1
|
Zhang S, Xu CL, Wang J, Xiong X, Wang JH. Spike proteins of coronaviruses activate mast cells for degranulation via stimulating Src/PI3K/AKT/Ca 2+ intracellular signaling cascade. J Virol 2025; 99:e0007825. [PMID: 40304504 PMCID: PMC12090780 DOI: 10.1128/jvi.00078-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025] Open
Abstract
Mast cells (MCs) are strategically located at the interface between host and environment. The non-allergic functions of MCs in immunosurveillance against pathogens have been recently underscored. However, the activation of MCs by pathogens may beneficially or detrimentally regulate immune inflammation to combat or promote pathogen invasion. We and others have conclusively demonstrated that MCs serve as a crucial mediator in the induction of hyperinflammation initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to substantial tissue damage across multiple organs in murine and nonhuman primate models. Whereas the precise mechanism underlying virus-induced MC activation and degranulation remains largely elusive, our previous findings have indicated that the binding of the Spike proteins to cellular receptors is sufficient to elicit MC activation for rapid degranulation. This study aims to corroborate the ubiquity of coronavirus-induced MC degranulation and elucidate the intracellular signaling pathways that mediate the activation of MCs upon Spike protein binding to the cellular receptors. Our transcriptome analysis revealed MC activation upon the stimulations with a range of Spike/RBD proteins and viral particles of coronavirus. Notably, the interaction between these Spike/RBD proteins and cellular receptors triggered the activation of src kinase, a member of Src Family Kinases (SFKs). This activation, in turn, stimulated the PI3K/AKT signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitated microtubule-dependent granule transport, ultimately promoting MC degranulation. In summary, this study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies. IMPORTANCE The activation and degranulation of mast cells (MCs), triggered by a variety of viruses, are intricately linked to viral pathogenesis. However, the precise mechanism underlying virus-induced MC degranulation remains largely unknown. In this study, we demonstrate the ubiquity of coronavirus-induced MC degranulation and investigate the intracellular signaling pathways that mediate this process. We reveal that the binding of Spike proteins and cellular receptors is sufficient to elicit MC activation for rapid degranulation. This binding triggers the activation of src kinase and the downstream PI3K/AKT cellular signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitate microtubule-dependent granule transport, ultimately promoting MC degranulation. This study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| | - Chu-Lan Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
4
|
Yoodee S, Rujitharanawong C, Sueksakit K, Tuchinda P, Kulthanan K, Thongboonkerd V. Comparative analyses of various IgE-mediated and non-IgE-mediated inducers of mast cell degranulation for in vitro study. Immunol Res 2024; 72:331-346. [PMID: 38001385 DOI: 10.1007/s12026-023-09438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
In vitro investigations of mast cell (MC) degranulation are essential for studying many diseases, particularly allergy and urticaria. Many MC-degranulation inducers are currently available. However, there is no previous systematic comparative analysis of these available inducers in term of their efficacies to induce MC degranulation. Herein, we performed systematic comparisons of efficacies of five well-known and commonly used MC-degranulation inducers. RBL-2H3 cells were sensitized with 50 ng/ml anti-DNP IgE or biotinylated IgE followed by stimulation with 100 ng/ml DNP-BSA or streptavidin, respectively. For non-IgE-mediated inducers, the cells were treated with 5 µg/ml substance P, compound 48/80, or A23187. At 15-, 30-, 45- and 60-min post-induction, several common MC-degranulation markers (including intracellular [Ca2+], β-hexosaminidase release, tryptase expression by immunofluorescence staining, cellular tryptase level by immunoblotting, secretory tryptase level by immunoblotting, CD63 expression by immunofluorescence staining, and CD63 expression by flow cytometry) were evaluated. The data showed that all these markers significantly increased after activation by all inducers. Among them, A23187 provided the greatest degrees of increases in intracellular [Ca2+] and β-hexosaminidase release at all time-points and upregulation of CD63 at one time-point. These data indicate that all these IgE-mediated (anti-DNP IgE/DNP-BSA and biotinylated IgE/streptavidin) and non-IgE-mediated (substance P, compound 48/80, and A23187) inducers effectively induce MC degranulation, while A23187 seems to be the most effective inducer for MC degranulation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Chuda Rujitharanawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Papapit Tuchinda
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
5
|
Oka M, Akaki S, Ohno O, Terasaki M, Hamaoka-Tamura Y, Saito M, Kato S, Inoue A, Aoki J, Matsuno K, Furuta K, Tanaka S. Suppression of Mast Cell Activation by GPR35: GPR35 Is a Primary Target of Disodium Cromoglycate. J Pharmacol Exp Ther 2024; 389:76-86. [PMID: 38290974 DOI: 10.1124/jpet.123.002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.
