1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Jing HH, Hao D, Liu XJ, Cui MJ, Xue KJ, Wang DS, Zhang JH, Lu Y, Tian GY, Liu SL. Development and validation of a radiopathomics model for predicting liver metastases of colorectal cancer. Eur Radiol 2025; 35:3409-3417. [PMID: 39621056 PMCID: PMC12081500 DOI: 10.1007/s00330-024-11198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/09/2024] [Indexed: 05/16/2025]
Abstract
OBJECTIVE To compare the ability of a model based on CT radiomics features, a model based on clinical data, and a fusion model based on a combination of both radiomics and clinical data to predict the risk of liver metastasis after surgery for colorectal cancer. METHODS Two hundred and twelve patients with pathologically confirmed colorectal cancer were divided into a training set (n = 148) and a validation set (n = 64). Radiomics features from the most recent CT scans and clinical data obtained before surgery were extracted. Random forest models were trained to predict tumors with clinical data and evaluated using the area under the receiver-operating characteristic curve (AUC) and other metrics on the validation set. RESULTS Fourteen features were selected to establish the radiomics model, which yielded an AUC of 0.751 for the training set and an AUC of 0.714 for the test set. The fusion model, based on a combination of the radiomics signature and clinical data, showed good performance in both the training set (AUC 0.952) and the test set (AUC 0.761). CONCLUSION We have developed a fusion model that integrates radiomics features with clinical data. This fusion model could serve as a non-invasive, reliable, and accurate tool for the preoperative prediction of liver metastases after surgery for colorectal cancer. KEY POINTS Question Can a radiomics and clinical fusion model improve the prediction of liver metastases in colorectal cancer and help optimize clinical decision-making? Findings The presented fusion model combining CT radiomics and clinical data showed superior accuracy in predicting colorectal cancer liver metastases compared to single models. Clinical relevance Our study provides a non-invasive, relatively accurate method for predicting the risk of liver metastasis, improving personalized treatment decisions, and enhancing preoperative planning and prognosis management in colorectal cancer patients.
Collapse
Affiliation(s)
- Han-Hui Jing
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| | - Di Hao
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Xue-Jun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Ming-Juan Cui
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Kui-Jin Xue
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Dong-Sheng Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jun-Hao Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yun Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Guang-Ye Tian
- School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Shang-Long Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Yu L, Wang H, Wang F, Guo J, Xiao B, Hou Z, Lu Z, Pan Z, Zhou Y, Ye S, Wan D, Lin B, Ou Q, Fang Y. Serum biomarkers REG1A and REG3A combined with the traditional CEA represent a novel nomogram for the screening and risk stratification of colorectal cancer. Clin Transl Oncol 2025; 27:277-290. [PMID: 38965192 DOI: 10.1007/s12094-024-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND To develop and validate a serum protein nomogram for colorectal cancer (CRC) screening. METHODS The serum protein characteristics were extracted from an independent sample containing 30 colorectal cancer and 12 polyp tissues along with their paired samples, and different serum protein expression profiles were validated using RNA microarrays. The prediction model was developed in a training cohort that included 1345 patients clinicopathologically confirmed CRC and 518 normal participants, and data were gathered from November 2011 to January 2017. The lasso logistic regression model was employed for features selection and serum nomogram building. An internal validation cohort containing 576 CRC patients and 222 normal participants was assessed. RESULTS Serum signatures containing 27 secreted proteins were significantly differentially expressed in polyps and CRC compared to paired normal tissue, and REG family proteins were selected as potential predictors. The C-index of the nomogram1 (based on Lasso logistic regression model) which contains REG1A, REG3A, CEA and age was 0.913 (95% CI, 0.899 to 0.928) and was well calibrated. Addition of CA199 to the nomogram failed to show incremental prognostic value, as shown in nomogram2 (based on logistic regression model). Application of the nomogram1 in the independent validation cohort had similar discrimination (C-index, 0.912 [95% CI, 0.890 to 0.934]) and good calibration. The decision curve (DCA) and clinical impact curve (ICI) analysis demonstrated that nomogram1 was clinically useful. CONCLUSIONS This study presents a serum nomogram that included REG1A, REG3A, CEA and age, which can be convenient for screening of colorectal cancer.
Collapse
Affiliation(s)
- Long Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Hao Wang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Fulong Wang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jian Guo
- Senboll Biotechnology Co., Ltd., Pingshan Bio-Pharmacy Business Accelerator, Pingshan District, Shenzhen, 518000, Guangdong, China
| | - Binyi Xiao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhenlin Hou
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yaxian Zhou
- Senboll Biotechnology Co., Ltd., Pingshan Bio-Pharmacy Business Accelerator, Pingshan District, Shenzhen, 518000, Guangdong, China
| | - Sibin Ye
- Senboll Biotechnology Co., Ltd., Pingshan Bio-Pharmacy Business Accelerator, Pingshan District, Shenzhen, 518000, Guangdong, China
| | - Desen Wan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Bo Lin
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Morasso C, Daveri E, Bonizzi A, Truffi M, Colombo F, Danelli P, Albasini S, Rivoltini L, Mazzucchelli S, Sorrentino L, Corsi F. Raman spectroscopy on dried blood plasma allows diagnosis and monitoring of colorectal cancer. MedComm (Beijing) 2024; 5:e774. [PMID: 39492836 PMCID: PMC11527808 DOI: 10.1002/mco2.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
Colorectal cancer (CRC) remains challenging to diagnose, necessitating the identification of a noninvasive biomarker that can differentiate it from other conditions such as inflammatory bowel diseases (IBD) and diverticular disease (DD). Raman spectroscopy (RS) stands out as a promising technique for monitoring blood biochemical profiles, with the potential to identify distinct signatures identifying CRC subjects. We performed RS analysis on dried plasma from 120 subjects: 32 CRC patients, 37 IBD patients, 20 DD patients, and 31 healthy controls. We also conducted longitudinal studies of CRC patient's postsurgery to monitor the spectral changes over time. We identified six spectral features that showed significant differences between CRC and non-CRC patients, corresponding to tryptophan, tyrosine, phenylalanine, lipids, carotenoids, and disulfide bridges. These features enabled the classification of CRC patients with an accuracy of 87.5%. Moreover, longitudinal analysis revealed that the spectral differences normalized over 6 months after surgery, indicating their association with the presence of the disease. Our study demonstrates the potential of RS to identify specific biomolecular signatures related to CRC. These results suggest that RS could be a novel screening and monitoring tool, providing valuable insights for the development of noninvasive and accurate diagnostic methods for CRC.
