with the film. Here, we have developed novel PLA/Mg-based composites and explored their osteogenic differentiation potential on human adipose stem cells (hASCs). Mg-particles/polymer interface was improved by two treatments: heating in oxidative atmosphere (TT) and surface modification with a compatibilizer (PEI). Different contents of Mg particles were dispersed in PLA and composite surface and bulk properties, protein adsorption, stem cell-PLA/Mg interactions, osteogenic markers expressions, and lipids composition profile were evaluated. Mg particles were uniformly distributed on the surface and in the bulk PLA polymer. Improved and modulated particle-polymer adhesion was observed in Mg particle-treated composites. After 21 days in canonical growth culture conditions, hASCs on PLA/MgTT displayed the highest expression of the general osteogenic markers, RUNX2, SSP1, and BGLAP genes, Alkaline Phosphatase, type I Collagen, Osteopontin, and Calcium deposits. Moreover, by LC/MS QTOF mass-spectrophotometry lipidomic analysis, we found in PLA/MgTT-cells, for the first time, a remodeling of the lipid classes composition associated with the osteogenic differentiation. We ascribed these results to MgTT characteristics, which improve Mg availability and composite osteoinductive performance.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Franco Dominici
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Marco Rallini
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Ana Ferrandez-Montero
- Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, c/ Kelsen 5, 28049 Madrid, Spain.
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Begoña Ferrari
- Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, c/ Kelsen 5, 28049 Madrid, Spain.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; CEMIN, University of Perugia, 06122 Perugia, Italy
| | - Marcela Lieblich
- Department Physical Metallurgy, National Centre for Metallurgical Research (CENIM), CSIC, Avenida Gregorio del Amo 8, Madrid 28040, Spain
| | - Luigi Torre
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; CEMIN, University of Perugia, 06122 Perugia, Italy.
| | - Ilaria Armentano
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy.
| |
Collapse
|
42
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Jeyaraman M, Muthu S, Nischith DS, Jeyaraman N, Nallakumarasamy A, Khanna M. PRISMA-Compliant Meta-Analysis of Randomized Controlled Trials on Osteoarthritis of Knee Managed with Allogeneic vs Autologous MSCs: Efficacy and Safety Analysis. Indian J Orthop 2022; 56:2042-2059. [PMID: 36507199 PMCID: PMC9705690 DOI: 10.1007/s43465-022-00751-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES Our objective is to review the randomized controlled trials (RCTs) that have been conducted previously on the topic of osteoarthritis of the knee to assess and compare the efficacy and safety of autologous and allogeneic sources of mesenchymal stromal cells (MSCs) in the treatment of osteoarthritis. MATERIALS AND METHODS We searched the electronic databases PubMed, Embase, Web of Science, and the Cochrane Library until August 2021 for randomised controlled trials (RCTs) analysing the efficacy and safety of autologous and allogeneic sources of MSCs in the management of knee osteoarthritis. These searches were conducted independently and in duplicate. The outcomes that were taken into consideration for analysis were the visual analogue score (VAS) for pain, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), the Lysholm score, and adverse events. The OpenMeta [Analyst] software was utilised to carry out the analysis in the R platform. RESULTS In total, 21 studies with a total of 936 patients were considered for this analysis. Because none of the studies made a direct comparison of the autologous and allogeneic sources of MSCs, we pooled the results of all of the included studies of both sources and made a comparative analysis of how the two types of MSCs fared in their respective applications. Although both allogeneic and autologous sources of MSCs demonstrated significantly better VAS improvement after 6 months (p = 0.006, p = 0.001), this trend was not maintained after 1 year for the allogeneic source (p = 0.171, p = 0.027). When compared to their respective controls based on WOMAC scores after 1 year, autologous sources (p = 0.016) of MSCs performed better than allogeneic sources (p = 0.186).A similar response was noted between the sources at 2 years in their Lysholm scores (p = 0.682, p = 0.017), respectively. Moreover, allogeneic sources (p = 0.039) of MSCs produced significant adverse events than autologous sources (p = 0.556) compared to their controls. CONCLUSION Our analysis of literature showed that autologous sources of MSCs stand superior to allogeneic sources of MSC with regard to their consistent efficacy for pain, functional outcomes, and safety. However, we strongly recommend that further studies be conducted that are of a high enough quality to validate our findings and reach a consensus on the best source of MSCs for use in cellular therapy treatments for knee osteoarthritis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00751-z.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, India
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Uttar Pradesh, Greater Noida, India
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu India
| | - D. S. Nischith
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
- Fellow in Joint Replacement, Atlas Hospitals, Tiruchirappalli, Tamil Nadu India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Uttar Pradesh, Lucknow, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Uttar Pradesh, Lucknow, India
| |
Collapse
|
44
|
Jenssen AB, Mohamed-Ahmed S, Kankuri E, Brekke RL, Guttormsen AB, Gjertsen BT, Mustafa K, Almeland SK. Administration Methods of Mesenchymal Stem Cells in the Treatment of Burn Wounds. EUROPEAN BURN JOURNAL 2022; 3:493-516. [PMID: 39600017 PMCID: PMC11571831 DOI: 10.3390/ebj3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2024]
Abstract
Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case-control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials.