Collapse
Affiliation(s)
- Masumi Oka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Sohta Akaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Osamu Ohno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Maho Terasaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Michiko Saito
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Shinichi Kato
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Asuka Inoue
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Junken Aoki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kenji Matsuno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kazuyuki Furuta
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| |
Collapse
|
6
|
Sutanto H. Mechanobiology of Type 1 hypersensitivity: Elucidating the impacts of mechanical forces in allergic reactions. MECHANOBIOLOGY IN MEDICINE 2024; 2:100041. [PMID: 40395452 PMCID: PMC12082325 DOI: 10.1016/j.mbm.2024.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 05/22/2025]
Abstract
Type 1 hypersensitivity involves an exaggerated immune reaction triggered by allergen exposure, leading to rapid release of inflammatory mediators. Meanwhile, mechanobiology explores how physical forces influence cellular processes, and recent research underscores its relevance in allergic reactions. This review provides a concise overview of Type 1 hypersensitivity, highlighting the pivotal role of mast cells and immunoglobulin E (IgE) antibodies in orchestrating allergic reactions. Recognizing the dynamic nature of cellular responses in allergies, this study subsequently delves into the emerging field of mechanobiology and its significance in understanding the mechanical forces governing immune cell behavior. Furthermore, molecular forces during mast cell activation and degranulation are explored, elucidating the mechanical aspects of IgE binding and cytoskeletal rearrangements. Next, we discuss the intricate interplay between immune cells and the extracellular matrix, emphasizing the impact of matrix stiffness on cellular responses. Additionally, we examine key mechanosensitive signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway, Rho guanosine triphosphatase (GTPase) and integrin-mediated focal adhesion signaling, shedding light on their contributions to hypersensitivity reactions. This interplay of mechanobiology and Type 1 hypersensitivity provides insights into potential therapeutic targets and biomarkers, paving the way for better clinical management of Type 1 hypersensitivity reactions.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Sulimenko V, Sládková V, Sulimenko T, Dráberová E, Vosecká V, Dráberová L, Skalli O, Dráber P. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by ARF GTPase-activating protein GIT2. Front Immunol 2024; 15:1321321. [PMID: 38370406 PMCID: PMC10870779 DOI: 10.3389/fimmu.2024.1321321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Aggregation of high-affinity IgE receptors (FcϵRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcϵRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Dráberová
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Higashio H, Yokoyama T, Saino T. A convenient fluorimetry-based degranulation assay using RBL-2H3 cells. Biosci Biotechnol Biochem 2024; 88:181-188. [PMID: 37968134 DOI: 10.1093/bbb/zbad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as β-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of β-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.
Collapse
Affiliation(s)
- Hironori Higashio
- Department of Chemistry, Center for Liberal Arts and Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Takuya Yokoyama
- Division of Cell Biology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan
| | - Tomoyuki Saino
- Division of Cell Biology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
9
|
Liu K, Katayama T, Sato H, Hamaoka-Tamura Y, Saito M, Furuta K, Tanaka S. Staphylococcus aureus δ-Toxin Induces Ca 2+ Influx-Independent Degranulation of Murine Cultured Mast Cells. Biol Pharm Bull 2024; 47:2058-2064. [PMID: 39675960 DOI: 10.1248/bpb.b24-00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cutaneous colonization with Staphylococcus aureus (SA) is frequently observed in patients with atopic dermatitis. SA produces a wide variety of bacterial toxins, among which δ-toxin was found to induce degranulation of mast cells. Degranulation of mast cells could enhance bacterial clearance and protection from future SA infection but lead to exacerbation of atopic dermatitis. Because it remains to be determined how δ-toxin triggers degranulation, we investigated δ-toxin-induced changes in murine bone marrow-derived cultured mast cells in this study. We found that δ-toxin-induced degranulation could be classified into two phases, an early Ca2+-independent and a late Ca2+-dependent phase. Recent studies suggest that NOD-like receptor family, pyrin domain containing 3 is involved in the degranulation of mast cells, raising a possibility that leakage of K+ induced by δ-toxin is involved in the Ca2+-independent phase. However, Ca2+-independent degranulation remains unchanged although Ca2+-influx and degranulation induced by δ-toxin were significantly suppressed in the presence of high concentrations of K+. Because actin depolymerization was reported to induce degranulation in the absence of Ca2+ in the permeabilized rat peritoneal mast cells, a slow but steady decrease in the amount of filamentous actin observed here may be involved in Ca2+-independent degranulation induced by δ-toxin. Although Mas-related G protein-coupled receptor (MRGPR) X2 in humans and Mrgprb2 in mice are regarded as the receptors responsible for immunoglobulin E-independent degranulation, δ-toxin-induced degranulation remained unchanged in Mrgprb2-/- mast cells. Our findings pave the way for identification of the target receptors of δ-toxin.