Collapse
Affiliation(s)
- Carlo Morasso
- Laboratory of NanomedicineIstituti Clinici Scientifici Maugeri IRCCSPaviaItaly
| | - Elena Daveri
- Translational Immunology UnitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Arianna Bonizzi
- Laboratory of NanomedicineIstituti Clinici Scientifici Maugeri IRCCSPaviaItaly
| | - Marta Truffi
- Laboratory of NanomedicineIstituti Clinici Scientifici Maugeri IRCCSPaviaItaly
| | - Francesco Colombo
- Division of General Surgery“Luigi Sacco” University HospitalASST Fatebenefratelli‐SaccoMilanItaly
| | - Piergiorgio Danelli
- Division of General Surgery“Luigi Sacco” University HospitalASST Fatebenefratelli‐SaccoMilanItaly
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Sara Albasini
- Breast UnitIstituti Clinici Scientifici Maugeri IRCCSPaviaItaly
| | - Licia Rivoltini
- Translational Immunology UnitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | | | - Luca Sorrentino
- Colorectal surgery unitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Fabio Corsi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Breast UnitIstituti Clinici Scientifici Maugeri IRCCSPaviaItaly
| |
Collapse
|
5
|
Mansour H, Nejjari C, Incitti R, Anouar N, Ouhajjou A. Is the development of liquid biopsy for the early detection and the monitoring of breast cancers on its way of overtaking mammography? Front Med (Lausanne) 2024; 11:1415940. [PMID: 39185467 PMCID: PMC11341495 DOI: 10.3389/fmed.2024.1415940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Mammography, as of today, is used as a gold standard for screening, diagnosing, and monitoring breast cancer (BC). While overall beneficial, it presents several downsides, such as limitations in accuracy, relatively high costs, and dependence on heavy infrastructure, greatly limiting accessibility for the entire global target population. There is currently no established alternative to mammography, and overcoming this major challenge is a hot topic in research and technology. One avenue for tackling this issue is the development of highly sensitive and specific non-invasive blood tests for the early diagnosis and follow-up of breast cancer. This paper discusses the limitations of mammography and recapitulates the blood tests already available, those under development, and future developments in this field.
Collapse
Affiliation(s)
| | - Chakib Nejjari
- Euromed Research Center, Euromed University of Fes, Fes, Morocco
- Faculty of Medicine, Pharmacy, and Dentistry, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | | | - Naima Anouar
- GES/LCME-FPN, Mohamed 1st University, Nador, Morocco
| | | |
Collapse
|
6
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
7
|
Taghizadeh-Teymorloei M, Alizadeh L, Matin S, Jafari-Koshki T, Karimi A. Diagnostic and prognostic significance of ALU-based cell-free DNA in colorectal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1398062. [PMID: 39169935 PMCID: PMC11335620 DOI: 10.3389/fonc.2024.1398062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is a major global health concern. This study aimed to investigate the role of ALU-based cell-free DNA (cfDNA) in the diagnosis and prognosis of CRC. Methods We selected relevant literature from PubMed, Scopus, Web of Science, EMBASE, and Science Direct databases based on strict inclusion and exclusion criteria. 17 eligible studies were included in the final analysis (13 studies for diagnostic and 4 studies for prognostic meta-analysis). The search covered relevant publications up to July 1, 2024. Results The pooled sensitivity, specificity, and diagnostic odds ratios (DOR) of ALU-based cfDNA in CRC diagnosis were 0.81 (95% CI= [0.70, 0.89]), 0.90 (95% CI= [0.70, 0.96]), and 40.58 (95% CI= [17.87, 92.19]), respectively. The area under the ROC curve was 0.92 (95% CI= [0.89, 0.94]). Patients with higher concentrations of plasma/serum ALU-based cfDNA had poorer overall survival (OS) (pooled hazard ratio = 2.33 ([95% CI= [1.80, 3.03]). Conclusion The current evidence supports the utility of circulating ALU as a promising non-invasive diagnostic and prognostic tool for CRC. Furthermore, as a potential biomarker, ALU-based cfDNA could play a significant role in clinical application. Clinical implications The evidence suggests that circulating ALU-based cell-free DNA (cfDNA) holds promise as a non-invasive diagnostic and prognostic tool for colorectal cancer, potentially enhancing clinical decision-making. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42023486369).
Collapse
Affiliation(s)
- Mohammad Taghizadeh-Teymorloei
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Gastroenterology and Liver Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Matin
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tohid Jafari-Koshki
- Molecular Medicine Research Center (MMRC), Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Epidemiology and Biostatistics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
9
|
Bahrambeigi V, Lee JJ, Branchi V, Rajapakshe KI, Xu Z, Kui N, Henry JT, Kun W, Stephens BM, Dhebat S, Hurd MW, Sun R, Yang P, Ruppin E, Wang W, Kopetz S, Maitra A, Guerrero PA. Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-Specific Transcriptome and Molecular Subtype. Cancer Res 2024; 84:1719-1732. [PMID: 38451249 PMCID: PMC11096054 DOI: 10.1158/0008-5472.can-23-4070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. SIGNIFICANCE The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.