Collapse
Affiliation(s)
- Astrid Bjørke Jenssen
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ragnvald Ljones Brekke
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Anne Berit Guttormsen
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Anesthesia and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Stian Kreken Almeland
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
45
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
46
|
Andleeb A, Mehmood A, Tariq M, Butt H, Ahmed R, Andleeb A, Ghufran H, Ramzan A, Ejaz A, Malik K, Riazuddin S. Hydrogel patch with pretreated stem cells accelerates wound closure in diabetic rats. BIOMATERIALS ADVANCES 2022; 142:213150. [PMID: 36306556 DOI: 10.1016/j.bioadv.2022.213150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Delay in wound healing is a diabetes mellites resulting disorder causing persistent microbial infections, pain, and poor quality of life. This disorder is treated by several strategies using natural biomaterials, growth factors and stem cells molded into various scaffolds which possess the potential to accelerate the closure of impaired diabetic wounds. In this study, we developed a hydrogel patch using chitosan (CS) and polyethylene glycol (PEG) with laden bone marrow-derived mesenchymal stem cells (BMSCs) that were pretreated with fibroblast growth factor 21 (FGF21). The developed hydrogel patches were characterized by scanning electron microscopy and fourier transform infrared (FTIR) spectroscopy. After studying the swelling behavior, growth factor (FGF21) was used to modulate BMSC in the hyperglycemic environment. Later, FGF21 treated BMSC were embedded in CS/PEG hydrogel patch and their wound closure effect was assessed in diabetic rats. The results showed that CS/PEG hydrogel patches have good biocompatibility and possess efficient BMSC recruiting properties. The application of CS/PEG hydrogel patches accelerated wound closure in diabetic rats as compared to the control groups. However, the use of FGF21 pretreated BMSCs laded CS/PEG hydrogel patches further increased the therapeutic efficacy of wound closure in diabetic rats. This study demonstrated that the application of a hydrogel patch of CS/PEG with FGF21 pretreated BMSCs improves diabetic wound healing, but further studies are needed on larger animals before the use of these dressings in clinical trials.
Collapse
Affiliation(s)
- Anisa Andleeb
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Aneeta Andleeb
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Amna Ramzan
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Asim Ejaz
- Adipose Stem Cells Center, Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
47
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
48
|
Mesenchymal stem cell transplantation improves biomechanical properties of vaginal tissue following full-thickness incision in aged rats. Stem Cell Reports 2022; 17:2565-2578. [DOI: 10.1016/j.stemcr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
|
49
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
50
|
Boada-Pladellorens A, Avellanet M, Pages-Bolibar E, Veiga A. Stromal vascular fraction therapy for knee osteoarthritis: a systematic review. Ther Adv Musculoskelet Dis 2022; 14:1759720X221117879. [PMID: 35991523 PMCID: PMC9386815 DOI: 10.1177/1759720x221117879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Regenerative cell therapies, such as adipose-derived stromal vascular fraction (SVF), have been postulated as potential treatments for knee osteoarthritis (KOA). Objectives: To assess the efficacy and safety of SVF treatment against placebo and other standard therapies for treating KOA in adult patients. Design: A systematic review. Data sources and methods: We searched the following databases: MEDLINE via PubMed, Epistemonikos, PEDro, DynaMed, TripDatabase, Elsevier via Clinicalkey and Cochrane Controlled Trials Register. We included prospective interventional studies where treatment with SVF in adults with KOA was compared against placebo or other standard therapies, and results were objectively measured with at least one widely recognised osteoarthritis scale. Results: Among 266 studies published until May 2021, nine met our inclusion criteria. A total of 239 patients (274 knees) were included in our study. The follow-up ranged from 6 to 24 months. Six studies had a control group (only one being placebo). All studies showed that SVF improved pain and functionality measured, in most cases, with the visual analogue scale and the Western Ontario and McMaster Universities Osteoarthritis Index. In addition, five studies reported an improvement in anatomical structures, as detected in MR images. However, the number of cells contained in SVF varied substantially between different studies, which could induce a comparison bias. Conclusion: Although based on a small number of dissimilar studies, SVF was considered a safe treatment for KOA and could be promising in terms of pain, functionality and anatomical structure improvement. However, SVF products need to be standardised, the number of cells homogenised and the use of concomitant treatments reduced to establish proper comparisons. Registration: PROSPERO registration number: CRD42021284187.
Collapse
Affiliation(s)
- Anna Boada-Pladellorens
- Physical Medicine and Rehabilitation Department, Hospital Nostra Senyora de Meritxell, Carrer dels Escalls, AD700 Escaldes-Engordany, Andorra
| | - Mercè Avellanet
- Physical Medicine and Rehabilitation Department, Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra
| | - Esther Pages-Bolibar
- Physical Medicine and Rehabilitation Department, Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra
| | - Anna Veiga
- Barcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| |
Collapse
|