Collapse
Affiliation(s)
- Kang Liu
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Tomoaki Katayama
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hitomi Sato
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Michiko Saito
- Bioscience Research Center, Kyoto Pharmaceutical University
| | - Kazuyuki Furuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
10
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Xu W, Li X, Song Y, Kong L, Zhang N, Liu J, Li G, Fan Z, Lyu Y, Zhang D, Wang H, Li N. Ménière's disease and allergy: Epidemiology, pathogenesis, and therapy. Clin Exp Med 2023; 23:3361-3371. [PMID: 37743423 DOI: 10.1007/s10238-023-01192-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
The etiology of Ménière's disease (MD) remains controversial. Allergies are potential extrinsic factors that, in conjunction with underlying intrinsic factors, may cause MD. The link between allergies and MD was first described in 1923. For nearly a century, studies have demonstrated a possible link between allergies and MD, even though a causal relationship has not been definitively determined. Previous reviews have mainly focused on clinical epidemiology studies of patients. In this review, we shed light on the association between allergies and MD not only in terms of its epidemiology, but also from an immunology, pathophysiology, and immunotherapy perspective in both patients and animal models. Patients with MD tend to have a high risk of comorbid allergies or an allergy history, showing positive allergy immunology characteristics. Other MD-related diseases, such as migraine, may also interact with allergies. Allergy mediators such as IgE may worsen the symptoms of MD. Deposits of IgE in the vestibular end organs indicate the ability of the inner ear to participate in immune reactions. Allergic challenges can induce vertigo in animals and humans. Anti-allergy therapy plays a positive role in patients with MD and animal models of endolymphatic hydrops.
Collapse
Affiliation(s)
- Wandi Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Ligang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jiahui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Guorong Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, Shandong, China.
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
12
|
Kunimura K, Akiyoshi S, Uruno T, Matsubara K, Sakata D, Morino K, Hirotani K, Fukui Y. DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis. J Allergy Clin Immunol 2023:S0091-6749(23)00209-9. [PMID: 36804596 DOI: 10.1016/j.jaci.2023.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Sayaka Akiyoshi
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Morino
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Hirotani
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Michel M, Klingebiel C, Vitte J. Tryptase in type I hypersensitivity. Ann Allergy Asthma Immunol 2023; 130:169-177. [PMID: 36084866 DOI: 10.1016/j.anai.2022.08.996] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
Tryptase is currently the main mast cell biomarker available in medical practice. Tryptase determination is a quantitative test performed in serum or plasma for the diagnosis, stratification, and follow-up of mast cell-related conditions. The continuous secretion of monomeric α and β protryptases forms the baseline tryptase level. Transient, activation-induced release of tryptase is known as acute tryptase. Because mast cells are tissue-resident cells, the detection of an acute tryptase release in the bloodstream is protracted, with a delay of 15 to 20 minutes after the onset of symptoms and a peak at approximately 1 hour. Constitutive release of tryptase is a marker of mast cell number and activity status, whereas transient release of mature tryptase is a marker of mast cell degranulation. Although consensual as a concept, the application of this statement in clinical practice has only been clarified since 2020. For baseline tryptase to be used as a biomarker, reference values need to be established. In contrast, defining a transient increase using acute tryptase can only be achieved as a function of the baseline status.