Collapse
Affiliation(s)
- Vahid Bahrambeigi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaewon J. Lee
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vittorio Branchi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal I. Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhichao Xu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naishu Kui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T. Henry
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wang Kun
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bret M. Stephens
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Dhebat
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Yang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics Rice University, Houston, TX, USA
| | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wenyi Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A. Guerrero
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Huang W, Das NK, Radyk MD, Keeley T, Quiros M, Jain C, El-Derany MO, Swaminathan T, Dziechciarz S, Greenson JK, Nusrat A, Samuelson LC, Shah YM. Dietary Iron Is Necessary to Support Proliferative Regeneration after Intestinal Injury. J Nutr 2024; 154:1153-1164. [PMID: 38246358 PMCID: PMC11181351 DOI: 10.1016/j.tjnut.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Megan D Radyk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Theresa Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Chesta Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thaarini Swaminathan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
11
|
Nagainallur Ravichandran S, Das D, Dayananda EK, Dey A, Banerjee A, Sun-Zhang A, Zhang H, Sun XF, Pathak S. A Review on Emerging Techniques for Diagnosis of Colorectal Cancer. Cancer Invest 2024; 42:119-140. [PMID: 38404236 DOI: 10.1080/07357907.2024.2315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Common detection methods in practice for diagnosing colorectal cancer (CRC) are painful and invasive leading to less participation of individuals for CRC diagnosis. Whereas, improved or enhanced imaging systems and other minimally invasive techniques with shorter detection times deliver greater detail and less discomfort in individuals. Thus, this review is a summary of the diagnostic tests, ranging from the simple potential use in developing a flexible CRC treatment to the patient's potential benefits in receiving less invasive procedures and the advanced treatments that might provide a better assessment for the diagnosis of CRC and reduce the mortality related to CRC.
Collapse
Affiliation(s)
- Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Erica Katriel Dayananda
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Amit Dey
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- Faculty of Medicine and Health, School of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, India
| |
Collapse
|
12
|
Robles J, Prakash A, Vizcaíno JA, Casal JI. Integrated meta-analysis of colorectal cancer public proteomic datasets for biomarker discovery and validation. PLoS Comput Biol 2024; 20:e1011828. [PMID: 38252632 PMCID: PMC10833860 DOI: 10.1371/journal.pcbi.1011828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Collapse
Affiliation(s)
- Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - Ananth Prakash
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
13
|
Kumarasamy G, Mohd Salim NH, Mohd Afandi NS, Hazlami Habib MA, Mat Amin ND, Ismail MN, Musa M. Glycoproteomics-based liquid biopsy: translational outlook for colorectal cancer clinical management in Southeast Asia. Future Oncol 2023; 19:2313-2332. [PMID: 37937446 DOI: 10.2217/fon-2023-0704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Colorectal cancer (CRC) signifies a significant healthcare challenge in Southeast Asia. Despite advancements in screening approaches and treatment modalities, significant medical gaps remain, ranging from prevention and early diagnosis to determining targeted therapy and establishing personalized approaches to managing CRC. There is a need to expand more validated biomarkers in clinical practice. An advanced technique incorporating high-throughput mass spectrometry as a liquid biopsy to unravel a repertoire of glycoproteins and glycans would potentially drive the development of clinical tools for CRC screening, diagnosis and monitoring, and it can be further adapted to the existing standard-of-care procedure. Therefore this review offers a perspective on glycoproteomics-driven liquid biopsy and its potential integration into the clinical care of CRC in the southeast Asia region.
Collapse
Affiliation(s)
- Gaayathri Kumarasamy
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Nurul Hakimah Mohd Salim
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
- Nature Products Division, Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia
| | - Mohd Nazri Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| |
Collapse
|
14
|
Lavacchi D, Gelmini S, Calabri A, Rossi G, Simi L, Caliman E, Mancini I, Salvianti F, Petroni G, Guidolin A, Scolari F, Messerini L, Pillozzi S, Pinzani P, Antonuzzo L. Early changes in circulating tumor DNA (ctDNA) predict treatment response in metastatic KRAS-mutated colorectal cancer (mCRC) patients. Heliyon 2023; 9:e21853. [PMID: 38027900 PMCID: PMC10663919 DOI: 10.1016/j.heliyon.2023.e21853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The detection of RAS mutations and co-mutations in liquid biopsy offers a novel paradigm for the dynamic management of metastatic colorectal cancer (mCRC) patients. Expanding the results of the prospective OMITERC (OMIcs application from solid to liquid biopsy for a personalized ThERapy of Cancer) project, we collected blood samples at specific time points from patients who received a first-line chemotherapy (CT) for KRAS-mutated mCRC. CTC quantification was performed by CellSearch® system. Libraries from cfDNA were prepared using the Oncomine™ Colon cfDNA Assay to detect tumour-derived DNA in cfDNA. The analysis involved >240 hotspots in 14 genes. Twenty patients with KRAS-mutated mCRC treated at the Medical Oncology Unit of Careggi University Hospital were prospectively enrolled. Nine patients had available data for longitudinal monitoring of cfDNA. After 6 weeks of first-line CT an increase of KRAS-mutated clone was reported in the only patient who did not obtain disease control, while all patients with decrease of KRAS clones obtained disease control. Overall, in patients with a short (<9 months) progression-free survival (PFS) we registered, at 6 weeks, an increase in cfDNA levels and in KRAS mutations or other co-mutations, i.e. PIK3CA, FBXW7, GNAS, and TP53. In selected cases, co-mutations were able to better anticipate radiological progressive disease (PD) than the increase of KRAS-mutated clones. In conclusion, our study confirms plasma ctDNA as a crucial tool for anticipating PD at an early time point and highlights the value of a comprehensive assessment of clonal dynamics to improve the management of patients with mCRC.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Stefania Gelmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Adele Calabri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gemma Rossi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Lisa Simi