Collapse
Affiliation(s)
- Moïse Michel
- Immunology Laboratory, Centre Hospitalier Universitaire Nîmes, Nîmes, France; Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille University, Marseille, France
| | | | - Joana Vitte
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille University, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France; Montpellier University, Institut Desbrest d'Épidémiologie et de Santé Publique, Institut National de la Sante et de la Recherche Medicale, UMR UA 11, Montpellier, France.
| |
Collapse
|
14
|
Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: Current knowledge and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188845. [PMID: 36476563 DOI: 10.1016/j.bbcan.2022.188845] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Li Y, Zhuang X, Niu F. Quantitative Investigation of the Link between Actin Cytoskeleton Dynamics and Cellular Behavior. MICROMACHINES 2022; 13:1885. [PMID: 36363906 PMCID: PMC9695820 DOI: 10.3390/mi13111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Actin cytoskeleton reorganization, which is governed by actin-associated proteins, has a close relationship with the change of cell biological behavior. However, a perceived understanding of how actin mechanical property links to cell biological property remains unclear. This paper reports a label-free biomarker to indicate this interrelationship by using the actin cytoskeleton model and optical tweezers (OT) manipulation technology. Both biophysical and biochemical methods were employed, respectively, as stimuli for two case studies. By comparing the mechanical and biological experiment results of the leukemia cells under electrical field exposure and human mesenchymal stem cells (hMSC) under adipogenesis differentiation, we concluded that β-actin can function as an indicator in characterizing the alteration of cellular biological behavior during the change of actin cytoskeleton mechanical property. This study demonstrated an effective way to probe a quantitative understanding of how actin cytoskeleton reorganization reflects the interrelation between cell mechanical property and cell biological behavior.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xiaoru Zhuang
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
16
|
Msallam R, Malissen B, Launay P, Blank U, Gautier G, Davoust J. Mast Cell Interaction with Foxp3 + Regulatory T Cells Occur in the Dermis after Initiation of IgE-Mediated Cutaneous Anaphylaxis. Cells 2022; 11:3055. [PMID: 36231017 PMCID: PMC9564058 DOI: 10.3390/cells11193055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are well-known for their role in IgE-mediated cutaneous anaphylactic responses, but their regulatory functions in the skin are still under intense scrutiny. Using a Red MC and Basophil reporter (RMB) mouse allowing red fluorescent detection and diphtheria toxin mediated depletion of MCs, we investigated the interaction of MCs, Foxp3+ regulatory T lymphocytes (Tregs) and Langerhans cells (LCs) during passive cutaneous anaphylaxis (PCA) responses. Using intravital imaging we show that MCs are sessile at homeostasis and during PCA. Breeding RMB mice with Langerin-eGFP mice revealed that dermal MCs do not interact with epidermal-localized LCs, the latter showing constant sprouting of their dendrites at homeostasis and during PCA. When bred with Foxp3-eGFP mice, we found that, although a few Foxp3+ Tregs are present at homeostasis, many Tregs transiently infiltrated the skin during PCA. While their velocity during PCA was not altered, Tregs increased the duration of their contact time with MCs compared to PCA-control mice. Antibody-mediated depletion of Tregs had no effect on the intensity of PCA. Hence, the observed increase in Treg numbers and contact time with MCs, regardless of an effect on the intensity of PCA responses, suggests an anti-inflammatory role dedicated to prevent further MC activation.