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Irene Mancini
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Federico Scolari
- Department of Health Science, University of Florence, Florence, Italy
| | - Luca Messerini
- Pathology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Gallardo-Gómez M, Rodríguez-Girondo M, Planell N, Moran S, Bujanda L, Etxart A, Castells A, Balaguer F, Jover R, Esteller M, Cubiella J, Gómez-Cabrero D, De Chiara L. Serum methylation of GALNT9, UPF3A, WARS, and LDB2 as noninvasive biomarkers for the early detection of colorectal cancer and advanced adenomas. Clin Epigenetics 2023; 15:157. [PMID: 37794510 PMCID: PMC10552320 DOI: 10.1186/s13148-023-01570-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Early detection has proven to be the most effective strategy to reduce the incidence and mortality of colorectal cancer (CRC). Nevertheless, most current screening programs suffer from low participation rates. A blood test may improve both the adherence to screening and the selection to colonoscopy. In this study, we conducted a serum-based discovery and validation of cfDNA methylation biomarkers for CRC screening in a multicenter cohort of 433 serum samples including healthy controls, benign pathologies, advanced adenomas (AA), and CRC. RESULTS First, we performed an epigenome-wide methylation analysis with the MethylationEPIC array using a sample pooling approach, followed by a robust prioritization of candidate biomarkers for the detection of advanced neoplasia (AN: AA and CRC). Then, candidate biomarkers were validated by pyrosequencing in independent individual cfDNA samples. We report GALNT9, UPF3A, WARS, and LDB2 as new noninvasive biomarkers for the early detection of AN. The combination of GALNT9/UPF3A by logistic regression discriminated AN with 78.8% sensitivity and 100% specificity, outperforming the commonly used fecal immunochemical test and the methylated SEPT9 blood test. CONCLUSIONS Overall, this study highlights the utility of cfDNA methylation for CRC screening. Our results suggest that the combination methylated GALNT9/UPF3A has the potential to serve as a highly specific and sensitive blood-based test for screening and early detection of CRC.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- CINBIO, Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, CINBIO, Universidade de Vigo, Campus As Lagoas-Marcosende s/n. 36310, Vigo, Spain
- Translational Oncology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Núria Planell
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de La Granvia, 199. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Biodonostia Health Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Ane Etxart
- Department of Surgery, Hospital Universitario Donostia, San Sebastián, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Rodrigo Jover
- Department of Gastroenterology, Hospital General Universitario de Alicante, Alicante, Spain
- Servicio de Medicina Digestiva. ISABIAL. Universidad Miguel Hernández, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Ourense, Spain
| | - David Gómez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, UK
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo, Spain.
- Department of Biochemistry, Genetics and Immunology, CINBIO, Universidade de Vigo, Campus As Lagoas-Marcosende s/n. 36310, Vigo, Spain.
- Translational Oncology Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
- Cancer Genomics Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
16
|
Eikenboom EL, Wilting SM, Deger T, Srebniak MI, Van Veghel-Plandsoen M, Boers RG, Boers JB, van IJcken WFJ, Gribnau JH, Atmodimedjo P, Dubbink HJ, Martens JWM, Spaander MCW, Wagner A. Liquid Biopsies for Colorectal Cancer and Advanced Adenoma Screening and Surveillance: What to Measure? Cancers (Basel) 2023; 15:4607. [PMID: 37760576 PMCID: PMC10526371 DOI: 10.3390/cancers15184607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) colonoscopic surveillance is effective but burdensome. Circulating tumor DNA (ctDNA) analysis has emerged as a promising, minimally invasive tool for disease detection and management. Here, we assessed which ctDNA assay might be most suitable for a ctDNA-based CRC screening/surveillance blood test. In this prospective, proof-of-concept study, patients with colonoscopies for Lynch surveillance or the National Colorectal Cancer screening program were included between 7 July 2019 and 3 June 2022. Blood was drawn, and if advanced neoplasia (adenoma with villous component, high-grade dysplasia, ≥10 mm, or CRC) was detected, it was analyzed for chromosomal copy number variations, single nucleotide variants, and genome-wide methylation (MeD-seq). Outcomes were compared with corresponding patients' tissues and the MeD-seq results of healthy blood donors. Two Lynch carriers and eight screening program patients were included: five with CRC and five with advanced adenomas. cfDNA showed copy number variations and single nucleotide variants in one patient with CRC and liver metastases. Eight patients analyzed with MeD-seq showed clustering of Lynch-associated and sporadic microsatellite instable lesions separate from microsatellite stable lesions, as did healthy blood donors. In conclusion, whereas copy number changes and single nucleotide variants were only detected in one patient, cfDNA methylation profiles could discriminate all microsatellite instable advanced neoplasia, rendering this tool particularly promising for LS surveillance. Larger studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Ellis L. Eikenboom
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (E.L.E.); (M.I.S.); (M.V.V.-P.)
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.M.W.); (T.D.); (J.W.M.M.)
| | - Teoman Deger
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.M.W.); (T.D.); (J.W.M.M.)
| | - Malgorzata I. Srebniak
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (E.L.E.); (M.I.S.); (M.V.V.-P.)
| | - Monique Van Veghel-Plandsoen
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (E.L.E.); (M.I.S.); (M.V.V.-P.)
| | - Ruben G. Boers
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (R.G.B.); (J.B.B.); (J.H.G.)
| | - Joachim B. Boers
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (R.G.B.); (J.B.B.); (J.H.G.)
| | | | - Joost H. Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (R.G.B.); (J.B.B.); (J.H.G.)
| | - Peggy Atmodimedjo
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (P.A.); (H.J.D.)
| | - Hendrikus J. Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (P.A.); (H.J.D.)
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.M.W.); (T.D.); (J.W.M.M.)
| | - Manon C. W. Spaander
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (E.L.E.); (M.I.S.); (M.V.V.-P.)
| |
Collapse
|
17
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Verner EL, Jackson JB, Severson E, Valkenburg KC, Greer AE, Riley DR, Sausen M, Maddox C, McGregor PM, Karandikar A, Hastings SB, Previs RA, Reddy VP, Jensen TJ, Ramkissoon SH. Validation of the Labcorp Plasma Focus Test to Facilitate Precision Oncology Through Cell-Free DNA Genomic Profiling of Solid Tumors. J Mol Diagn 2023; 25:477-489. [PMID: 37068734 DOI: 10.1016/j.jmoldx.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Genomic profiling is critical for precision oncology to guide treatment decisions. Liquid biopsy testing is a complementary approach to tissue testing, particularly when tissue is not readily available. The Labcorp Plasma Focus test is a circulating cell-free DNA genomic profiling test that identifies actionable variants in solid cancers, including non-small-cell lung, colorectal, melanoma, breast, esophageal, gastroesophageal junction, and gastric cancers. This study highlights the analytical validation of the test, including accuracy compared with orthogonal methods, as well as sensitivity, specificity, precision, reproducibility, and repeatability. Concordance with orthogonal methods showed percent positive agreement of 98.7%, 89.3%, and 96.2% for single nucleotide variants (SNVs), insertion/deletions (indels), and copy number amplifications (CNAs), respectively, and 100.0% for translocations and microsatellite instability (MSI). Analytical sensitivity revealed a median limit of detection of 0.7% and 0.6% for SNVs and indels, 1.4-fold for CNAs, 0.5% variant allele frequency for translocations, and 0.6% for MSI. Specificity was >99% for SNVs/indels and 100% for CNAs, translocations, and MSI. Average positive agreement from precision, reproducibility, and repeatability experiments was 97.5% and 88.9% for SNVs/indels and CNAs, and 100% for translocations and MSI. Taken together, these data show that the Labcorp Plasma Focus test is a highly accurate, sensitive, and specific approach for cell-free DNA genomic profiling to supplement tissue testing and inform treatment decisions.
Collapse
Affiliation(s)
- Ellen L Verner
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland.
| | | | - Eric Severson
- Enterprise Oncology, Labcorp, Durham, North Carolina
| | | | - Amy E Greer
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | - David R Riley
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | - Mark Sausen
- Personal Genome Diagnostics (PGDx), Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manisekaran R, Chettiar ADR, Kandasamy G, Garcia-Contreras R, Acosta-Torres LS. State-of-the-art: MXene structures in nano-oncology. BIOMATERIALS ADVANCES 2023; 147:213354. [PMID: 36842245 DOI: 10.1016/j.bioadv.2023.213354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Cancer nanomedicine has been investigated widely and boomed in the last two decades, resulting in designing nanostructures with biofunctionalization, giving rise to an "All-in-One" multifunctional platform. The development of rational design technology with extended functionalities brought interdisciplinary researchers to work continuously, aiming to find a prevent or effectively treat the deadly disease of the century. Thus, it led to some Food and Drug Administration (FDA)-approving nano-based formulations for cancer treatment and opening a vast area of promising discoveries by exploiting different nanomaterials. Two-dimensional (2D) materials have recently gained tremendous interest among scientists because of their outstanding structural, optical, electronic, thermal, and mechanical characteristics. Among various 2D nanomaterials, MXenes are a widely studied nanosystem because of their close similarity to graphene analogs. So, it is synthesized using multiple approaches and exploits their inherited properties. But in most cases, surface functionalization techniques are carried out for targeting, site-specific drug clearance, renal clearance, and biocompatible with healthy cells. Thus, fabricating a multimodal agent for mono or combined therapies is also an image-guided diagnostic agent. This review will explain the recent and emerging advancements of MXenes-based composites as a multifunctional theragnostic agent and discuss the possibilities of transferring laboratory research to clinical translation.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico.
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684 León, Mexico
| |
Collapse
|
20
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
21
|
Li S, Zhou B. A review of radiomics and genomics applications in cancers: the way towards precision medicine. Radiat Oncol 2022; 17:217. [PMID: 36585716 PMCID: PMC9801589 DOI: 10.1186/s13014-022-02192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and improve the development of individualized treatment guidance. In this review, we summarized recent research on radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible analyses and develop it as a mature field.
Collapse
Affiliation(s)
- Simin Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| | - Baosen Zhou
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
22
|
MicroRNAs miR-584-5p and miR-425-3p Are Up-Regulated in Plasma of Colorectal Cancer (CRC) Patients: Targeting with Inhibitor Peptide Nucleic Acids Is Associated with Induction of Apoptosis in Colon Cancer Cell Lines. Cancers (Basel) 2022; 15:cancers15010128. [PMID: 36612125 PMCID: PMC9817681 DOI: 10.3390/cancers15010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated. Our data demonstrate that targeting bloodstream up-regulated miRNAs using anti-miRNA PNAs leads to the down-regulation of target miRNAs associated with inhibition of the activation of the pro-apoptotic pathway in CRC cellular models. Moreover, very high percentages of apoptotic cells were found when the anti-miRNA PNAs were associated with other pro-apoptotic agents, such as sulforaphane (SFN). The presented data sustain the idea that the targeting of miRNAs up-regulated in the bloodstream with a known role in tumor pathology might be a tool for the design of protocols for anti-tumor therapy based on miRNA-targeting molecules.