Collapse
Affiliation(s)
- Rasha Msallam
- Institut Necker Enfants Malades, Centre National de la Recherche Scientifique UMR 8253, Université Paris Cité, Institute National de la Santé et de la Recherche Médicale U1151, 75020 Paris, France
| | - Bernard Malissen
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Pierre Launay
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Ulrich Blank
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Gregory Gautier
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Jean Davoust
- Institut Necker Enfants Malades, Centre National de la Recherche Scientifique UMR 8253, Université Paris Cité, Institute National de la Santé et de la Recherche Médicale U1151, 75020 Paris, France
- UVSQ, INSERM, END-ICAP, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
17
|
López-Sanz C, Jiménez-Saiz R, Esteban V, Delgado-Dolset MI, Perales-Chorda C, Villaseñor A, Barber D, Escribese MM. Mast Cell Desensitization in Allergen Immunotherapy. FRONTIERS IN ALLERGY 2022; 3:898494. [PMID: 35847161 PMCID: PMC9278139 DOI: 10.3389/falgy.2022.898494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only treatment with disease-transforming potential for allergic disorders. The immunological mechanisms associated with AIT can be divided along time in two phases: short-term, involving mast cell (MC) desensitization; and long-term, with a regulatory T cell (Treg) response with significant reduction of eosinophilia. This regulatory response is induced in about 70% of patients and lasts up to 3 years after AIT cessation. MC desensitization is characteristic of the initial phase of AIT and it is often related to its success. Yet, the molecular mechanisms involved in allergen-specific MC desensitization, or the connection between MC desensitization and the development of a Treg arm, are poorly understood. The major AIT challenges are its long duration, the development of allergic reactions during AIT, and the lack of efficacy in a considerable proportion of patients. Therefore, reaching a better understanding of the immunology of AIT will help to tackle these short-comings and, particularly, to predict responder-patients. In this regard, omics strategies are empowering the identification of predictive and follow-up biomarkers in AIT. Here, we review the immunological mechanisms underlying AIT with a focus on MC desensitization and AIT-induced adverse reactions. Also, we discuss the identification of novel biomarkers with predictive potential that could improve the rational use of AIT.
Collapse
Affiliation(s)
- Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- McMaster Immunology Research Centre (MIRC), Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - María Isabel Delgado-Dolset
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Carolina Perales-Chorda
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - María M. Escribese
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- *Correspondence: María M. Escribese
| |
Collapse
|
18
|
Longé C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, Huang JD, Fischer A, de Saint Basile G, Sepulveda FE, Blank U, Ménasché G. Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol 2022; 150:676-689. [PMID: 35469841 DOI: 10.1016/j.jaci.2022.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking towards the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVE Here, we analyzed the function of Rab44, a large atypical Rab GTPase highly expressed in MC, in MC degranulation process. METHODS Murine KO mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis (PCA) experiments and analyze granule translocation in derived bone-marrow-derived MCs (BMMCs) during degranulation. RESULTS We demonstrate that mice lacking Rab44 (KORab44) in their BMMCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane upon FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS Our results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered as a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathieu Kurowska
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pierre David
- Transgenesis Facility, Laboratoire d'Expérimentation Animale et Transgénèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Valère Desmeure
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015 Paris, France; Collège de France, F-75005 Paris, France
| | - Geneviève de Saint Basile
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre d'Etude des Déficits Immunitaires, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre National de la Recherche Scientifique, F-75015, Paris. France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| |
Collapse
|
19
|
Mast cell granule motility and exocytosis is driven by dynamic microtubule formation and kinesin-1 motor function. PLoS One 2022; 17:e0265122. [PMID: 35316306 PMCID: PMC8939832 DOI: 10.1371/journal.pone.0265122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Mast cells are tissue-resident immune cells that have numerous cytoplasmic granules which contain preformed pro-inflammatory mediators. Upon antigen stimulation, sensitized mast cells undergo profound changes to their morphology and rapidly release granule mediators by regulated exocytosis, also known as degranulation. We have previously shown that Rho GTPases regulate exocytosis, which suggests that cytoskeleton remodeling is involved in granule transport. Here, we used live-cell imaging to analyze cytoskeleton remodeling and granule transport in real-time as mast cells were antigen stimulated. We found that granule transport to the cell periphery was coordinated by de novo microtubule formation and not F-actin. Kinesore, a drug that activates the microtubule motor kinesin-1 in the absence of cargo, inhibited microtubule-granule association and significantly reduced exocytosis. Likewise, shRNA knock-down of Kif5b, the kinesin-1 heavy chain, also reduced exocytosis. Imaging showed granules accumulated in the perinuclear region after kinesore treatment or Kif5b knock-down. Complete microtubule depolymerization with nocodazole or colchicine resulted in the same effect. A biochemically enriched granule fraction showed kinesin-1 levels increase in antigen-stimulated cells, but are reduced by pre-treatment with kinesore. Kinesore had no effect on the levels of Slp3, a mast cell granule cargo adaptor, in the granule-enriched fraction which suggests that cargo adaptor recruitment to granules is independent of motor association. Taken together, these results show that granules associate with microtubules and are driven by kinesin-1 to facilitate exocytosis.