Collapse
|
23
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
24
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
25
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Defining A Liquid Biopsy Profile of Circulating Tumor Cells and Oncosomes in Metastatic Colorectal Cancer for Clinical Utility. Cancers (Basel) 2022; 14:cancers14194891. [PMID: 36230811 PMCID: PMC9563925 DOI: 10.3390/cancers14194891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Metastatic colorectal cancer (mCRC) is typified by its tumor heterogeneity and changing disease states, suggesting that personalized medicine approaches could be vital to improving clinical practice. As a minimally invasive approach, the liquid biopsy has the potential to be a powerful longitudinal prognostic tool. We investigated mCRC patients’ peripheral blood samples using an enrichment-free single-cell approach to capture the broader rare-event population beyond the conventionally detected epithelial-derived circulating tumor cell (CTC). Our analysis reveals a heterogenous profile of CTCs and oncosomes not commonly found in normal donor samples. We identified select rare cell types based on their distinct immunofluorescence expression and morphology across multiple assays. Lastly, we highlight correlations between enumerations of the blood-based analytes and progression-free survival. This study clinically validates an unbiased rare-event approach in the liquid biopsy, motivating future studies to further investigate these analytes for their prognostic potential. Abstract Metastatic colorectal cancer (mCRC) is characterized by its extensive disease heterogeneity, suggesting that individualized analysis could be vital to improving patient outcomes. As a minimally invasive approach, the liquid biopsy has the potential to longitudinally monitor heterogeneous analytes. Current platforms primarily utilize enrichment-based approaches for epithelial-derived circulating tumor cells (CTC), but this subtype is infrequent in the peripheral blood (PB) of mCRC patients, leading to the liquid biopsy’s relative disuse in this cancer type. In this study, we evaluated 18 PB samples from 10 mCRC patients using the unbiased high-definition single-cell assay (HDSCA). We first employed a rare-event (Landscape) immunofluorescence (IF) protocol, which captured a heterogenous CTC and oncosome population, the likes of which was not observed across 50 normal donor (ND) samples. Subsequent analysis was conducted using a colorectal-targeted IF protocol to assess the frequency of CDX2-expressing CTCs and oncosomes. A multi-assay clustering analysis isolated morphologically distinct subtypes across the two IF stains, demonstrating the value of applying an unbiased single-cell approach to multiple assays in tandem. Rare-event enumerations at a single timepoint and the variation of these events over time correlated with progression-free survival. This study supports the clinical utility of an unbiased approach to interrogating the liquid biopsy in mCRC, representing the heterogeneity within the CTC classification and warranting the further molecular characterization of the rare-event analytes with clinical promise.
Collapse
|
27
|
Mauri G, Vitiello PP, Sogari A, Crisafulli G, Sartore-Bianchi A, Marsoni S, Siena S, Bardelli A. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br J Cancer 2022; 127:394-407. [PMID: 35264786 PMCID: PMC9346106 DOI: 10.1038/s41416-022-01769-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. Despite recent improvements in treatment and prevention, most of the current therapeutic options are weighted by side effects impacting patients' quality of life. Better patient selection towards systemic treatments represents an unmet clinical need. The recent multidisciplinary and molecular advancements in the treatment of CRC patients demand the identification of efficient biomarkers allowing to personalise patient care. Currently, core tumour biopsy specimens represent the gold-standard biological tissue to identify such biomarkers. However, technical feasibility, tumour heterogeneity and cancer evolution are major limitations of this single-snapshot approach. Genotyping circulating tumour DNA (ctDNA) has been addressed as potentially overcoming such limitations. Indeed, ctDNA has been retrospectively demonstrated capable of identifying minimal residual disease post-surgery and post-adjuvant treatment, as well as spotting druggable molecular alterations for tailoring treatments in metastatic disease. In this review, we summarise the available evidence on ctDNA applicability in CRC. Then, we review ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC. Finally, we discuss how its widespread could transform CRC patients' management, dissecting its limitations while suggesting improvement strategies.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Pietro Paolo Vitiello
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Alberto Sogari
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | | | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy.
| |
Collapse
|
28
|
Mukherji R, Yin C, Hameed R, Alqahtani AZ, Kulasekaran M, He AR, Weinberg BA, Marshall JL, Hartley ML, Noel MS. The current state of molecular profiling in gastrointestinal malignancies. Biol Direct 2022; 17:15. [PMID: 35668531 PMCID: PMC9172079 DOI: 10.1186/s13062-022-00322-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/19/2022] [Indexed: 11/10/2022] Open
Abstract
This is a review of the current state of molecular profiling in gastrointestinal (GI) cancers and what to expect from this evolving field in the future. Individualized medicine is moving from broad panel testing of numerous genes or gene products in tumor biopsy samples, identifying biomarkers of prognosis and treatment response, to relatively noninvasive liquid biopsy assays, building on what we have learned in our tumor analysis and growing into its own evolving predictive and prognostic subspecialty. Hence, the field of GI precision oncology is exploding, and this review endeavors to summarize where we are now in preparation for the journey ahead.
Collapse
Affiliation(s)
- Reetu Mukherji
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Chao Yin
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Rumaisa Hameed
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Ali Z Alqahtani
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Monika Kulasekaran
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Aiwu R He
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Benjamin A Weinberg
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - John L Marshall
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Marion L Hartley
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA
| | - Marcus S Noel
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA.
- MedStar Georgetown University Hospital, 3800 Reservoir Rd. NW, Washington, DC, 20007, USA.
| |
Collapse
|
29
|
Yang M, Sun M, Zhang H. The Interaction Between Epigenetic Changes, EMT, and Exosomes in Predicting Metastasis of Colorectal Cancers (CRC). Front Oncol 2022; 12:879848. [PMID: 35712512 PMCID: PMC9197117 DOI: 10.3389/fonc.2022.879848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) ranks as the third most common malignancy, and the second most deadly with nearly one million attributable deaths in 2020. Metastatic disease is present in nearly 25% of newly diagnosed CRC, and despite advances in chemotherapy, less than 20% will remain alive at 5 years. Epigenetic change plays a key role in the epithelial-to-mesenchymal transition (EMT), which is a crucial phenotype for metastasis and mainly includes DNA methylation, non-coding RNAs (ncRNAs), and N6-methyladenosine (m6A) RNA, seemingly valuable biomarkers in CRCs. For ncRNAs, there exists a “molecular sponge effect” between long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The detection of exosomes is a novel method in CRC monitoring, especially for predicting metastasis. There is a close relationship between exosomes and EMT in CRCs. This review summarizes the close relationship between epigenetic changes and EMT in CRCs and emphasizes the crucial function of exosomes in regulating the EMT process.
Collapse
|
30
|
Isik Z, Leblebici A, Demir Karaman E, Karaca C, Ellidokuz H, Koc A, Ellidokuz EB, Basbinar Y. In silico identification of novel biomarkers for key players in transition from normal colon tissue to adenomatous polyps. PLoS One 2022; 17:e0267973. [PMID: 35486660 PMCID: PMC9053805 DOI: 10.1371/journal.pone.0267973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Adenomatous polyps of the colon are the most common neoplastic polyps. Although most of adenomatous polyps do not show malign transformation, majority of colorectal carcinomas originate from neoplastic polyps. Therefore, understanding of this transformation process would help in both preventive therapies and evaluation of malignancy risks. This study uncovers alterations in gene expressions as potential biomarkers that are revealed by integration of several network-based approaches. In silico analysis performed on a unified microarray cohort, which is covering 150 normal colon and adenomatous polyp samples. Significant gene modules were obtained by a weighted gene co-expression network analysis. Gene modules with similar profiles were mapped to a colon tissue specific functional interaction network. Several clustering algorithms run on the colon-specific network and the most significant sub-modules between the clusters were identified. The biomarkers were selected by filtering differentially expressed genes which also involve in significant biological processes and pathways. Biomarkers were also validated on two independent datasets based on their differential gene expressions. To the best of our knowledge, such a cascaded network analysis pipeline was implemented for the first time on a large collection of normal colon and polyp samples. We identified significant increases in TLR4 and MSX1 expressions as well as decrease in chemokine profiles with mostly pro-tumoral activities. These biomarkers might appear as both preventive targets and biomarkers for risk evaluation. As a result, this research proposes novel molecular markers that might be alternative to endoscopic approaches for diagnosis of adenomatous polyps.
Collapse
Affiliation(s)
- Zerrin Isik
- Faculty of Engineering, Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Asım Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Demir Karaman
- Department of Computer Engineering, Institute of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Caner Karaca
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Altug Koc
- Gentan Genetic Medical Genetics Diagnosis Center, Izmir, Turkey
| | - Ender Berat Ellidokuz
- Faculty of Medicine, Department of Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
31
|
Yue C, Zhang Y, Wang Y, Zhang Z, Zhang M, Wang H, Chen W, Shang Z, Xin Y, Zhang X, Zhang Y. The Application Value of Syndecan-2 Gene Methylation for Colorectal Cancer Diagnosis: A Clinical Study and Meta-Analyses. Front Med (Lausanne) 2022; 9:753545. [PMID: 35372441 PMCID: PMC8964598 DOI: 10.3389/fmed.2022.753545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Syndecan-2 (SDC2) methylation has been previously reported as a sensitive biomarker for the early detection of colorectal cancer (CRC). Droplet digital PCR (ddPCR) is the latest development of PCR technology. It can accurately detect and quantify the target sequence of nucleic acid. ddPCR is widely used in research and clinical diagnosis. In the present study, we aimed to develop a ddPCR method to detect SDC2 gene methylation and evaluate the diagnostic value of SDC2 gene methylation. Methods First, a ddPCR method was developed to measure SDC2 methylation in stool samples collected from 51 cases of normal, 23 cases of adenoma, and 86 cases of CRC. Subsequently, a meta-analysis of existing studies was conducted to judge the diagnostic value of SDC2 gene methylation in CRC. PUBMED, EMBASE, Web of Science, and Scopus databases were searched for relative studies. Meta-analysis was performed using Meta Disc 1.4 and STATA 15.0 software. Results The ddPCR showed that the linearity, sensitivity, and specificity for the detection of SDC2 gene methylation could be down to 0.1% methylation level and 5 ng of methylated DNA input. In 109 cases of CRC, 107 cases could be detected, and the sensitivity was 98.17%. The median value of the percentage of methylated reference (PMR) in colorectal adenoma and CRC patients was significantly higher compared with the normal individuals (p < 0.001). In addition, we found that the PMR value was associated with the clinical staging of CRC. The difference of PMR in stage II and stage IIIA was statistically significant (p < 0.05). Moreover, the meta-analysis showed that 11 out of 87 studies were identified to report the feasibility of SDC2 gene methylation as a method to diagnose early CRC. The pooled sensitivity and specificity of SDC2 gene methylation test for CRC were 0.80 [95% CI (0.68–0.88)] and 0.93 [95% CI (0.91–0.94)], respectively. The pooled diagnostic odds ratio (DOR) and area under curve (AUC) were 52.46 [95% CI (30.43–90.45)] and 0.94 [95% CI (0.92, 0.96)], respectively. Conclusions The ddPCR method was more sensitive and convenient to detect SDC2 gene methylation, and the pooled analysis showed that methylated SDC2 was a valuable biomarker for the non-invasive detection of CRC.