Collapse
|
20
|
Temporal Modulation of Drug Desensitization Procedures. Curr Issues Mol Biol 2022; 44:833-844. [PMID: 35723342 PMCID: PMC8929139 DOI: 10.3390/cimb44020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Drug hypersensitivity reactions are an unavoidable clinical consequence of the presence of new therapeutic agents. These adverse reactions concern patients afflicted with infectious diseases (e.g., hypersensitivity to antibiotics), and with non-infectious chronic diseases, such as in cancers, diabetes or cystic fibrosis treatments, and may occur at the first drug administration or after repeated exposures. Here we revise recent key studies on the mechanisms underlying the desensitization protocols, and propose an additional temporal regulation layer that is based on the circadian control of the signaling pathway involved and on the modulation of the memory effects established by the desensitization procedures.
Collapse
|
21
|
Vitte J, Vibhushan S, Bratti M, Montero-Hernandez JE, Blank U. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med Princ Pract 2022; 31:501-515. [PMID: 36219943 PMCID: PMC9841766 DOI: 10.1159/000527481] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
IgE-mediated type I hypersensitivity reactions have many reported beneficial functions in immune defense against parasites, venoms, toxins, etc. However, they are best known for their role in allergies, currently affecting almost one third of the population worldwide. IgE-mediated allergic diseases result from a maladaptive type 2 immune response that promotes the synthesis of IgE antibodies directed at a special class of antigens called allergens. IgE antibodies bind to type I high-affinity IgE receptors (FcεRI) on mast cells and basophils, sensitizing them to get triggered in a subsequent encounter with the cognate allergen. This promotes the release of a large variety of inflammatory mediators including histamine responsible for the symptoms of immediate hypersensitivity. The development of type 2-driven allergies is dependent on a complex interplay of genetic and environmental factors at barrier surfaces including the host microbiome that builds up during early life. While IgE-mediated immediate hypersensitivity reactions are undoubtedly at the origin of the majority of allergies, it has become clear that similar responses and symptoms can be triggered by other types of adaptive immune responses mediated via IgG or complement involving other immune cells and mediators. Likewise, various nonadaptive innate triggers via receptors expressed on mast cells have been found to either directly launch a hypersensitivity reaction and/or to amplify existing IgE-mediated responses. This review summarizes recent findings on both IgE-dependent and IgE-independent mechanisms in the development of allergic hypersensitivities and provides an update on the diagnosis of allergy.
Collapse
Affiliation(s)
- Joana Vitte
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- IDESP, INSERM UMR UA 11, Montpellier, France
| | - Shamila Vibhushan
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Manuela Bratti
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Juan Eduardo Montero-Hernandez
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
| | - Ulrich Blank
- Université Paris Cité - Centre de Recherche sur l'Inflammation, INSERM UMRS 1149, CNRS EMR8252, Laboratoire d'Excellence Inflamex, Paris, France
- *Ulrich Blank,
| |
Collapse
|
22
|
Mast cell activation syndrome: is anaphylaxis part of the phenotype? A systematic review. Curr Opin Allergy Clin Immunol 2021; 21:426-434. [PMID: 34292177 DOI: 10.1097/aci.0000000000000768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Mast cell activation syndrome (MCAS) and anaphylaxis are the result of a spontaneous or triggered pathological degranulation of mast cells (MCs) and might have as substrate normal or pathological MCs (increased burden, aberrant MCs or both). RECENT FINDINGS This review summarizes the most recent evidence on immunoglobulin E (IgE)-mediated and non IgE-mediated mechanisms underlying MC activation and degranulation and highlights the importance of standardized diagnostic criteria for MCAS. Application of these criteria implies that in most cases the clinical presentation of MCAS meets the diagnostic criteria for anaphylaxis. SUMMARY Integrating clinical parameters and diagnostic test recognition and underlying clonal MC disease are of utmost importance for a patient-tailored approach. Hereditary alpha-tryptasemia can be encountered in context of anaphylaxis, MCAS and primary MC disorders.
Collapse
|