Collapse
Affiliation(s)
- Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yaping Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | | | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Wendan Chen
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ziqi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yiwei Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
32
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
33
|
Liu J, Qian J, Mo Q, Tang L, Xu Q. Long non-coding RNA PCED1B-AS1 promotes the proliferation of colorectal adenocarcinoma through regulating the miR-633/HOXA9 axis. Bioengineered 2022; 13:5407-5420. [PMID: 35176937 PMCID: PMC8974004 DOI: 10.1080/21655979.2022.2037225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNA (lncRNA) PCED1B-AS1 was shown to play essential roles in human cancers, while its function in colorectal adenocarcinoma remains unclear. This study was carried out to investigate the function of PCED1B-AS1 in regulating the microRNA(miR)-633/HOXA9 axis in colorectal adenocarcinoma. The expression of PCED1B-AS1, miR-633 and HOXA9 was measured by quantitative real-time PCR (qRT-PCR) or Western blot analysis. Cell behaviors of colorectal adenocarcinoma cell lines were assessed by CCK-8, EdU, Transwell and flow cytometry assays. The interaction among PCED1B-AS1, miR-633 and HOXA9 was determined by luciferase reporter and RIP assays. Rescue experiments were performed to determine the regulatory axis in colorectal adenocarcinoma. Moreover, an animal model was established to verify the role of PCED1B-AS1. We found that PCED1B-AS1 was upregulated and miR-633 was downregulated in colorectal adenocarcinoma tissues and corresponding cell lines. Knockdown of PCED1B-AS1 inhibited cell proliferation and promoted apoptosis, while miR-633 inhibitor elevated proliferation and reduced apoptosis of cancer cell lines. In addition, overexpression of HOXA9 obviously attenuated the protective role of knockdown of PCED1B-AS1 or miR-633 mimics in colorectal adenocarcinoma progression. PCED1B-AS1 could negatively regulate the expression of HOXA9 by sponging miR-633. The in vivo experiments confirmed the role of PCED1B-AS1 and miR-633 in colorectal adenocarcinoma, as well as the regulatory relationship of this axis. Our results demonstrated that knockdown of PCED1B-AS1 inhibited the progression of colorectal adenocarcinoma by regulating the miR-633/HOXA9 axis.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, PR, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, PR, China
| | - Qi Mo
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, PR, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, PR, China
| | - Qiang Xu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, PR, China
| |
Collapse
|
34
|
Jungwirth J, Urbanova M, Boot A, Hosek P, Bendova P, Siskova A, Svec J, Kment M, Tumova D, Summerova S, Benes Z, Buchler T, Kohout P, Hucl T, Matej R, Vodickova L, van Wezel T, Vodicka P, Vymetalkova V. Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition. Sci Rep 2022; 12:2570. [PMID: 35173208 PMCID: PMC8850440 DOI: 10.1038/s41598-022-06498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
A large proportion of colorectal carcinomas (CRC) evolve from colorectal adenomas. However, not all individuals with colonic adenomas have a risk of CRC substantially higher than those of the general population. The aim of the study was to determine the differences or similarities of mutation profile among low- and high-grade adenomas and in situ carcinoma with detailed follow up. We have investigated the mutation spectrum of well-known genes involved in CRC (such as APC, BRAF, EGFR, NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53) in a large, well-defined series of 96 adenomas and in situ carcinomas using a high-throughput genotyping technique. Besides, the microsatellite instability and APC and MLH1 promoter methylation were studied as well. We observed a high frequency of pathogenic variants in the studied genes. The APC, KRAS and TP53 mutation frequencies were slightly lower in adenoma samples than in in situ carcinoma samples. Further, when we stratified mutation frequency based on the grade, the frequency distribution was as follows: low-grade adenoma—high-grade adenomas—in situ carcinoma: APC gene 42.9–56.0–54.5%; KRAS gene 32.7–32.0–45.5%; TP53 gene 8.2–20.0–18.2%. The occurrence of KRAS mutation was associated with the presence of villous histology and methylation of the APC promoter was significantly associated with the presence of POLE genetic variations. However, no association was noticed with the presence of any singular mutation and occurrence of subsequent adenoma or CRC. Our data supports the multistep model of gradual accumulation of mutations, especially in the driver genes, such as APC, TP53 and KRAS.
Collapse
Affiliation(s)
- Jiri Jungwirth
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.,Department of Surgery, Weiden Clinic, Söllnerstraße 16, 92637, Weiden in der Oberpfalz, Germany
| | - Marketa Urbanova
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Petr Hosek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Anna Siskova
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jiri Svec
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.,Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Milan Kment
- Second Department of Internal Medicine, Third Faculty of Medicine, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Daniela Tumova
- DT Gastroenterology, Roskotova 1/1225, Prague 4, Czech Republic
| | - Sandra Summerova
- Department of Internal Medicine, Third Faculty of Medicine Charles University and Thomayer University Hospital, Ruska 87, 100 00, Prague, Czech Republic
| | - Zdenek Benes
- Department of Internal Medicine, Third Faculty of Medicine Charles University and Thomayer University Hospital, Ruska 87, 100 00, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 59, Prague, Czech Republic
| | - Pavel Kohout
- Department of Internal Medicine, Third Faculty of Medicine Charles University and Thomayer University Hospital, Ruska 87, 100 00, Prague, Czech Republic
| | - Tomas Hucl
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 59, Prague, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic. .,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic. .,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic.
| |
Collapse
|
35
|
Michaeli JC, Michaeli T, Boch T, Albers S, Michaeli DT. Socio-economic burden of disease: survivorship costs for bladder cancer. J Cancer Policy 2022; 32:100326. [DOI: 10.1016/j.jcpo.2022.100326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022]
|
36
|
Huang Z, Yang M. Molecular Network of Colorectal Cancer and Current Therapeutic Options. Front Oncol 2022; 12:852927. [PMID: 35463300 PMCID: PMC9018988 DOI: 10.3389/fonc.2022.852927] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results from the accumulation of multiple genetic and epigenetic alterations in the normal colonic and rectum epithelium, leading to the progression from colorectal adenomas to invasive carcinomas. Almost half of CRC patients will develop metastases in the course of the disease and most patients with metastatic CRC are incurable. Particularly, the 5-year survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic understanding of these CRC tumors and paired metastases has led to major advances in elucidating early driver genes responsible for carcinogenesis and metastasis, the pathophysiological contribution of transcriptional and epigenetic aberrations in this malignancy which influence many central signaling pathways have attracted attention recently. Therefore, treatments that could affect several different molecular pathways may have pivotal implications for their efficacy. In this review, we summarize our current knowledge on the molecular network of CRC, including cellular signaling pathways, CRC microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis and predictive/prognostic use. We also provide an overview of opportunities for the treatment and prevention strategies in this field.
Collapse
Affiliation(s)
- Zhe Huang
- The Department of 11 General Surgery, Minimally Invasive Colorectal Hernia Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Yang
- The Department of 3Oncology, Gastrointestinal Cancer Unit, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingli Yang,
| |
Collapse
|